The Concise Guide to PHARMACOLOGY 2015/16

Citation for published version:

Digital Object Identifier (DOI):
10.1111/bph.13347

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published in:
British Journal of Pharmacology

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
THE CONCISE GUIDE TO PHARMACOLOGY 2015/16: Overview

Stephan PH Alexander1, Eamonn Kelly2, Neil Marrion2, John A Peters3, Helen E Benson4, Elena Faccenda4, Adam J Pawson4, Joanna L Sharman4, Christopher Southan4, O Peter Buneman5, William A Catterall6, John A Cidlowski7, Anthony P Davenport8, Doriano Fabbro9, Grace Fan10, John C McGrath11, Michael Spedding12, Jamie A Davies4 and CGTP Collaborators

1 School of Biomedical Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK
2 School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, UK
3 Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK
4 Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK
5 Laboratory for Foundations of Computer Science, School of Informatics, University of Edinburgh, Edinburgh, EH8 9LE, United Kingdom
6 Department of Pharmacology, University of Washington, Seattle, WA 98195-7280, USA
7 National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
8 Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK
9 PIQUR Therapeutics, Basel 4057, Switzerland
10 The Agnes Irwin School, Rosemont, Pennsylvania, USA
11 School of Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
12 Spedding Research Solutions SARL, Le Vesinet 78110, France

Abstract

The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/10.1111/bph.13347/full. This compilation of the major pharmacological targets is divided into eight areas of focus: G protein-coupled receptors, ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading. The Concise Guide is published in landscape format in order to facilitate comparison of related targets. It is a condensed version of material contemporary to late 2015, which is presented in greater detail and constantly updated on the website www.guidetopharmacology.org, superseding data presented in the previous Guides to Receptors & Channels and the Concise Guide to PHARMACOLOGY 2013/14. It is produced in conjunction with NC-IUPHAR and provides the official IUPHAR classification and nomenclature for human drug targets, where appropriate. It consolidates information previously curated and displayed separately in IUPHAR-DB and GRAC and provides a permanent, citable, point-in-time record that will survive database updates.

Table of contents

<table>
<thead>
<tr>
<th>Page</th>
<th>Section</th>
</tr>
</thead>
<tbody>
<tr>
<td>5729</td>
<td>Overview</td>
</tr>
<tr>
<td>5734</td>
<td>Other Protein Targets</td>
</tr>
<tr>
<td>5735</td>
<td>Adiponectin receptors</td>
</tr>
<tr>
<td>5735</td>
<td>Blood coagulation components</td>
</tr>
<tr>
<td>5735</td>
<td>Non-enzymatic BRD containing proteins</td>
</tr>
<tr>
<td>5736</td>
<td>Carrier proteins</td>
</tr>
<tr>
<td>5737</td>
<td>CD molecules</td>
</tr>
<tr>
<td>5738</td>
<td>Methyllysine reader proteins</td>
</tr>
<tr>
<td>5739</td>
<td>Cytokines and growth factors</td>
</tr>
<tr>
<td>5739</td>
<td>Fatty acid-binding proteins</td>
</tr>
<tr>
<td>5741</td>
<td>Sigma receptors</td>
</tr>
<tr>
<td>5742</td>
<td>Tubulins</td>
</tr>
<tr>
<td>5744</td>
<td>G protein-coupled receptors</td>
</tr>
<tr>
<td>5746</td>
<td>Orphan and other 7TM receptors</td>
</tr>
<tr>
<td>5746</td>
<td>Class A Orphans</td>
</tr>
<tr>
<td>5756</td>
<td>Class C Orphans</td>
</tr>
<tr>
<td>5756</td>
<td>Taste 1 receptors</td>
</tr>
<tr>
<td>5757</td>
<td>Taste 2 receptors</td>
</tr>
<tr>
<td>5758</td>
<td>Other 7TM proteins</td>
</tr>
<tr>
<td>5759</td>
<td>S-Hydroxytryptamine receptors</td>
</tr>
<tr>
<td>5764</td>
<td>Acetylcholine receptors (muscarinic)</td>
</tr>
<tr>
<td>5766</td>
<td>Adenosine receptors</td>
</tr>
<tr>
<td>5768</td>
<td>Adhesion Class GPCRs</td>
</tr>
<tr>
<td>5770</td>
<td>Adrenergic receptors</td>
</tr>
<tr>
<td>5774</td>
<td>Angiotensin receptors</td>
</tr>
<tr>
<td>5775</td>
<td>Apelin receptor</td>
</tr>
</tbody>
</table>

