From HMMs to DNNs: Where Do the Improvements Come From?

Citation for published version:

Digital Object Identifier (DOI):
10.1109/ICASSP.2016.7472730

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Deep neural networks (DNNs) have recently been the focus of much text-to-speech research as a replacement for decision trees and hidden Markov models (HMMs) in statistical parametric synthesis systems. Performance improvements have been reported; however, the configuration of systems evaluated makes it impossible to judge how much of the improvement is due to the new machine learning methods, and how much is due to other novel aspects of the systems. Specifically, whereas the decision trees in HMM-based systems typically operate at the state-level, and separate trees are used to handle separate acoustic streams, most DNN-based systems are trained to make predictions simultaneously for all streams at the level of the acoustic frame. This paper isolates the influence of three factors (machine learning method; state vs. frame predictions; separate vs. combined stream predictions) by building a continuum of systems along which only one single factor is varied at a time. We find that replacing decision trees with DNNs and moving from state-level to frame-level predictions both significantly improve listeners’ naturalness ratings of synthetic speech produced by the systems. No improvement is found to result from switching from separate-stream to combined-stream predictions.

Index Terms—speech synthesis, hidden Markov model, decision tree, deep neural network

1. INTRODUCTION

Decision tree clustered hidden Markov models (HMMs) have dominated statistical parametric speech synthesis (SPSS) for the past decade [1]. [2] reports two factors (among others) that limit the quality of HMM-based speech synthesis: 1) state-level averaging within matching linguistic contexts; and 2) state-level averaging across differing linguistic contexts. The first type of averaging inherent to HMMs slightly degrades performance, while the second type of averaging which results from decision tree based clustering is very harmful. However, deep neural networks (DNNs) have recently received attention as a powerful alternative acoustic model for SPSS. A number of studies have demonstrated that DNNs can achieve significantly better performance than decision tree clustered HMMs [3, 4, 5, 6]. However, in moving from HMM- to DNN-based systems, researchers have typically simultaneously modified several aspects of systems besides the machine learning method (decision tree/DNN) used to map from linguistic features to acoustics. For example, decision trees in HMM-based systems make predictions for each hidden state, and these predictions are made separately for source and vocal tract filter parameters. DNN systems, in contrast, typically operate directly at the level of the acoustic frame, and are typically trained to output source and vocal tract filter parameters simultaneously. These typical configurations for HMM and DNN-based systems are represented by the first and last lines of Table 1, respectively.

Some of these characteristics are a natural accompaniment to the choice of machine learning method. For example, the motivation for training separate decision trees for different streams in HMM-based systems is due to the fact that different linguistic features are expected to be important for different streams. This means that making combined predictions for multiple streams with a single decision tree would be problematic, as questions relevant only to one stream would partition the data in a suboptimal way for the other streams if asked near the root of the tree. However, the fact that moving from a typical HMM system to a typical DNN one means changing several such factors in the design of the system is scientifically unsatisfactory, as it makes it hard to know which factors are responsible for any performance gains. This paper seeks to disentangle performance gains due to three main factors that differ between paradigms, by building a continuum of systems along which only one factor is altered at a time, as shown in Table 1:

<table>
<thead>
<tr>
<th>System</th>
<th>Regression model</th>
<th>Stream modelling</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (HMM)</td>
<td>decision tree</td>
<td>state, separate</td>
</tr>
<tr>
<td>2</td>
<td>neural network</td>
<td>state, separate</td>
</tr>
<tr>
<td>3</td>
<td>neural network</td>
<td>state, combined</td>
</tr>
<tr>
<td>4</td>
<td>neural network</td>
<td>frame, separate</td>
</tr>
<tr>
<td>5 (DNN)</td>
<td>neural network</td>
<td>frame, combined</td>
</tr>
</tbody>
</table>

Note that the configurations in Table 1 do not include all possible 8 combinations of the 3 factors. Decision tree systems with combined stream predictions are excluded because we would expect them to perform particularly poorly, as already discussed. Neither was any system built to cover the case of a frame-level decision tree system with separate streams, even though this is an established approach [7]. The combinations considered suffice for us to move one step at a time from a typical HMM-based system towards a typical DNN-based one, and lines 3 and 4 of Table 2 represent two different pathways for making this transition.

2. FROM HMMS TO DNNS

In this section we discuss in greater detail each of the major factors mentioned in Section 1 which will be varied between systems built. We also describe two other more minor factors considered in the experiment.

