Distributed estimation of latent parameters in state space models using separable likelihoods

Citation for published version:

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
DISTRIBUTED ESTIMATION OF LATENT PARAMETERS IN STATE SPACE MODELS USING SEPARABLE LIKELIHOODS

Murat Üney and Bernard Mulgrew

IDCOM, School of Engineering, The University of Edinburgh, EH9 3JL, Edinburgh, UK

ABSTRACT

Motivated by object tracking applications with networked sensors, we consider multi sensor state space models. Estimation of latent parameters in these models requires centralisation because the parameter likelihood depend on the measurement histories of all of the sensors. Consequently, joint processing of multiple histories pose difficulties in scaling with the number of sensors. We propose an approximation with a node-wise separable structure thereby removing the need for centralisation in likelihood computations. When leveraged with Markov random field models and message passing algorithms for inference, these likelihoods facilitate decentralised estimation in tracking networks as well as scalable computation schemes in centralised settings. We establish the connection between the approximation quality of the proposed separable likelihoods and the accuracy of state estimation based on individual sensor histories. We demonstrate this approach in a sensor network self-localisation example.

Index Terms— sensor networks, hidden Markov models, Markov random fields, pseudo-likelihood, simultaneous localisation and tracking

1. INTRODUCTION

State space models and their stochastic versions known as hidden Markov models [1] are used to represent a wide range of dynamic phenomena including spatio-temporal processes (see, e.g., [2]), individual dynamic systems and their populations [3]. As such, sensing applications, in which sensors dispersed over a region collect measurements from moving objects in their field of view, benefit from these models in solving problems involving the estimation of object trajectories.

These models often involve latent parameters [4] which need to be estimated based on measurements that the objects induce on the sensors. In fusion (or, object tracking) networks, localisation/calibration of sensors in a GPS denying environment using point detections of non-cooperative targets [5–7] can be treated as an instance of this problem setting. Another example is the estimation of the orientations and positions of nodes in a camera network based on feature detections [8].

The difficulty in multi-sensor settings is that the parameter likelihood requires all the target measurements collected across the network to be filtered jointly. When a large number of sensors are involved, the complexity of joint filtering overwhelms likelihood evaluation both in maximum likelihood (ML) algorithms (e.g., [5]) and Bayesian estimation recursions (e.g., [6]). In this setting, even a quadratic complexity with the number of sensors might be prohibitive as is the case in linear Gaussian state space models [9, 10]. These difficulties are exacerbated in the case of more complex state space models, for example, set valued state variables [11], or, those with measurement association uncertainties [12]. Consequently, the joint filtering approach suffers from poor scalability with the number of sensors.

Decentralised paradigms, on the other hand, have more desirable properties such as scalability, better resource utilisation and flexibility. This is often achieved by filtering sensor histories individually thereby maintaining a linear $O(N)$ cost for filtering. The filtered posteriors are then communicated and combined using fusion algorithms leading to a trade-off between the estimation accuracy and scalability. This perspective has parallels with the use of message passing schemes for distributed estimation [13–15]. The structure of the problem we consider, however, differs in that the parameter likelihood does not readily factorise into local functions implying a Markov model as in this line of work.

The need for centralised operation for evaluating a parameter likelihood also arises in the context of estimation of parametric distributions from samples. In this context, the use of surrogate local functions has been proposed [16–18], for efficient estimation. In our earlier work, we used a similar approach together with the perspective of local filtering and proposed separable likelihood functions for our problem setting [19, 20]. These likelihoods factorise into a pair of local terms and lead to a dual-term parameter likelihood approximation in state space models.

In this work, we propose an alternative separable likelihood for parameter estimation in distributed state space models. The separable structure allows its evaluation to be done using local filtering operations which in turn results with a linear filtering cost across the network. We assess the approximation quality using the Kullback-Leibler divergence (KLD) [21] of the proposed likelihood with respect to the actual likelihood obtained by joint filtering. In particular, we relate this divergence to the uncertainties in predicting and estimating the underlying state using individual and joint sensor histories. We show that with more accurate local filters the approximation quality improves and the proposed dual-term separable likelihood has improved error bound compared to the aforementioned dual-term likelihood. We leverage the node-wise separable likelihoods with pairwise Markov random fields (MRFs) and obtain a message passing scheme for parameter estimation in distributed multi-sensor state space models similar to, for example, [13–15].
The article is structured as follows: We provide the problem statement in Section 2. Then, we introduce the quad-term node-wise separable likelihood approximation in Section 3. In Section 4, we combine these likelihoods with pairwise MRFs. In Section 5, we demonstrate the efficacy of our approach through a linear Gaussian state space model. Finally, we conclude in Section 6.

