Towards an ISO Standard for Dialogue Act Annotation

Citation for published version:

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Towards an ISO standard for dialogue act annotation

Harry Bunt*, Jan Alexandersson, Jean Carletta, Jae-Woong Choe, Alex Chengyu Fang, Koiti Hasida, Kiyong Lee, Volha Petukhova, Andrei Popescu-Belis, Laurent Romary, Claudia Soria, David Traum

*TiCC: Tilburg Centre for Cognition and Communication
Tilburg University, The Netherlands harry.bunt@uvt.nl

Abstract
This paper describes an ISO project developing an international standard for annotating dialogue with semantic information, in particular concerning the communicative functions of the utterances, the kind of content they address, and the dependency relations to what was said and done earlier in the dialogue. The project, registered as ISO 24617-2 Semantic annotation framework, Part 2: Dialogue acts”, is currently at DIS stage.

1. Introduction

The notion of a dialogue act plays a key role in studies of dialogue, in particular in the interpretation of communicative behaviour of dialogue participants; in building annotated dialogue corpora; and in the design of dialogue management systems for spoken human-computer dialogue. A dialogue act has two main components: a communicative function and a semantic content. The semantic content specifies the objects, relations, actions, events, etc. that the dialogue act is about; the communicative function can be viewed as a specification of the way an addressee uses the semantic content to update his or her information state when he or she understands the corresponding stretch of dialogue.

Dialogue act annotation is the activity of marking up stretches of dialogue with information about the dialogue acts performed, and is often limited to or focused on marking up their communicative functions. Over the years a number of dialogue act annotation schemas has been developed, such as those of the TRAINS project in the US (Allen et al., 1994), the Map Task studies in the UK (Carletta et al., 1996), and the Verbmobil project in Germany (Alexandersson, 1998). These schemas were all designed for a specific purpose and a specific application domain; they contained overlapping sets of communicative functions and made use of often mutually inconsistent terminology. In the 1990s a group of dialogue researchers came together as the Discourse Research Initiative, and drafted the general-purpose schema for multidimensional dialogue act annotation called DAMSL: Dialogue Act Markup using Several Layers (Allen and Core, 1997; Core et al., 1998). With its focus on multidimensionality and domain-independence, this represented an important step forward in dialogue act annotation. Several variations and extensions of the DAMSL schema have been constructed for specific purposes, such as Switchboard-DAMSL (Jurafsky et al., 1997) and COCONUT (Di Eugenio et al., 1998). The comprehensive DIT++ schema (Bunt, 2006; Bunt, 2009) combines the multidimensional DIT schema, developed earlier (Bunt, 1994) with concepts from these various alternative schemas, and provides precise and mutually consistent definitions for its communicative functions and dimensions.

In the EU-funded LIRICS project, a set of core communicative functions from the DIT++ schema has been defined using ISO standard 12620 for the specification of data categories (see LIRICS deliverable D4.3, 2006). The data categories have been tested for their usability and coverage in the manual annotation of a test suite of dialogues in English, Dutch and Italian (as documented in LIRICS deliverable D4.4).

Comparative and analytic studies in the LIRICS project and in an expert group of the International Organization for Standards ISO have indicated that the current state of the art makes it feasible to develop an international standard for dialogue act annotation. This paper describes an ISO project that aims to develop such a standard, the project “Semantic annotation framework (SemAF) – Part 2: Dialogue acts”; see ISO DIS 24617-2 (2010). The basic notions and principles of the project are discussed in the sections 2 and 3, including a metamodel of dialogue act annotation. Of central importance in the view that is taken on dialogue act annotation is multidimensionality and multifunctionality, this is explained and motivated in Section 3. Section 4 describes and motivates the core dimensions and dialogue act types distinguished in this standard. Section 5 outlines the Dialogue Act Markup Language (DiAML) defined for interoperable dialogue act annotation. Section 6 closes with some concluding remarks.

2. Basic concepts and metamodel

2.1. Dialogue acts

The term ‘dialogue act’ is often used rather loosely in the sense of ‘speech act used in dialogue’. In this ISO standard we take a more specific, semantic view on dialogue acts as corresponding to update operations on information states, in particular corresponding to those updates that the speaker intends to occur in the information state of a dialogue participant who understands the speaker’s communicative behaviour. This approach is commonly known as ‘information-state update’ approach or ‘context-change approach’ – see e.g. (Traum & Larsson, 2003; Bunt, 2000).