2.1. Regression model

[3] and [8] outline some shortcomings of decision trees. For example, they are inefficient at expressing complex dependencies between linguistic features, such as the XOR relationship, and each model parameter is learned on only a subset of training data. The decision-tree based clustering may also introduce across-linguistic-context averaging, which is found to substantially degrade the naturalness of synthesised speech [2]. Deep neural networks, on the other hand, can easily represent functions with complex dependencies between inputs, and each model parameter is optimised with...
2.2. Regression target unit

The use of subphonetic states which can stretch to account for vari-

able numbers of acoustic observations is well motivated in ASR sys-

tems (including those typically used to force-align DNN training data) due to the large variability in duration observed between dif-

ferent instances of the same word or phone in human speech. From

the speech generation point of view, however, the motivation is less

clear. The statewise stationary approximation of speech is bound to

blur some details of temporal evolution within states [1]. One

technique proposed to address this problem in ASR is the use of seg-

mental HMMs to explicitly model segment dynamics [9]. In TTS, it

has been addressed by generating frame-level features directly [7, 3].

It is hypothesised that a contributing factor to the preference for the

DNN system in [3] is the use of position-within-phone features. This

paper seeks to confirm and quantify this contribution.

2.3. Combined vs. separate stream modelling

The source-filter model of speech assumes conditional independence

of source and vocal-tract filter. The assumption is problematic be-

cause 1) there are in fact dependencies between \(F_0 \) and \(F_1 \) [10, 11],

and 2) automatic techniques often attain poor separation of source

and filter even given theoretical limitations (i.e. peaks at lower fre-

quencies in the STRAIGHT spectrum tend to fit to harmonics rather

than formants) [12]. [13] shows that it is possible to predict \(F_0 \) from

MFCCs with considerable accuracy and confirms the correlation be-

tween source and vocal tract filter. It is possible that generating all

acoustic parameters using a single deep neural network, as opposed to

building separate regression models of each stream, can create more

closely coupled parameter trajectories. In particular, model-
dring source and filter streams simultaneously can be viewed as a

kind of multi-task learning, which has been found useful to improve

naturalness [5, 14]. The preliminary study in [15] shows slight im-

provements when DNNs are trained to predict all streams simultane-

ously. In this investigation, the relative improvements gained from

combined-stream modelling will be assessed.

3. SYSTEMS BUILT

3.1. Data

A database of speech from a British male speaker was used in the ex-

periments, consisting of 2542 sentences: 2400 of these were used for

training, 70 for validation and 72 for testing. The speech waveforms

had been sampled at 48 kHz, and from them STRAIGHT [17] was

used to extract 60-dimensional mel-cepstral coefficients (MCCs), 25

band aperiodicities (BAPs) and logarithmic fundamental frequency

(log \(F_0 \)) at 5 msec frame intervals.

3.2. Implementation details

Regression model type: Systems D1 and D2 are conventional

HMM-based systems using decision trees to map from linguistic

features to state-level distributions over acoustics. Tree-size was

controlled using a minimum description length (MDL) criterion

(penalty factor: 1.0). 2926 binary features were used as questions

for node-splitting during the building of trees, although the effective

size of the question set was considerably smaller than this as many of

them were not capable of splitting the particular data-set which was

used. The MCCs and BAPs with deltas and delta-deltas appended
were modelled by single-component Gaussians, and $\log F_0$ with delta and delta-delta was modelled by a 3-dimensional multi-space probability distribution (MSD). The publicly available HTS toolkit [18] was used to implement the HMM systems.

All other systems (N1–N6) make use of DNNs to map from linguistic features to acoustics. The inputs to all neural-net-based systems include 863 binary features which were a hand-selected subset of the decision tree systems’ questions. This represents a slight inconsistency with systems D1 and D2: ideally, an additional step in the continuum of systems would control for this difference. Frame-aligned training data for the DNNs was obtained by forced alignment using the HMM system described above. DNN outputs consisted of MCCs, BAPs and linearly interpolated $\log F_0$ (all with deltas and delta-deltas) plus a voiced/unvoiced binary value. Input features were normalised to the range of [0.01, 0.99] and output features were standardised to have zero mean and unit variance. Note that D1–2 use MSD where N1–6 use interpolated F_0: ideally this factor would have been isolated with an extra step in the continuum as this difference has been shown to have a significant effect on naturalness [19].

