Edinburgh Research Explorer

ALTERED PROTEIN COMPOSITION OF PORCINE FOLLICULAR FLUID DUE TO A HIGH-FIBRE DIET AND THE POTENTIAL FOR OPTIMISATION OF IN VITRO CULTURE MEDIA

Citation for published version:

Digital Object Identifier (DOI):
10.1071/RDv28n2Ab81

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Reproduction, Fertility and Development

Publisher Rights Statement:
This is the author's peer-reviewed manuscript as accepted for publication

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Altered protein composition of porcine follicular fluid due to a high fibre diet and
the potential for optimisation of in vitro culture media.

S. Jarrett1, A. C. Gill1, D. Kurian1, E. M. Ferguson2 and C. J. Ashworth1

1The Roslin Institute and R(D)SVS, The University of Edinburgh, Easter Bush, Midlothian, EH25 9RG, Scotland, UK;
2Aberdeen Maternity Hospital, Forsterhill, Aberdeen, AB25 2ZL, Scotland, UK

This study reports a proteomic analyses on porcine follicular fluid (FF) obtained from a previous
nutritional trial, where oocytes from gilts fed a high fibre (HF) diet for the first 19 days of their third
oestrous cycle produced blastocysts with more cells following in vitro maturation (IVM) and IVF
compared with oocytes from control-fed (CON) pigs. Oocytes were matured in TCM-199
supplemented with LH and FSH at 0.5 mg mL⁻¹ and 10% of the animals’ own pooled FF. Following IVF,
resultant embryos were cultured in NCSU-23 medium for 6 to 7 days. We hypothesize that FF protein
composition is altered by the HF diet and that this confers the reproductive benefits previously
observed. The FF had previously been stored at 80°C after the IVF trials and was thawed for the
current study, which compared the protein composition of pooled Day 19 FF from 12 CON pigs and 12
HF pigs. These gilts were a subset of the pigs described above with the largest FF volumes. The protein
composition of pooled FF from 6 CON pigs whose oocytes produced blastocysts was compared with
FF from 6 CON pigs whose oocytes did not produce blastocysts. The same analysis was carried out
with the 6 HF pigs that produced blastocysts and the 6 HF pigs that did not produce blastocysts. Equal
numbers of samples from animals were selected for experimental balance. The proteomic study was
carried out in duplicate. Abundant proteins were depleted from FF by Proteominer enrichment.
Samples were labelled by isotopic di-methylation, where in each analysis, one sample was labelled
with a heavy methyl group, the other with a light methyl group. Proteins were detected by liquid
chromatography tandem mass spectrometry. Protein identifications were filtered using a 1% false
discovery threshold and a requirement for two or more peptides detected for each protein.
Differentially expressed proteins (DEPs) were identified as having heavy/light ratios greater than 1.2
or less than 0.8, which are recognised cut-off points for differential expression in proteomics. Over
140 DEPs were detected between CON and HF samples, indicating a nutritional influence on FF protein
composition. Over one-third (37%) of these DEPs were also differentially expressed in the blastocyst
versus no blastocyst analyses, suggesting that the altered FF protein composition may affect IVF
outcome. DEPs were submitted into Ingenuity Pathway Analysis to highlight associated canonical
pathways and upstream regulators. Top ranking canonical pathways detected included coagulation
system, acute phase response, and LXR/RXR activation pathways. Potential upstream regulators
detected by IPA included transforming growth factor beta, tumour protein P53, and beta-oestradiol.
These pathways and upstream regulators could serve as potential avenues for elucidating the
mechanism(s) by which the HF diet results in the reproductive benefits and could lead to the
refinement of IVM and IVF culture conditions.

This study was funded by AHDB Pork and BBSRC.