Searchable database: http://www.guidetopharmacology.org/index.jsp
5777 Bile acid receptor
5778 Bombesin receptors
5780 Bradykinin receptors
5781 Calcitonin receptors
5783 Calcium-sensing receptors
5784 Cannabinoid receptors
5785 Chemerin receptor
5785 Chemokine receptors
5791 Cholecystokinin receptors
5792 Class Frizzled GPCRs
5793 Complement peptide receptors
5795 Corticotropin-releasing factor receptors
5796 Dopamine receptors
5798 Endothelin receptors
5799 G protein-coupled estrogen receptor
5800 Formylpeptide receptors
5801 Free fatty acid receptors
5803 GABAB receptors
5805 Galanin receptors
5806 Ghrelin receptor
5807 Glucagon receptor family
5809 Glycoprotein hormone receptors
5810 Gastrointestinal hormones
5811 GPR18, GPR55 and GPR119
5812 Histamine receptors
5814 Homoisoform receptors
5815 Kisspeptin receptor
5816 Leukotriene receptors
5818 Lysophosphatidyl (LPA) receptors
5819 Lysophosphatidyl (SIP) receptors
5820 Melanin-concentrating hormone receptors
5821 Melanocortin receptors
5822 Melatonin receptors
5823 Metabotropic glutamate receptors
5824 Metenkephalin receptor
5825 Mepiphenylacetic acid receptors
5826 Motilin receptor
5827 Motilin receptor
5828 Neuropeptide F/neuropeptide AF receptors
5829 Neuropeptide S receptor
5830 Neuropeptide W/neuropeptide B receptors
5832 Neuropeptide Y receptors
5832 Neurotensin receptors
5833 Opioid receptors
5835 Orexin receptors
5836 Oxogluutarate receptor
5836 P2Y receptors
5837 Parathyroid hormone receptors
5839 Platelet-activating factor receptor
5840 Prokineticin receptors
5841 Prolactin-releasing peptide receptor
5842 Prostanoid receptors
5844 Proteinase-activated receptors
5845 QRFP receptor
5846 Relaxin family peptidyl receptors
5848 Somatostatin receptors
5850 Succinate receptor
5850 Tachykinin receptors
5852 Thyrotropin-releasing hormone receptors
5852 Trace amine receptor
5854 Urotensin receptor
5854 Vasopressin and oxytocin receptors
5856 VIP and PACAP receptors
5870 Ligand-Gated Ion Channels
5871 S-HT3 receptors
5873 Acid-sensing (proton-gated) ion channels (ASICs)
5875 Epithelial sodium channels (ENaC)
5877 GABAA receptors
5882 Glycine receptors
5885 Ionotropic glutamate receptors
5891 IP3 receptor
5891 Nicotinic acetylcholine receptors
5896 P2X receptors
5898 Byanidine receptor
5900 ZAC
5904 Voltage-gated ion channels
5905 CatSper and Two-Pore channels
5907 Cyclic nucleotide-regulated channels
5909 Potassium channels
5910 Calcium-activated potassium channels
5912 Inwardly rectifying potassium channels
5915 Two-P potassium channels
5917 Voltage-gated potassium channels
5920 Transient Receptor Potential channels
5934 Voltage-gated calcium channels
5936 Voltage-gated proton channel
5937 Voltage-gated sodium channels
5942 Other ion channels
5943 Aquaporins
5944 Chloride channels
5944 CIC family
5947 CFTR
5948 Calcium activated chloride channel
5949 Maxi chloride channel
5950 Volume regulated chloride channels
5952 Connexins and Pannexins
5954 Sodium leak channel, non-selective
5957 Nuclear hormone receptors
5958 1A. Thyroid hormone receptors
5958 1B. Retinoid acid receptors
5960 1C. Peroxisome proliferator-activated receptors
5961 1D. Rev-Erb receptors
5962 1F. Retinoic acid-related orphan receptors
5963 1H. Liver X receptor-like receptors
5964 1L. Vitamin D receptor-like receptors
5965 2A. Hepatocyte nuclear factor-4 receptors
5966 2B. Retinoid X receptors
5967 2C. Testicular receptors
5968 2E. Tailless-like receptors
5970 3B. Estrogen-related receptors
5971 4A. Nerve growth factor IB-like receptors
5972 5A. Fushi tarazu F1-like receptors
5973 6A. Germ cell nuclear factor receptors
5974 6B. DAX-like receptors
5975 Steroid hormone receptors
5976 3A. Estrogen receptors
5976 3C. 3-Ketosteroid receptors
5979 Catalytic receptors
5981 Cytokine receptor family
5981 IL-2 receptor family
5983 IL-3 receptor family
5983 IL-6 receptor family
5985 IL-12 receptor family
5985 Prolactin receptor family
5986 Interferon receptor family
5987 IL-10 receptor family
5988 Immunoglobulin-like family of IL-1 receptors
5989 IL-17 receptor family
5990 GDNF receptor family
5991 Integrins
5994 Natriuretic peptide receptor family
5996 Pattern recognition receptors
5996 Toll-like receptor family
5997 NOD-like receptor family
5999 Receptor serine/threonine kinase (RSTK) family
6000 Type I receptor serine/threonine kinases
6001 Type II receptor serine/threonine kinases