All networks trained have the same size and topology: 6 hidden layers with 1024 units in each. In all DNN systems tanh was used as the hidden unit activation function, and a linear activation function was employed at the output layer. No explicit regularisation was used during training. The mini-batch size was set to 256: a fixed learning rate and momentum were used. Momentum was 0.3, with a fixed learning rate chosen from among 5 rates (0.01, 0.003, 0.001, 0.0003, 0.0001) for each network on the basis of validation error. The learning rate of the top two layers was half that of other layers. The maximum number of epochs was set to 100. We implemented the networks using Theano version 0.6 [20] and training was done on a GPU.

State-level modelling: Systems D1 and D2 are conventional HMM-based systems making use of five-state, left-to-right hidden semi-Markov models (HSMM). Systems N1–3 were trained on the same number of frames as all other DNN systems; however, all frames, which had been aligned with the same HMM state during forced alignment shared exactly the same label, the 863 binary linguistic features being supplemented only with a single extra feature, the state index. In this way, the networks were trained to produce exactly the same prediction for all frames in a state, analogous with the state index. The inputs to all neural net-based systems include 863 binary features along with several others (see below).

Separate-stream vs. combined-stream: D1–2 model streams independently in that separate decision trees are trained for the different streams. N1–3 also consisted of predictors trained independently for each stream: in each of these systems, 3 separate networks were trained separately to predict values for MCC, BAP and combined interpolated $\log F_0$ and voicing features. The learning rate was tuned separately for separate streams within a system, and all networks contained the same number of units. That is, no attempt was made to keep the number of model parameters constant across different models: the separate-stream systems contained approximately 3 times as many parameters as the combined-stream systems.

Fixed vs. context-dependent variance: MLPG was used by all systems using either pre-computed variances from the training data or predicted frame- or state-dependent variances to produce smooth and speech-like trajectories. D1–2 use the variances associated with each leaf of their decision trees in the standard way. In N2–6, the same technique as in [5] is used: the global standard deviation of the training corpus is used for every frame when generating parameters. System N1, in contrast, uses a single-component mixture density network to make a context-dependent prediction per frame: however, due to the way the inputs are coded, all frames in a given state will have the same predicted variance.

Full duration-derived features: System N6 supplements the 863 binary linguistic features with the full 9 duration-derived features we have used in previous work [5]. These include the two features used by systems N4 and N5, and consist of:

1. Fraction through state counting forwards
2. Fraction through state counting backwards
3. Fraction through phone counting forwards
4. Fraction through phone counting backwards
5. Position of state in phone counting forwards
6. Position of state in phone counting backwards
7. Length of state in frames
8. Length of phone in frames
9. Fraction of the current phone made up by current state

Note that due to normalisation by length, features 2 and 4 are redundant given features 1 and 3 respectively; similarly, because all phones contain 5 states, feature 6 is redundant given feature 5. Whilst this effective duplication means that more model parameters are dedicated to these features, we removed this duplication when coding the inputs for systems N1–5: for those systems, only items 1 and 5 were used.

Enhancement: During parameter generation, global variance (GV) enhancement was used by system D1: this was switched for postfiltering in D2 to allow fairer comparison with N1–6, whose output was also processed as is conventionally done in DNN systems with postfiltering. The Speech Signal Processing Toolkit (SPTK) was used to perform the same type of mel-cepstral domain formant emphasis as is used in the publicly available HTS demo script [18].

4. EVALUATION

4.1. Subjective test

To assess the subjective naturalness of synthetic speech produced by the different systems, we performed a MUSHRA (MUltiple Stimuli with Hidden Reference and Anchor) test [21]. This permits evaluation of multiple samples in a single trial without reducing the task to many pairwise comparisons. Specifically, subjects were instructed to rate a set of parallel, amplitude-normalised [22] stimuli on a scale from 0 (completely unnatural) to 100 (completely natural). Each set of stimuli represented the same sentence, but synthesised using all eight different systems in Section 3. Stimuli were ordered randomly and presented without labels. A reference stimulus containing matching vocoded natural speech was provided beside the rating sliders, and also included among the unlabelled examples, for a total of nine stimuli per set. Subjects were instructed to rate the hidden reference as completely natural, fixing the high end of the scale. No explicit lower anchor was used, since the synthetic speech stimuli themselves were sufficiently different from natural speech to act as implicit anchors. To familiarise the listeners with synthetic speech and with the rating interface, the test was preceded by a training phase and a set of tutorial sliders (not included in the analysis).