2.2. Functional segmentation

Viewing a dialogue act as a unit in the semantic description of communicative behaviour, the question arises what
stretches of such behaviour are considered as corresponding to dialogue acts. Spoken dialogues are traditionally segmented into turns, defined as stretches of communicative behaviour produced by one speaker, bounded by periods of inactivity of that speaker. Turns can be quite lengthy and complex, and are for most purposes too coarse as the stretches of behaviour to assign communicative functions to. Communicative functions can be assigned more accurately to smaller units, which we call functional segments, and which we define simply as the functionally relevant minimal stretches of communicative behaviour (minimal in the sense of not taken unnecessarily long).

According to the semantic characterization of dialogue acts given above, a dialogue act has at least two participants: (1) an agent whose communicative behaviour is interpreted, usually called the “speaker”, or “sender”; and (2) a participant to whom he is speaking and whose information state he wants to influence, called the “addressee” (also called “hearer” or “recipient”). There may of course be more than one addressee. Besides sender and addressee(s), there may be various types of side-participants who witness a dialogue without participating in it. Clarke (1996) distinguishes between ‘side-participants’, ‘bystanders’, and ‘overhearsers’, depending on the role that they play in the communicative situation.

Of the two most central aspects of a dialogue act, communicative function and semantic content, the former corresponds intuitively to the type of action that is performed, and as mentioned above, the term “dialogue act annotation” is commonly used to describe the assignment of communicative function labels to stretches of dialogue. A semantically more complete characterization of a functional segment also provides information about the type of semantic content. For example, in the DAMSL annotation schema the Information Level can be indicated using three possible values: Task, Task Management, and Communication. These values indicate whether the semantic content of the dialogue act is concerned with performing the task that underlies the dialogue, or with discussing how to perform the task, or with the communication. This is a coarse 3-way distinction of semantic content types. We propose a more fine-grained classification of content type by distinguishing communication-related information (DAMSL’s ‘Communication’ type) into a number of subtypes, such as information about the processing of something that was said before (feedback information), about the allocation of turns (turn management information), or about the structuring of the dialogue (topic and dialogue structure information). These types of semantic content are also called ‘dimensions’, and are discussed in more detail below in Section 4.

2.3. Dependency relations

Many dialogue acts have a responsive character, being semantically dependent on one or more dialogue acts that occurred earlier in the dialogue. This is for example the case for answers, whose meaning crucially depends on which question is being answered; but also for the acceptance or rejection of offers, suggestions, invitations, and requests; and for accepting an assignment of the turn, or responding to a greeting. For these dialogue acts, an important aspect that may be marked up is the relation to the ‘antecedent’ on which their meaning depends.

Feedback-providing and eliciting acts are in a sense also responsive, as they relate to what happened earlier in the dialogue, but in a different way. Feedback acts are concerned with the processing of what was said before - such as its perception, its interpretation, or its evaluation. The difference is that feedback acts are about the processing of what was said earlier, rather than responding to the dialogue acts that were expressed. The following examples illustrate this.

B’s utterance 3 is used to give an answer to the question in 1; its meaning (notably its semantic content) depends on that of the question, and it responds to the interpretation of the utterance as a question. Utterance 2, by contrast, checks the understanding of utterance 1 as a question. Note that nonverbal feedback, for instance in the form of nodding of using backchannels like m-hm, may relate to what is currently said, rather than to what was previously said. This is also the case for speech editing acts like self-corrections (on Tuesday I mean Thursday) and completions of what the partner is trying to say.

These examples all show that, besides a semantic dependence relation between dialogue acts, for some types of dialogue acts (in particular for feedback acts) we should take into account how they relate to what was previously said. We call the former ‘functional dependence relations’ and the latter ‘feedback dependence relation’.

2.4. Metamodel

The metamodel in Figure 1 shows a UML-like representation of the fundamental concepts that are involved in dialogue act annotation. Each dialogue act is related to one functional segment, but each functional segment is related to one or more dialogue acts, reflecting the possible multifunctionality of functional segments (see Bunt, 2009, 2010).