6001 Type III receptor serine/threonine kinases
6002 RSTK functional heteromers
6003 Receptor tyrosine kinases
6004 Type I RTKs: ErbB (epidermal growth factor) receptor family
6005 Type II RTKs: Insulin receptor family
6005 Type III RTKs: PDGFR, CSFR, Kit, FLT3 receptor family
6007 Type IV RTKs: VEGF (vascular endothelial growth factor)
<table>
<thead>
<tr>
<th>Enzymes</th>
<th>6024</th>
</tr>
</thead>
<tbody>
<tr>
<td>6027</td>
<td>Protein Kinases (EC 2.7.x.x)</td>
</tr>
<tr>
<td>6028</td>
<td>Rho kinase</td>
</tr>
<tr>
<td>6029</td>
<td>Protein kinase C (PKC)</td>
</tr>
<tr>
<td>6030</td>
<td>Alpha subfamily</td>
</tr>
<tr>
<td>6031</td>
<td>Delta subfamily</td>
</tr>
<tr>
<td>6033</td>
<td>Eta subfamily</td>
</tr>
<tr>
<td>6034</td>
<td>CDK4 subfamily</td>
</tr>
<tr>
<td>6035</td>
<td>GSK subfamily</td>
</tr>
<tr>
<td>6036</td>
<td>Polo-like kinase (PLK) family</td>
</tr>
<tr>
<td>6037</td>
<td>STE7 family</td>
</tr>
<tr>
<td>6038</td>
<td>Abl family</td>
</tr>
<tr>
<td>6039</td>
<td>Ack family</td>
</tr>
<tr>
<td>6040</td>
<td>Janus kinase (JAKa) family</td>
</tr>
<tr>
<td>6041</td>
<td>Src family</td>
</tr>
<tr>
<td>6042</td>
<td>Tec family</td>
</tr>
<tr>
<td>6043</td>
<td>RAF family</td>
</tr>
<tr>
<td>6044</td>
<td>Peptidases and proteinases</td>
</tr>
<tr>
<td>6045</td>
<td>A1: Pepsin</td>
</tr>
<tr>
<td>6046</td>
<td>A22: Presenilin</td>
</tr>
<tr>
<td>6047</td>
<td>C14: Caspase</td>
</tr>
<tr>
<td>6048</td>
<td>M1: Aminopeptidase N</td>
</tr>
<tr>
<td>6049</td>
<td>M2: Angiotensin-converting (ACE and ACE2)</td>
</tr>
<tr>
<td>6050</td>
<td>M10: Matrix metallopeptidase</td>
</tr>
<tr>
<td>6051</td>
<td>M12: Astacin/Adamylosin</td>
</tr>
<tr>
<td>6052</td>
<td>M28: Aminopeptidase Y</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Enzymes</th>
<th>6053</th>
</tr>
</thead>
<tbody>
<tr>
<td>6054</td>
<td>1-phosphatidylinositol-5-phosphate 4-kinase family</td>
</tr>
<tr>
<td>6055</td>
<td>Lipoxygenases</td>
</tr>
<tr>
<td>6056</td>
<td>Leukotriene and lipoxin metabolism</td>
</tr>
<tr>
<td>6057</td>
<td>GABA turnover</td>
</tr>
<tr>
<td>6058</td>
<td>Glycerocephospholipid turnover</td>
</tr>
<tr>
<td>6059</td>
<td>Phosphatidylinositol kinases</td>
</tr>
<tr>
<td>6060</td>
<td>1-phosphatidylinositol-4-kinase family</td>
</tr>
<tr>
<td>6061</td>
<td>Phosphatidylinositol-4-phosphate 3-kinase family</td>
</tr>
<tr>
<td>6062</td>
<td>Phosphatidylinositol-3-kinase family</td>
</tr>
<tr>
<td>6063</td>
<td>Phosphatidylinositol-5-phosphate 3-kinase family</td>
</tr>
<tr>
<td>6064</td>
<td>Type I PIP kinases (1-phosphatidylinositol-4-phosphate 5-kinase family)</td>
</tr>
<tr>
<td>6065</td>
<td>Type II PIP kinases (1-phosphatidylinositol-5-phosphate 4-kinase family)</td>
</tr>
<tr>
<td>6066</td>
<td>Phosphoinositide-specific phospholipase C</td>
</tr>
<tr>
<td>6067</td>
<td>Phospholipase A2</td>
</tr>
<tr>
<td>6068</td>
<td>Phosphatidylcholine-specific phospholipase D</td>
</tr>
<tr>
<td>6069</td>
<td>Lipid phosphate phosphatases</td>
</tr>
<tr>
<td>6070</td>
<td>Haem oxygenase</td>
</tr>
<tr>
<td>6071</td>
<td>Hydrogen sulphide synthesis</td>
</tr>
<tr>
<td>6072</td>
<td>Hydrolyases</td>
</tr>
<tr>
<td>6073</td>
<td>Inositol phosphate turnover</td>
</tr>
<tr>
<td>6074</td>
<td>Inositol 1,4,5-trisphosphate 3-kinases</td>
</tr>
<tr>
<td>6075</td>
<td>Inositol phospholipid phosphahtases</td>
</tr>
<tr>
<td>6076</td>
<td>Inositol monophosphatase</td>
</tr>
<tr>
<td>6077</td>
<td>Lanosterol biosynthesis pathway</td>
</tr>
<tr>
<td>6078</td>
<td>Nucleotide synthesis and metabolism</td>
</tr>
<tr>
<td>6079</td>
<td>Sphingosine 1-phosphate turnover</td>
</tr>
<tr>
<td>6080</td>
<td>Sphingosine kinase</td>
</tr>
<tr>
<td>6081</td>
<td>Sphingosine 1-phosphate phosphatase</td>
</tr>
<tr>
<td>6082</td>
<td>Sphingosine 1-phosphate phosphatase</td>
</tr>
<tr>
<td>6083</td>
<td>Thyroid hormone turnover</td>
</tr>
<tr>
<td>6084</td>
<td>1.14.11.29 2-oxoglutarate oxygenases</td>
</tr>
<tr>
<td>6085</td>
<td>2.4.2.30 poly(ADP-ribose)polymerases</td>
</tr>
<tr>
<td>6086</td>
<td>2.5.1.58 Protein farnesyltransferase</td>
</tr>
<tr>
<td>6087</td>
<td>3.5.3.15 Peptidyl arginine deiminases (PADI)</td>
</tr>
<tr>
<td>6088</td>
<td>RAS subfamily</td>
</tr>
<tr>
<td>6089</td>
<td>4.2.1.1 Carbonate dehydratases</td>
</tr>
<tr>
<td>6090</td>
<td>5.99.1.2 DNA Topoisomerases</td>
</tr>
</tbody>
</table>