20 native English listeners, all students at the University of Edinburgh, participated in the test. Each listener rated two sets of ten synthesised Harvard sentences [23], with every set being approximately phonetically balanced. The two sentence sets were chosen from a larger pool of seven sets, balanced in such a way that each set was presented to at least five and at most six listeners. In total, 400 sets
of parallel ratings were obtained. All tests were conducted in sound-insulated booths over Beyerdynamic DT770 PRO headphones, with listeners being remunerated for their time and effort.

4.2. Results

Figure 1 presents the distribution of subjective ratings in a boxplot. It is clear that vocoded speech was judged as vastly more natural than the synthesised samples, though the distribution is quite broad due to variability between the different sentences and listeners. DNN-based systems outperform decision tree-based ones overall, though a few subjects had different preferences.

To gain further insight we performed double-sided pairwise Wilcoxon signed-rank comparisons between all systems, using the Holm-Bonferroni method to keep the familywise error rate below the level $\alpha = 0.05$. The analysis found no significant differences internally between systems in the following groups: $\{D1, D2\}$, $\{N1, N2, N3\}$, and $\{N4, N5\}$. All other systems, and all cross-group comparisons, are significantly different, statistically speaking. If each set of ratings is normalised to run from 0 to 100, then D1 also becomes significantly different from D2, but nothing else changes. Student’s t-tests give the same conclusions as the Wilcoxon signed-rank tests in every single case. The statistically significant transitions thus occur when we switch:

1. Decision trees for neural networks (D2 to N1);
2. State-level modelling for frame-level modelling (N3 to N4);
3. Minimal frame-level features for the full set of durational features (N5 to N6).

The magnitudes of the change in rating from the first two of these are similar, while the third improvement is much smaller, as seen in Figure 2. The choice of whether to build separate or combined models for the different streams did not produce a significant difference in the evaluation, despite the fact that separate-stream systems have approximately three times as many parameters, which theoretically makes them more flexible but more difficult to optimise.

5. CONCLUSIONS

Based on the perceptual tests, we can conclude that the two changes with the greatest perceptual benefit in our experiment were the switch from decision-tree to DNN regression, and the change from state- to frame-level targets for the regression. Each of these netted an average gain close to 10 points on our 100-point naturalness scale. A much smaller but nonetheless statistically significant improvement was also observed from adding duration features to the input. Since the latter was achieved using oracle durations extracted from natural speech, it is unclear to what degree that gain be realised in practical synthesis systems without access to natural durations at run-time. The investigation in [24] uncovered no subjective difference between DNN-synthesised speech using DNN-predicted durations versus oracle durations for an audiobook corpus, but more expressive synthesis material with less predictable (but more prosodically informative) durations might exhibit a different pattern.

Other differences between typical HMM and DNN set-ups were not found to have a significant impact. In particular, using a globally fixed value for each parameter’s variance during MLPG parameter generation was not harmful to synthesis output, confirming the finding of [16]. Contrary to [15], no significant improvement was observed when transitioning from a separate to a combined model of all streams. It is possible that the advantages depend on the corpus, and that materials with a greater F_0 range such as expressive speech or sung corpora might benefit more from models that enforce a close relationship between predicted feature values across streams.

The fact that two of the observed significant improvements were associated with an increase in the frame-level contextual information provided to the regression model is consistent with recent reports that wide-context stacked bottleneck features [5] or recurrent neural networks such as long-short term memory models (LSTMs) [25] further improve synthesis quality over standard DNN systems. While findings may vary with other corpora and system configurations, it appears clear that improved, frame-level regression techniques are likely to constitute a key component in high-quality statistical speech synthesis for the foreseeable future.

6. ACKNOWLEDGEMENTS

This research was supported by EPSRC Programme Grant EP/I031022/1, Natural Speech Technology (NST). The NST research data collection may be accessed at http://hdl.handle.net/10283/786. The test stimuli and response data for this paper can be accessed at http://dx.doi.org/10.7488/ds/1316.
7. REFERENCES

[22] International Telecommunication Union, Telecommunication Standardization Sector, Geneva, Switzerland, Objective measurement of active speech level, March 2011.