2. PROBLEM DEFINITION

For simplicity in exposition but without loss of generality, we build the discussion upon a two-sensor and a single Markov process case. Let us consider observation processes \(\{Z_k\}_{k=1}^T \) associated with sensors \(i \) and \(j \), respectively, together with a Markov process \(\{X_k\}_{k=1}^T \). We are interested in estimating \(\theta \) and the "centralised" filter. Therefore, the computation of the parameters \(\theta \) based on the history of both sensors

\[
X_k | (X_{1:k-1} = x_{1:k-1}) \sim \pi(x_k | x_{k-1}; \theta), \quad X_1 \sim \pi(x_1; \theta),
\]

where \(| \) denotes conditioning. Measured values \(z_i^k \) and \(z_j^k \) are points in \(\mathbb{Z}^2 \) and \(\mathbb{Z}^2 \) respectively, and are generated independently in accordance with the likelihood models

\[
Z_i^k | (X_{1:k} = x_{1:k}) \sim g_i(z_i^k | x_k; \theta)
\]

\[
Z_j^k | (X_{1:k} = x_{1:k}) \sim g_j(z_j^k | x_k; \theta)
\]

where subscript \(i : k \) indicates a vector concatenation over time. Here, \(\theta \) can capture a wide range of parameters such as noise model parameters and sensor locations. When \(\theta \) is unknown, inference in this model reduces to the estimation of \(X_k \) by multi-sensor filtering. When \(\theta \) is unknown, its likelihood measures goodness of fit to the measurements and is evaluated via multi-sensor filtering [4, Sec.IV]:

\[
\ell(z_{1:k}, z_{1:k}^j; \theta) = \prod_{k=1}^T \int \left(g_i(z_i^k | x_k; \theta) g_j(z_j^k | x_k; \theta) \right) p(x_k | x_{k-1}; \theta) \mathrm{d}x_k,
\]

where the first line follows from the chain rule of probabilities. The second line above is the contribution at time step \(k \) which updates the likelihood of the previous time step and is found using the Markov property that the sensor measurements are independent of the measurement histories, conditioned on the current state and \(\theta \). Let us denote this relation by \(Z_i^k \perp \perp Z_j^{1:k-1} | X_k, \theta \) (see, e.g., [23]). The integrands in the expression for the likelihood update term in (2) are multi-sensor likelihood and the prediction density for \(X_k \) based on the history of both sensors \(i \) and \(j \). In other words, (2) is the scale factor for the posterior density of Bayesian recursions, or, the "centralised" filter. Therefore, the computation of the parameter likelihood (1) requires that a centre collects the measurements of both sensors and sequentially filters them jointly for \(k = 1, \ldots, t \) to compute (2).

We are interested in estimating \(\theta \) without resorting to joint filtering and with a computational structure that is well suited for distributed/decentralised operation such as message passing.

3. QUAD-TERM NODE-WISE SEPARABLE LIKELIHOODS

In this section, we introduce an approximation for the parameter likelihood which factorises into terms local to nodes \(i \) and \(j \), i.e., a node-wise separable approximation. Let us consider the likelihood update term in (2). This term factorises in alternative ways as follows:

\[
p(z_i^k, z_j^k | z_{1:k-1}^i, z_{1:k-1}^j, \theta) = p(z_i^k | z_{1:k-1}^i, \theta) p(z_j^k | z_{1:k-1}^j, \theta)
\]

\[
p(z_i^k, z_j^k | z_{1:k-1}^i, z_{1:k-1}^j, \theta) = p(z_i^k | z_{1:k-1}^i, \theta) p(z_j^k | z_{1:k-1}^j, \theta)
\]

\[
p(z_i^k, z_j^k | z_{1:k-1}^i, z_{1:k-1}^j, \theta) = \left(p(z_i^k | z_{1:k-1}^i, \theta) p(z_j^k | z_{1:k-1}^j, \theta) \right)^{1/2} \times \left(p(z_i^k | z_{1:k-1}^i, \theta) p(z_j^k | z_{1:k-1}^j, \theta) \right)^{1/2}
\]