Searchable database: http://www.guidetopharmacology.org/index.jsp

Introduction

In order to allow clarity and consistency in pharmacology, there is a need for a comprehensive organisation and presentation of the targets of drugs. This is the philosophy of the IUPHAR/BPS Guide to PHARMACOLOGY presented on the online free access database (http://www.guidetopharmacology.org/). This database is supported by the British Pharmacological Society (BPS), the International Union of Basic and Clinical Pharmacology (IUPHAR), the Wellcome Trust and the University of Edinburgh. Data included in the Guide to PHARMACOLOGY are derived in large part from interactions with the subcommittees of the Nomenclature Committee of the International Union of Basic and Clinical Pharmacology (NC-IUPHAR). The Editors of the Concise Guide have compiled the individual records, in concert with the team of Curators, drawing on the expert knowledge of these latter subcommittees. The tables allow an indication of the status of the nomenclature for the group of targets listed, usually previously published in Pharmacological Reviews. In the absence of an established subcommittee, advice from several prominent, independent experts has generally been obtained to produce an authoritative consensus on nomenclature, which attempts to fit in within the general guidelines from NC-IUPHAR. This current edition, the Concise Guide to PHARMACOLOGY 2015/16, is the latest snapshot of the database in print form, following on from the Concise Guide to PHARMACOLOGY 2013/14. It contains data drawn from the online database as a rapid overview of the major pharmacological targets. Thus, there are fewer targets presented in the Concise Guide (1761) compared to the online database (2761, as of August 2015). The priority for inclusion in the Concise Guide is the presence of quantitative pharmacological data. This means that often orphan family members are not presented in the Con-

Overview 5732
cise Guide, although structural information is available on the online database. An expansion in the current version of the Concise Guide is the increased inclusion of approved drugs, which reflects the aim of the online database to reflect the clinical exploitation of human molecular targets. Although many of these agents are much less selective than the tool compounds listed to define individual targets or groups of targets, we have included them for the significant interest associated with their use and mechanisms of action. The emphasis on approved drugs means that the online database has been expanded to include 8024 ligands (as of August 2015), meaning that additional records now appear in the Concise Guide, primarily in the enzymes section. The organisation of the data is tabular (where appropriate) with a standardised format, where possible on a single page, intended to aid understanding of and comparison within a particular target group. The Concise Guide is intended as an initial resource, with links to additional reviews and resources for greater depth and information. Pharmacological and structural data focus primarily on human gene products, wherever possible, with links to HGNC gene nomenclature and UniProt IDs. In a few cases, where data from human proteins are limited, data from other species are indicated. Pharmacological tools listed are prioritised on the basis of selectivity and availability. That is, agents (agonists, antagonists, inhibitors, activators, etc.) are included where they are both available (by donation or from commercial sources, now or in the near future) AND the most selective. This edition of the Concise Guide is divided into nine sections, which comprise pharmacological targets of similar structure/function. These are G protein-coupled receptors, ligand-gated ion channels, voltage-gated ion channels, other ion channels, catalytic receptors, nuclear hormone receptors, enzymes, transporters and other protein targets. A new aspect of the Concise Guide 2015/16 is that each of these sections contains a complete listing of the families available for inspection on the online database, identifying those families reported in the Concise Guide by their page numbers. We hope that the Concise Guide will provide for researchers, teachers and students a state-of-the-art source of accurate, curated information on the background to their work that they will use in the Introductions to their Research Papers or Reviews, or in supporting their teaching and studies. We recommend that any citations to information in the Concise Guide are presented in the following format: Alexander SPH et al. (2015). The Concise Guide to PHARMACOLOGY 2015/16: Overview. Br J Pharmacol XXX.

A dedication

This Edition of the Concise Guide to PHARMACOLOGY is dedicated to Tony Harmar (1951-2014). Tony was a friend and colleague, who was involved with IUPHAR for over 15 years and worked on the IUPHAR database for over a decade at Edinburgh, working hard to establish the curators as a team of highly informed and informative individuals imbued with Tony’s passion and dogged determination to focus on high-quality data input, ensuring high-quality data output. With time and the resources of the BPS and Wellcome Trust, combined with the expertise of the NC-IUPHAR committee members mentioned above, Tony established the online database at http://www.guidetopharmacology.org/ as the exceptional resource it is today.

Acknowledgements

We are extremely grateful for the financial contributions from the British Pharmacological Society, the International Union of Basic and Clinical Pharmacology, the Wellcome Trust (099156/Z/12/Z), which support the website and the University of Edinburgh, who host the guidetopharmacology.org website. We are also tremendously grateful to the long list of collaborators from NC-IUPHAR subcommittees and beyond, who have assisted in the construction of the Concise Guide to PHARMACOLOGY 2015/16 and the online database www.GuideToPHARMACOLOGY.org

Conflict of interest

The authors state that there are no conflicts of interest to disclose.

