Reactive accent interpolation through an interactive map application

Citation for published version:

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Proceedings of 8th ISCA Speech Synthesis Workshop

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Reactive accent interpolation through an interactive map application

Maria Astrinaki1, Junichi Yamagishi2,3, Simon King2, Nicolas d’Alessandro1, Thierry Dutoit1

1Circuit Theory and Signal Processing Lab, University of Mons, Belgium
2The Centre for Speech Technology Research, University of Edinburgh, Edinburgh, UK
3National Institute of Informatics, Tokyo, Japan

maria.astrinaki@umons.ac.be, jyamagishi@inf.ed.ac.uk, Simon.King@ed.ac.uk
nicolas.dalessandro@umons.ac.be, thierry.dutoit@umons.ac.be

Abstract

MAGE enables the reactive and continuous models modification in the HMM-based speech synthesis framework. Here, we present our first prototype system for extended interpolation applied for interactive accent control. Available accent models for American, Canadian and British English are manipulated in realtime by means of a gesturally controlled interactive geographical map. The accent interpolation is applied to one gender at a time, but the user is able to reactive alter between genders, while controlling the speakers to be interpolated at a time.

Index Terms: speech synthesis, reactive, dialect, interpolation

1. Reactive HMM-based speech synthesis

In the application, various English accents need to be controlled and interpolated in realtime. Therefore, we use MAGE1, which supports a realtime architecture for reactive HMM-based speech synthesis. MAGE uses multiple threads, and each thread can be affected by the user, allowing accurate controls over the different production levels of the artificial speech [1]. Accessing and controlling the thread responsible for the model manipulation can we reactively modify the way the available models are used for the parameter generation. MAGE allows the reactive control of the interpolation weights of every feature stream for every phonetic label, as illustrated in Figure 1. This feature allows reactive and continuous control over the degree of interpolation between various models, maintaining any other controls.

2. Reactive accent interpolation map

In order to separate out speaker characteristics and accent so that listeners can focus only on accent transitions we use multiple speakers who have similar accents, by interpolating their acoustic models. As users interact with the map application2 they selected the speakers for interpolation. All speakers are chosen from the CSTR voice banking corpus. The application consists of the world map, on which every single speaker is represented as a circle. The “active” region controlled by the user is represented as a yellow circle around the cursor. The user can zoom in/out, navigate, select the speaker’s gender and the interpolation “mode” by using the standard mouse or touchscreen controls. There are two ways to interpolate between speakers: “collision” mode, where the active region overlaps and selects one or more speaker for interpolation and “continuous” mode, where each time the cursor moves, the distance between the cursor and all the available neighbors is computed and the N-nearest speakers are selected to be interpolated as shown in Figure 2. When the voice models are selected, the interpolation weights are computed (uniform weights of $w = 1/N$), the speech parameters are generated and the speech output is synthesized.

3. Conclusions

The interactive accent map application can have several applications, targeting the creation of unique personalized voices. In the field of new interfaces for musical expression and performing arts, in gaming, movie dubbing or GPS applications as well as assistive applications for speech impaired people. Finally in speech pedagogy and therapy by creating adaptive references for certain dialects [2]. However it is not straightforward to formally evaluate the proposed interactive accent control.

4. References