3. Communicative functions

3.1. Approaches to communicative function definition

Existing dialogue act annotation schemas use one or both of the following two approaches to the definition of communicative functions: (1) in terms of the intended effects on addressees; (2) in terms of properties of the signals that are used. For example, questions, invitations, confirmations, and promises are nearly always defined in terms of speaker intentions, while repetitions, hesitations, and dialogue openings and closing are defined by their form. Defining a communicative function by its linguistic form has the advantage that its recognition can be straightforward, but runs into the problem that the same linguistic form can often be used to express different communicative functions. For example, the utterance Why don’t you start?
The DIT++ taxonomy of communicative functions (Bunt, 2005; Bunt & Girard, 2005) views indirect requests as having a communicative function which is slightly different from, though closely related to, that of the corresponding direct form, because their performance is thought to have slightly different effects on information states. For example, the difference between Where is Lee’s office? (SetQuestion) and Do you know where Lee’s office is? (IndirectSetQuestion) would be that in the indirect version the speaker does not express an expectation that the addressee knows the answer to his question, whereas the direct version does (see Bunt, 2000 for further discussion). The full complexity of the phenomenon of indirect speech acts is beyond the scope of this ISO standard, but an important class of indirect speech acts can be covered as being conditional - see Section 5.4. and (Petukhova & Bunt, 2010).

3.2. Communicative function recognition

Successful communication depends on addressees understanding the communicative functions of the speaker’s utterances in the way intended by the speaker. These functions are inferred from the utterance surface characteristics in combination with a model of the dialogue context. Such a model includes assumptions about each other’s beliefs and goals, as well as knowledge of the dialogue history and about the activity which motivates the dialogue. It is in general not possible to recognize the communicative functions of utterances from their surface form only, since virtually every utterance form can be used with different functions; only in a particular dialogue context can the utterance features be interpreted unambiguously, and sometimes not even then.

The distinction between intention-based and form-based approaches to dialogue acts is relevant to consider in connection with the differences between human and automatic annotation. Human annotators are better at recognizing the intentions behind dialogue utterances, since they are experienced in interpreting intentional behaviour and they have more comprehensive context models. Since a general dialogue annotation schema should support human annotation, it should contain concepts with a depth and granularity that matches human understanding of the functions of dialogue utterances. In order to support automatic annotation, on the other hand, the schema should also contain concepts that are suitable for a more surface-oriented form of automatic annotation that relies less on deep semantic knowledge. In order to accommodate both requirements, we propose the use of (1) hierarchies of communicative functions, and (2) function qualifiers, which make a base communicative function more specific (see below); where functions deeper down in a hierarchy or carrying a qualifier correspond to more detailed specification of intentions or assumptions on the part of the speaker than functions higher in the hierarchy and functions without qualifiers. An example is the recognition of whether an inform act should be interpreted as a justification, an explanation, or an elaboration of something that was said before.
Some dialogue act annotation schemas employ highly specialized communicative functions such as "accept_date" and "suggest_exclude_location", which mix semantic content type into the communicative function definition. Such functions clearly do not belong in a general-purpose dialogue act annotation schema, and are not part of the set of core communicative functions defined in this ISO standard; they may however be added as optional functions for use in relation to particular domains.

4. Multifunctionality and dimensions

4.1. Multifunctionality in dialogue

Utterances in dialogue are often multifunctional, i.e., they serve more than one communicative function (see e.g. Allwood, 1992; Bunt, 1994; 2000; Popescu-Belis, 2005; 2008; Traum & Hinkelman, 1992; 'Traum, 2000). An illustration of this is the following dialogue fragment:

(2) 1. A: Henry, can you take us through these slides?
2. H: O...w...k...ay... just ordering my notes.

In the first utterance, A assigns the next turn to the participant Henry, and formulates an indirect request. In his response, H accepts the turn, stalls for time, accepts the request, and informs A of the reason why he does not immediately fulfill the request.

The ubiquitous multifunctionality of dialogue utterances (see Bunt 2009; 2010 for detailed studies) has led to the development of ‘multidimensional’ dialogue act annotation schemas, which support an utterance to be marked up with more than one functional tag.

4.2. Multidimensionality and dimensions

Until very recently, the multidimensional annotation schemas that have been proposed, such as DAMSL (Allen & Core, 1997); COCONUT (Di Eugenio et al., 1998), and MRDA (Dhillon et al., 2004); do not base their multidimensionality on a clear notion of dimension; rather they use ‘dimension’ as a label for a cluster of mutually exclusive tags. Also, these schemas follow the tradition in annotation work of conceiving text markup as purely descriptive labeling, rather than assigning descriptors which have a well-specified semantics, and as such cannot be expected to provide an explanatory account of multifunctionality.