© 2015 The Authors. British Journal of Pharmacology published by John Wiley & Sons Ltd on behalf of The British Pharmacological Society. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
Other Protein Targets

Family structure

- Adiponectin receptors
- B-cell lymphoma 2 (Bcl-2) protein family
- Bromodomain-containing proteins
- Non-enzymatic BRD containing proteins
- Carrier proteins
- CD molecules
- Chromatin-interacting transcriptional repressors
- Methyllysine reader proteins
- Circadian clock proteins
- Cytokines and growth factors
- EF-hand domain containing
- Fatty acid-binding proteins
- Heat shock proteins
- Inhibitors of apoptosis (IAP) protein family
- Kelch-like proteins
- Kinesins
- Mitochondrial-associated proteins
- Notch receptors
- Pentaxins
- Serum pentaxins
- Regulators of G protein signaling (RGS) proteins
- RZ family
- R4 family
- R7 family
- R12 family
- Reticulons
- Ribosomal factors
- Sigma receptors
- Tubulins
- Tumour-associated proteins
- WD repeat-containing proteins

Adiponectin receptors

Other protein targets → Adiponectin receptors

Overview: Adiponectin receptors (provisional nomenclature, ENSM0000000270960) respond to the 30 kDa complement-related protein hormone adiponectin (also known as ADIPOQ: adipocyte, C1q and collagen domain-containing protein; ACRP30, adipose most abundant gene transcript 1; apM-1; gelatin-binding protein: Q15848) originally cloned from adipocytes [49]. Although sequence data suggest 7TM domains, immunological evidence indicates that, contrary to typical 7TM topology, the carboxyl terminus is extracellular, while the amino terminus is intracellular [86]. Signalling through these receptors appears to avoid G proteins. Adiponectin receptors appear rather to stimulate protein phosphorylation via AMP-activated protein kinase and MAP kinase pathways [86], possibly through the protein partner APPL1 (adaptor protein, phosphotyrosine interaction, PH domain and leucine zipper containing 1, Q9UKG1 [52]). The adiponectin receptors are a class of proteins (along with membrane progesterin receptors), which contain seven sequences of aliphatic amino acids reminiscent of GPCRs, but which are structurally and functionally distinct from that class of receptor.

Nomenclature

<table>
<thead>
<tr>
<th>Adipo1 receptor</th>
<th>Adipo2 receptor</th>
</tr>
</thead>
<tbody>
<tr>
<td>HGNC, UniProt</td>
<td>HGNC, UniProt</td>
</tr>
<tr>
<td>ADIPOR1, Q96A54</td>
<td>ADIPOR2, Q86V24</td>
</tr>
</tbody>
</table>

Rank order of potency

<table>
<thead>
<tr>
<th>globular adiponectin (ADIPOQ, Q15848)</th>
<th>adiponectin (ADIPOQ, Q15848)</th>
</tr>
</thead>
</table>

Comments: T-Cadherin (CDH13, P55290) has also been suggested to be a receptor for (hexameric) adiponectin [35].

Searchable database: http://www.guidetopharmacology.org/index.jsp
Further Reading

Blood coagulation components

Other protein targets → Blood coagulation components

Overview: Coagulation as a patho/physiological process is interpreted as a mechanism for reducing excessive blood loss through the generation of a gel-like clot local to the site of injury. The process involves the activation, adhesion (see Integrins), degranulation and aggregation of platelets, as well as proteins circulating in the plasma. The coagulation cascade involves multiple proteins being converted to more active forms from less active precursors, typically through proteolysis (see Proteases). Listed here are the components of the coagulation cascade targeted by agents in current clinical usage.

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>coagulation factor V (proaccelerin, labile factor)</th>
<th>coagulation factor VIII, procoagulant component</th>
<th>serpin peptidase inhibitor, clade C (antithrombin), member 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>HGNC, UniProt</td>
<td>F5, P12259</td>
<td>F8, P00451</td>
<td>SERPINC1, P01008</td>
</tr>
<tr>
<td>Selective activators</td>
<td>–</td>
<td>–</td>
<td>heparin (pKd 7.8) [25], fondaparinux (pKd 7.5) [65], dalteparin [34], danaparoid [15, 58], enoxaparin [17], tinzaparin [19]</td>
</tr>
<tr>
<td>Selective antagonists</td>
<td>drotrecogin alfa (Inhibition) [40, 41]</td>
<td>drotrecogin alfa (Inhibition) [40, 41]</td>
<td></td>
</tr>
</tbody>
</table>

Further Reading

Non-enzymatic BRD containing proteins

Other protein targets → Bromodomain-containing proteins → Non-enzymatic BRD containing proteins

Overview: Bromodomains bind proteins with acetylated lysine residues, such as histones, to regulate gene transcription. Listed herein are examples of bromodomain-containing proteins for which sufficient pharmacology exists.
Carrier proteins

Other protein targets → Carrier proteins

Overview: TTR is a homo-tetrameric protein which transports thyroxine in the plasma and cerebrospinal fluid and retinol (vitamin A) in the plasma. Many disease causing mutations in the protein have been reported, many of which cause complex dissociation and protein mis-assembly and deposition of toxic aggregates amyloid fibril formation [66]. These amyloidogenic mutants are linked to the development of pathological amyloidoses, including familial amyloid polyneuropathy (FAP) [1, 13], familial amyloid cardiomyopathy (FAC) [37], amyloidotic vitreous opacities, carpal tunnel syndrome [57] and others. In old age, non-mutated TTR can also form pathological amyloid fibrils [85]. Pharmacological intervention to reduce or prevent TTR dissociation is being pursued as a therapeutic strategy. To date one small molecule kinetic stabilising molecule (tafamidis) has been approved for FAP, and is being evaluated in clinical trials for other TTR amyloidoses.

Nomenclature

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>transthyretin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common abbreviation</td>
<td>TTR</td>
</tr>
<tr>
<td>HGNC, UniProt</td>
<td>TTR, P02766</td>
</tr>
</tbody>
</table>
CD molecules
Other protein targets → CD molecules

Overview: Cluster of differentiation refers to an attempt to catalogue systematically a series of over 300 cell-surface proteins associated with immunotyping. Many members of the group have identified functions as enzymes (for example, see CD73 ecto-5’-nucleotidase) or receptors (for example, see CD41 integrin, alpha 2b subunit). Many CDs are targeted for therapeutic gain using antibodies for the treatment of proliferative disorders. A full listing of all the Clusters of Differentiation is not possible in the Guide to PHARMACOLOGY; listed herein are selected members of the family targeted for therapeutic gain.

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>CD2</th>
<th>CD3e molecule, epsilon (CD3-TCR complex)</th>
<th>CD20 (membrane-spanning 4-domains, subfamily A, member 1)</th>
<th>CD33</th>
<th>CD52</th>
<th>CD80</th>
<th>CD86</th>
<th>cytotoxic T-lymphocyte-associated protein 4 (CD152)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common abreviation</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>CTLa-4</td>
</tr>
<tr>
<td>HGNC, UniProt</td>
<td>CD2, P06729</td>
<td>CD3E, P07766</td>
<td>MS4A1, P11836</td>
<td>CD33, P20138</td>
<td>CD52, P31358</td>
<td>CD80, P33681</td>
<td>CD86, P42081</td>
<td>CTL4, P16410</td>
</tr>
<tr>
<td>Selective inhibitors</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Selective antagonists</td>
<td>alefacept (Inhibition) [56, 89]</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Antibodies</td>
<td>–</td>
<td>catumaxomab (Binding) [46], muromonab-CD3 (Binding) [24], otezolizumab (Binding) [7]</td>
<td>ofatumumab (Binding) (pKd 9.9) [47], rituximab (Binding) (pKd 8.5) [78], ibritumomab tiuxetan (Binding), obinutuzumab (Binding) [2, 68], tositumomab (Binding)</td>
<td>lintuzumab (Binding) (pKd ~10) [8], gemtuzumab ozogamicin (Binding) [6]</td>
<td>alemtuzumab (Binding) [22]</td>
<td>–</td>
<td>–</td>
<td>ipilimumab (Binding) (pKd ~9) [28], tremelimumab (Binding) (pKd 8.9) [30]</td>
</tr>
</tbody>
</table>

Searchable database: http://www.guidetopharmacology.org/index.jsp
Nomenclature: programmed cell death 1 (CD279)
Common abbreviation: PD-1
HGNC, UniProt: PDCD1, Q15116
Antibodies: pembrolizumab (Binding) (pK_d 10) [9], nivolumab (Binding) (pK_d 9.1) [29, 42, 43]
Comments: The endogenous ligands for human PD-1 are programmed cell death 1 ligand 1 (PD-L1 aka CD274, Q9NZQ7) and programmed cell death 1 ligand 2 (PD-L2; PDCD1LG2). These ligands are cell surface peptides, normally involved in immune system regulation. Many types of cancer cells evolve mechanisms to evade control and elimination by the immune system. Such mechanisms can include inhibition of so-called ‘immune checkpoints’, which would normally be involved in the maintenance of immune homeostasis. An increasingly important area of clinical oncology research is the development of new agents which impede these evasion techniques, thereby switching immune vigilance back on, and effecting immune destruction of cancer cells. Three molecular targets of checkpoint inhibitors which are being extensively pursued are cytotoxic T-lymphocyte antigen 4 (CTLA4), programmed cell death 1 (PD-1), and programmed cell death ligand 1 (PD-L1). Using antibody-based therapies targeting these pathways, clinical responses have been reported in various tumour types, including melanoma, renal cell carcinoma [64] and non-small cell lung cancer [39, 51]. pembrolizumab is the first-in-class, anti-PD-1 antibody to be approved by the US FDA, with ongoing clinical trials for nivolumab (e.g. NCT01673867, NCT01721746) and pidilizumab (NCT02077959, NCT01952769).

Methyllysine reader proteins

Overview: Methyllysine reader proteins bind to methylated proteins, such as histones, allowing regulation of gene expression.

Further Reading

Cytokines and growth factors

Other protein targets → Cytokines and growth factors

Overview: cytokines and growth factors are a group of small proteins released from cells, which act upon the same cell or neighbouring cells, often with a role in immune regulation and/or proliferation. Listed herein are examples of cytokines and growth factors targeted for therapeutic benefit.