For example, the DAMSL schema distinguishes five clusters of ‘forward-looking functions’, including the classes of commissive and directive functions, and four clusters of ‘backward-looking functions’: Agreement, Understanding, Answer, and Information Relation. Core & Allen (1997) refer to these nine subclasses as ‘dimensions’. Popescu-Belis (2005) mentions the following five aspects of utterance function that could be relevant for choosing dimensions in a multidimensional schema: (1) the traditional clustering of illocutionary forces in speech act theory into five classes: Representatives, Commissives, Directives, Expressives and Declarations; (2) turn management; (3) adjacency pairs; (4) topical organization in conversation; (5) politeness functions; and (6) rhetorical roles.

Bunt (2005; 2006) proposes to base the design of a multidimensional tag set on a well-founded notion of dimension, inspired by the observation that participation in a dialogue involves a range of communicative activities beyond those strictly related to performing the task that underlies the dialogue. Allwood (2000) notes that in natural conversation, among other things, dialogue participants constantly “evaluate whether and how they can (and/or wish to) continue, perceive, understand and react to each other’s intentions”. Communication is thus a complex, multi-faceted activity, which is enabled by the multifunctionality that dialogue utterances often display (Bunt, 2009; 2010). Dialogue participants share information not only about the task or activity that they pursue with the help of the dialogue, but also about the processing of each other’s messages, about the allocation of turns, about contact and attention, about the use of time, and about various other aspects of the interaction. They thus perform various types of communicative activity, such as giving and eliciting feedback, taking turns, stalling for time, establishing contact, and showing attention. Each of these types of activity is concerned with a different kind of information which can have as their semantic content.

We use the term ‘dimension’ to refer to these various types of semantic content or, equivalently, to the types of communicative activity concerned with these types of information. This leads to considering dimensions such as feedback, turn management, and time management, besides the dimension formed by the activity that motivates the dialogue. In the next section we will discuss the specific set of dimensions proposed for the ISO dialogue annotation standard, and their empirical, theoretical, and practical justification.

5. Core Concepts

5.1. Dimensions

‘Core dimensions’ are those dimensions whose relevance does not depend on the domain of application. In order to identify such dimensions, Petukhova & Bunt (2009a) formulate and test a number of criteria that a core dimension should satisfy, which are listed in (3). The first four of these criteria apply to the identification of dimensions more generally; the fourth criterion applies to the choice of a coherent set of dimensions, and the final fifth criterion applies specifically to ‘core’ dimensions.

(3) 1. Every dimension has a clear empirical basis, corresponding to observed forms of behaviour in dialogue.
2. Each dimension is theoretically justified, corresponding to a well-established class of communicative activities, such as taking turns or giving feedback.
3. Each dimension is recognizable with acceptable precision by human analysts, in particular by annotators, as well as by dialogue understanding and dialogue annotation systems.
4. Each dimension in a multidimensional system can be addressed by dialogue acts independent from addressing other dimensions (the dimensions are independent or orthogonal).
5. Every core dimension is present in many existing dialogue act annotation schemes.
In their study, Petukhova and Bunt (2009a) survey the literature and analyse the contents of 18 existing annotation schemes in order to verify these criteria for a range of proposed dimensions. To examine the recognizability and orthogonality criteria, they present the results of annotation experiments, empirical data on co-occurrence relations among dialogue acts and dimensions, tests of independent addressability, measures of semantic relatedness, and data on human and machine recognition of dimensions. Their study confirms that the following nine dimensions qualify as core dimensions.

1. Task (or Activity): dialogue acts dealing with the task or activity that motivates the dialogue;
2-3. Auto-and Allo-Feedback: dialogue acts providing or eliciting information about the processing of previous utterances by the current speaker (auto) or the current addressee (allo);
4. Turn Management: activities for obtaining, keeping, releasing, or assigning the right to speak;
5. Time Management: acts for managing the use of time in the interaction;
6. Discourse Structuring: dialogue acts dealing with topic management, opening and closing (sub-)dialogues, or otherwise structuring the dialogue;
7-8. Own and Partner Communication Management: actions by the speaker for editing his current contribution, or for editing (e.g. completing) the current contribution of another current speaker;
9. Social obligations Management: dialogue acts for dealing with social conventions such as greeting, introducing oneself, apologizing, and thanking, and responses to these acts, such as accepting an apology

5.2. Communicative Functions

The choice of communicative functions to populate a multidimensional schema can be based on similar criteria as the choice of core dimensions. The following six criteria have been identified, of which the last one is perhaps best viewed as a desirable property rather than a strict requirement:

4. Empirical validity: for every communicative function there exist linguistic or nonverbal means which can be used by speakers to indicate that their behaviour has that function.
2. Theoretical validity: every communicative function has a precise definition which distinguishes it semantically from other functions.
3. The set of communicative functions applicable in a certain dimension provides a good coverage of the phenomena in that dimension.
4. Each communicative function can be recognized with acceptable precision by humans and by machines.
5. Each core communicative function occurs in many existing annotation schemas.