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>Antagonists</th>
<th>Selective antagonists</th>
<th>Antibodies</th>
</tr>
</thead>
<tbody>
<tr>
<td>interleukin 1, beta (IL1β)</td>
<td>TNF, P01375</td>
<td></td>
<td>gevokizumab (Binding) (pKd 12.5)</td>
</tr>
<tr>
<td>HGNC, UniProt</td>
<td>−</td>
<td>−</td>
<td>(IL1B) [36, 53, 71]</td>
</tr>
<tr>
<td>Antagonists</td>
<td>−</td>
<td>−</td>
<td>etanercept (Inhibition) [18, 23]</td>
</tr>
<tr>
<td>Selective antagonists</td>
<td>−</td>
<td>−</td>
<td>ranibizumab (Inhibition) (pKd ~9.8) [3]</td>
</tr>
<tr>
<td>Selective antagonists</td>
<td>−</td>
<td>−</td>
<td>pegaptanib (Inhibition) [26, 61]</td>
</tr>
<tr>
<td>Antibodies</td>
<td>−</td>
<td>−</td>
<td>infliximab (Inhibition) (pKd 8.7) [44]</td>
</tr>
<tr>
<td>(Binding) (pKd 10.5) [27]</td>
<td></td>
<td></td>
<td>adalimumab (Inhibition) (pKd >8) [75]</td>
</tr>
<tr>
<td>(Binding) [32, 55]</td>
<td></td>
<td></td>
<td>certolizumab pegol (Inhibition) [60]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fatty acid-binding proteins</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Overview: Fatty acid-binding proteins are low molecular weight (100-130 aa) chaperones for long chain fatty acids, fatty acyl CoA esters, eicosanoids, retinols, retinoic acids and related metabolites and are usually regarded as being responsible for allowing the otherwise hydrophobic ligands to be mobile in aqueous media. These binding proteins may perform functions extracellularly (e.g. in plasma) or transport these agents; to the nucleus to interact with nuclear receptors (principally PPARs and retinoic acid receptors [76]) or for interaction with metabolic enzymes. Although sequence homology is limited, crystallographic studies suggest conserved 3D structures across the group of binding proteins.
Nomenclature

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>fatty acid binding protein 6, ileal</th>
<th>fatty acid binding protein 7, brain</th>
<th>peripheral myelin protein 2</th>
<th>fatty acid binding protein 9, tests</th>
<th>fatty acid binding protein 12</th>
</tr>
</thead>
<tbody>
<tr>
<td>HGNC, UniProt</td>
<td>FABP6, P51161</td>
<td>FABP7, O15540</td>
<td>PMP2, P02689</td>
<td>FABP9, Q0Z758</td>
<td>FABP12, A6NFH5</td>
</tr>
<tr>
<td>Comments</td>
<td>Able to transport bile acids [88].</td>
<td>Crystal structure of the human FABP7 [4].</td>
<td>In silico modelling suggests that FABP8 can bind both fatty acids and cholesterol [50].</td>
<td>– -</td>
<td>– -</td>
</tr>
</tbody>
</table>

Nomenclature

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>retinol binding protein 1, cellular</th>
<th>retinol binding protein 2, cellular</th>
<th>retinol binding protein 3, interstitial</th>
<th>retinol binding protein 4, plasma</th>
<th>retinol binding protein 5, cellular</th>
</tr>
</thead>
<tbody>
<tr>
<td>HGNC, UniProt</td>
<td>RBP1, P09455</td>
<td>RBP2, P05120</td>
<td>RBP3, P10745</td>
<td>RBP4, P02753</td>
<td>RBP5, P82980</td>
</tr>
<tr>
<td>Rank order of potency</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

Nomenclature

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>retinol binding protein 7, cellular</th>
<th>retinaldehyde binding protein 1</th>
<th>cellular retinoic acid binding protein 1</th>
<th>cellular retinoic acid binding protein 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>HGNC, UniProt</td>
<td>RBP7, Q96R05</td>
<td>RLBP1, P12271</td>
<td>CRABP1, P29762</td>
<td>CRABP2, P29373</td>
</tr>
<tr>
<td>Rank order of potency</td>
<td>–</td>
<td>11- cis-retinal, 11-cis-retinol -> 9-cis-retinal, 13-cis-retinal, 13-cis-retinol, all-trans-retinal, retinol [14]</td>
<td>tretinoin -> alitretinoin stearic acid -> palmitic acid, oleic acid, linoleic acid, α-linolenic acid, arachidonic acid [70]</td>
<td>–</td>
</tr>
</tbody>
</table>

Comments

Although not tested at all FABPs, BMS309403 exhibits high affinity for FABP4 (pIC50 8.8) compared to FABP3 or FABP5 (pIC50 – 6.6) [20, 81]. HTS01037 is reported to interfere with FABP4 action [31]. Multiple pseudogenes for the FABPs have been identified in the human genome.

Further Reading

Schroeder F et al. (2008) Role of fatty acid binding proteins and long chain fatty acids in modulating nuclear receptors and gene transcription. Lipids 43: 1-17 [PMID:17882463]

Sigma receptors

Other protein targets → Sigma receptors

Overview: Although termed ‘receptors’, the evidence for coupling through conventional signalling pathways is lacking. Initially described as a subtype of opioid receptors, there is only a modest pharmacological overlap and no structural convergence with the G protein-coupled receptors. A wide range of compounds, ranging from psychoactive agents to antihistamines, have been observed to bind to these sites, which appear to be intracellular.

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>sigma non-opioid intracellular receptor 1</th>
<th>α2</th>
</tr>
</thead>
<tbody>
<tr>
<td>HGNC, UniProt</td>
<td>S1GMAR1, Q99720</td>
<td>–</td>
</tr>
<tr>
<td>Agonists</td>
<td>–</td>
<td>PB-28 (pKᵢ 8.3) [5], 1,3-ditolylguanidine (pKᵢ 7.4) [45] – Guinea pig</td>
</tr>
<tr>
<td>(Sub)family-selective agonists</td>
<td>(RS)-PPCC (pKᵢ 8.8) [67]</td>
<td>–</td>
</tr>
<tr>
<td>Selective agonists</td>
<td>PRE-084 (pIC₅₀ 7.4) [80], (+)-SK&F10047</td>
<td>–</td>
</tr>
<tr>
<td>Antagonists</td>
<td>(-)-pentazocine</td>
<td>SM 21 (pIC₅₀ 7.2) [48]</td>
</tr>
<tr>
<td>Selective antagonists</td>
<td>NE-100 (pIC₅₀ 8.4) [62], BD-1047 (pIC₅₀ 7.4) [54]</td>
<td>–</td>
</tr>
<tr>
<td>Labelled ligands</td>
<td>[³H]pentazocine (Agonist)</td>
<td>[³H]-di-o-tolyguanidine (Agonist)</td>
</tr>
<tr>
<td>Comments</td>
<td>–</td>
<td>There is no molecular correlate of the α2 receptor.</td>
</tr>
</tbody>
</table>

Comments: (-)-pentazocine also shows activity at opioid receptors.

Further Reading

Searchable database: http://www.guidetopharmacology.org/index.jsp
Tubulins

Other protein targets → Tubulins

Overview: Tubulins are a family of intracellular proteins most commonly associated with microtubules, part of the cytoskeleton. They are exploited for therapeutic gain in cancer chemotherapy as targets for agents derived from a variety of natural products: taxanes, colchicine and vinca alkaloids. These are thought to act primarily through β-tubulin, thereby interfering with the normal processes of tubulin polymer formation and disassembly.

<table>
<thead>
<tr>
<th>Nomenclature</th>
<th>tubulin, alpha 1a</th>
<th>tubulin, alpha 4a</th>
<th>tubulin, beta class I</th>
<th>tubulin, beta 3 class III</th>
<th>tubulin, beta 4B class IVb</th>
<th>tubulin, beta 8 class VIII</th>
</tr>
</thead>
<tbody>
<tr>
<td>HGNC, UniProt</td>
<td>TUBA1A, Q71U36</td>
<td>TUBA4A, P68366</td>
<td>TUBB, P07437</td>
<td>TUBB3, Q13509</td>
<td>TUBB4B, P68371</td>
<td>TUBB8, Q3ZCM7</td>
</tr>
<tr>
<td>Inhibitors</td>
<td>-</td>
<td>-</td>
<td>vinblastine (pIC_50 9), vincristine</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>(Sub)family-selective inhibitors</td>
<td>-</td>
<td>-</td>
<td>eribulin (pIC_50 8.2) [59], paclitaxel (Mitotic cell cycle arrest in A431 cells) (pEC_50 8.1) [63], colchicine (pIC_50 8) [12], cabazitaxel, docetaxel, ixabepilone</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Further Reading

References

1. ANDRADE C. (1952) [12978172]
2. Alduaij W et al. (2011) [21378274]
4. Balandiran GK et al. (2000) [10854433]
5. Berardi F et al. (1996) [8568804]
7. Bolt S et al. (1993) [8436176]
8. Caron PC et al. (1992) [1458463]
10. Chang AA et al. (2013) [24144450]
11. Chu QS. (2009) [19236257]
12. Cifuentes M et al. (2006) [16504507]
15. Cziraky MJ et al. (1998) [10403814]
16. El-Charabaty E et al. (1998) [17328523]
17. Eriksson BI et al. (1998) [12802337]
19. Furuhashi M et al. (1994) [15660527]
20. Furuhashi M et al. (1998) [19754198]
21. Garcia-Calvo M et al. (2005) [12085934]
22. Garcia-Calvo M et al. (2007) [17554340]
23. Gestidis AA et al. (2001) [12089326]
25. Gottli R et al. (2013) [23598032]
29. Hall RD et al. (2013) [23302904]
31. Hertzl AV et al. (2009) [10596443]
32. Hoffman HM et al. (2008) [18668535]
33. Hohoff C et al. (1999) [10493790]
34. Holmer E et al. (1987) [13744129]
35. Hug C et al. (2004) [15210937]
36. Issafar H et al. (2014) [24194526]
37. Jacobson DR et al. (1997) [9017939]
38. James LI et al. (2007) [10720144]
39. James LI et al. (2008) [124969320]
40. Kanji S et al. (2010) [11463021]
41. Kanji S et al. (2014) [25096781]
42. Kline J et al. (2007) [11741212]
45. Lever JR et al. (2006) [16463398]
46. Linke R et al. (2010) [20190561]
48. Mach RH et al. (1999) [10096443]
49. Maeda K et al. (1996) [8619847]
50. Majava S et al. (2012) [20421974]
51. Malas S et al. (2013) [24969320]
52. Mao X et al. (2000) [16622416]
54. Matsumoto RR et al. (1995) [8566908]