6. Any two communicative functions that can be used in a given dimension are either mutually exclusive, i.e. if one of them applies to a given functional segment then the other one does not, or one function is a specialization of the other.

The latter property has the effect that an annotator, when deciding that a functional segment addresses a given dimension \(D_i\), can choose from the set of communicative functions available for \(D_i\) that unique function which, among the functions that might be applicable, is the most specific one for which there is sufficient evidence. For example, in (5) B’s utterance provides information in response to A’s Check Question (addressing the task dimension).

(5) A: And that’s the first flight tomorrow, right?
B: That’s correct.

An annotator will consider assigning an information-providing function to B’s utterance such as Inform, Answer, Agreement, or Confirm. Of these candidates, Inform and Agreement are not optimally specific, since they miss the fact that B is responding to a question. Confirm is a specialization of Answer, and since the use of the word “correct” is a sign of confirmation, the most appropriate tag is Confirm. Note also that the information-providing functions Disagreement, Correction and Disconfirm, which do not apply here since there is nothing adversary in what B says, are mutually exclusive with Agreement and Confirm. The property of mutual exclusivity or specialization (4.6), together with the orthogonality of dimensions (3.4), has the consequence that every functional segment can be interpreted as having at most as many communicative functions as there are dimensions.

5.3. Dimension-specific and general-purpose functions

Some communicative functions are specific for a particular dimension; for instance Turn Accept and Turn Release are specific for turn management; and Stalling and Pausing are specific for time management. Other functions can be applied in any dimension; for instance a Check Question can be used with task-related semantic content in the Task dimension, but can also be used for checking correct understanding (feedback). In general, all types of question, statement, and answer can be used in any dimension, and the same is true for commissive and directive functions, such as Offer, Suggest, and Request. These communicative functions are therefore called general-purpose functions, as opposed to dimension-specific functions. The use of Inform acts in different dimensions is illustrated in (6)/

(6) 1. We will be open this Sunday. [Task]
2. I didn’t hear what you said. [Auto-Feedback]
3. You misunderstood me. [Allo-Feedback.]
4. I have nothing more to add. [Discourse Structuring]
5. I need a moment to check this. [Time Management]
Some examples of dialogue acts with dimension-specific functions are shown in (7).

(7) 1. Okay. [Positive Auto-Feedback]
2. I beg you pardon? [Negative Auto-Feedback]
3. slow, short nods [Positive Auto-Feedback]
4. hold gesture with hand [Turn Keeping]
5. Ehm,.. [Stalling]
6. I’m sorry. [Apology]
7. No problem. [Accept Apology]

The specification of communicative functions in the ISO standard should be seen in relation to the data categories containing the definitions of these concepts in the ISOcat Data Category Registry (http://www.isocat.org). The core dialogue act functions will be entered in this registry, as long as the ISOCat registry is not yet fully operational, the data categories are temporarily made available at the website http://let.uvt.nl/research/ti/iso-semanno/cd-datcats.pdf. This proposed standard currently includes the following categories of core communicative functions for the various dimensions:

- for general-purpose functions:
 - 4 information-seeking functions,
 - 6 information-providing functions,
 - 4 commissive functions,
 - 5 directive functions;
- for dimension-specific functions:
 - 2 auto-feedback functions;
 - 3 allo-feedback functions;
 - 2 time management functions;
 - 6 turn management functions;
 - 3 discourse structuring functions;
 - 2 own communication management functions;
 - 2 partner communication management functions;
 - 10 social obligation management functions.

5.4. Function Qualifiers

A limitation of virtually every dialogue act taxonomy is that it fails to capture certain subtleties in the performance of communicative actions, relating to modality, conditionality, partiality, and accompanying emotions and attitudes. For instance, it is common to distinguish only two possible responses to an offer: accepting it and refusing it. However, an offer may be responded to in less clear-cut ways, and can be accepted conditionally (as in 3), or partly (as in 2), or with a certain emotion (as in 4):

Information-providing dialogue acts may also express the speaker’s uncertainty about the information that he provides, as in (9):

(9) A: Do you know who’s coming tonight?
B: I have a hunch that Alice won’t come.

Studies of these phenomena (see Petukhova & Bunt (2010) indicate that (un)certainty, partiality, and conditionality can be captured in most cases by means of a binary distinction. For representing a speaker’s emotional stance with respect to the semantic content of the act, or his attitude towards the addressee, a wide variety of descriptors has been proposed in the literature, ranging from Kendon’s basic 6 emotions to classifications of several hundred possible values. In view of this, the ISO proposes contains three binary attributes, for representing conditional, partial, and uncertain variants of dialogue acts, and an attribute with an open class of values for dealing with emotions and attitudes. This is summarized in Table 1.

<table>
<thead>
<tr>
<th>qualifier attribute</th>
<th>qualifier values</th>
<th>CF category</th>
</tr>
</thead>
<tbody>
<tr>
<td>modality</td>
<td>uncertain, certain</td>
<td>info-providing functions</td>
</tr>
<tr>
<td>mode</td>
<td>angry, happy, surprised</td>
<td>info-providing functions; feedback functions</td>
</tr>
<tr>
<td>conditionality</td>
<td>conditional, unconditional</td>
<td>action-discussion functions</td>
</tr>
<tr>
<td>partiality</td>
<td>partial, complete</td>
<td>responsive functions; feedback functions</td>
</tr>
</tbody>
</table>

Table 1: Qualifier attributes, values, and function categories

The Dialogue Act markup Language (DiAML complies with the ISO Linguistic Annotation Framework (LAF; Ide & Romary, 2003) in making a distinction between annotations and representations. The term ‘annotation’ refers to the linguistic information that is added to segments of language data and/or nonverbal communicative behaviour; this notion is independent of the format in which the information is represented. The term ‘representation’ is used to refer to the format in which an annotation is rendered, independent of its content. According to LAF, annotations rather than representations are the proper level of standardization.

This distinction is reflected in the definition of DiAML, which consists of an abstract syntax with a semantics, and a concrete syntax. The abstract syntax specifies the elements making up the information in an annotation and how these elements may be combined; these combinations are defined as set-theoretical structures. The concrete syntax specifies a way to represent annotation structures in XML.

Following the requirement that semantic markups should have a well-defined semantics (Bunt & Romary, 2002), the DiAML language has a formal semantics which rests on the
interpretation of communicative functions as information-state update schemas. Communicative function qualifiers are interpreted as operations which make these update schemas more specific. The schemas can be instantiated with a given semantic content to define a specific update operation.

Annotations may be attached directly to primary data, such as stretches of speech defined by begin-and end points, but more often they will be attached to structures at other levels of analysis, such as the output of a tokenizer. In (10-11) we give an example of a dialogue act annotation represented in DiAML, using the joint TEI-ISO standard ISO 24610-1 for attaching information to digital texts. In the example, we assume that the dialogue participants are identified in the metadata of the primary data as “p1” and “p2”, and that their utterances are identified as the functional segments “fs1”, “fs2”, and “fs3”. In the example, p1 asks p2 a question in an indirect way, which in terms of the DiAML concepts is described as a conditional request (“Please tell me... if you know”). Utterance P2 is segmented into two overlapping functional segments; one in the Auto-Feedback dimension and one in the Task dimension, with value ‘answer’ qualified as ‘uncertain’.

P1: Do you know what time the next train to Utrecht leaves?
P2: The next train to Utrecht leaves I think at 8:32.

(10)

AuFB The next train to Utrecht [positiveAutoFeedback]
TA The next train to Utrecht leaves at 8:32. [answer, uncertain]

(11) <diaml xmlns="http://www.iso.org/diaml/">
<dialogueAct xml:id="da1" sender="#p1" addressee="#p2" target="#fs1"
communicativeFunction="request"
dimension="task"
conditionality="conditional"/>
<dialogueAct xml:id="da2" sender="#p2" addresser="#p1" target="#fs2"
communicativeFunction="overallPositive"
dimension="autoFeedback"
feedbackDependenceTo="fs1"/>
<dialogueAct xml:id="da3" sender="#p2" addresser="#p1" target="#fs3"
communicativeFunction="answer"
dimension="task"
functionalDependenceTo="da1"/>
</diaml>

7. Concluding Remarks

In addition to a structured collection of domain-independent, theoretically and empirically grounded com-
municative functions with precise definitions, this ISO standard will also provides guidelines for how it may be extended with additional dimensions or functions, as may be required for particular domains or annotation purposes, as well as for how to restrict the schema to a coherent sub-schema that could be adequate for a particular application.

8. References

Core & Allen (1997) Coding Dialogs with the DAMSL Annotation schema. AAAI Fall Symposium on Communicative Action in Humans and Machines, Boston, MA.