In the first and second lines above, the chain rule is used. The third equality can be found by taking the geometric mean of the first two expressions. The conditioning of the four factors in Eq.(5) to the measurement histories of both sensors prevents decentralisation. In order to avoid this, we let us leave out the history of sensor \(i \) (sensor \(j \) in the first two last two terms of (5), i.e.,

\[
q(z_i^k, z_j^k | z_{1:k-1}^i, z_{1:k-1}^j, \theta) \triangleq \frac{1}{\kappa_k(\theta)} \left(p(z_i^k | z_{1:k-1}^i, \theta) p(z_j^k | z_{1:k-1}^j, \theta) \right)^{1/2} \times \left(p(z_i^k | z_{1:k-1}^i, \theta) p(z_j^k | z_{1:k-1}^j, \theta) \right)^{1/2}
\]

where \(\kappa_k(\theta) \) is the normalisation constant that guarantees \(q \) to integrate to unity. Note that \(\kappa_k(\theta) \) is a function of the parameters \(\theta \).

The appeal of this quadruple term is that the factors depend on single sensor histories. As such, they require filtering of sensor histories of \(i \) and \(j \) individually and in turn allow us to avoid centralisation. Next, we consider the difference between the update term (2) and the quad-term approximation introduced in (6). Because these terms are probability densities over the sensor measurements, their “divergence” can be quantified using the KLD [21]. For this reason, we incorporate \(\theta \) in the joint probabilistic model that encompasses the HMM model as a random variable \(\Theta \) associated with the prior density –equivalently, its marginal in the joint model– \(p(\theta) \):

Proposition 3.1 The KLD between the centralised update and the node-wise separable approximation in (6) is bounded by the average of the Mutual Information (MI) [21] between the current measurement pair and a single sensor’s history conditioned on the history of the other sensor, i.e.,

\[
D(p(z_i^k, z_j^k | z_{1:k-1}^i, z_{1:k-1}^j, \theta) || q(z_i^k, z_j^k | z_{1:k-1}^i, z_{1:k-1}^j, \theta)) \leq \frac{1}{2} I(Z_i^k, Z_j^k; Z_i^{1:k-1}, Z_j^{1:k-1}, \Theta) + \frac{1}{2} I(Z_i^k, Z_j^k; Z_i^{1:k-1}) I(Z_j^{1:k-1}, \Theta).
\]

(8)

Proof. We begin the proof by substituting the distributions of concern in the definition of (conditional) KL-divergence in (8) and obtain (9) and (10) where \(\kappa_k(\theta) \) is the normalisation constant for \(q \) defined in (7). Eq.(9) follows from the multiplication of both the numerator and the denominator of the quotient inside the logarithm by \(p(z_i^k | z_{1:k-1}^i, \theta) p(z_j^k | z_{1:k-1}^j, \theta) \) and a rearrangement of the terms. The definition of MI results with the first two terms in Eq.(10). The last term is the expectation of the normalisation constant over the joint distribution over the sensor histories.
\[D(p(z_k^i, z_k^j | z_{1:k-1}, z_{1:k-1}, \theta))||q(z_k^i, z_k^j | z_{1:k-1}, z_{1:k-1}, \theta)) = \int dz_k^i dz_k^j dz_{1:k-1} dz_{1:k-1} d\theta p(z_k^i, z_k^j | z_{1:k-1}, z_{1:k-1}, \theta) \times \log \frac{p(z_k^i, z_k^j | z_{1:k-1}, z_{1:k-1}, \theta)}{q(z_k^i, z_k^j | z_{1:k-1}, z_{1:k-1}, \theta)} \]

\[= \int dz_k^i dz_k^j dz_{1:k-1} dz_{1:k-1} d\theta p(z_k^i, z_k^j | z_{1:k-1}, z_{1:k-1}, \theta) \times \log \frac{p(z_k^i, z_k^j | z_{1:k-1}, z_{1:k-1}, \theta)\kappa_k(\theta)}{(p(z_k^i, z_k^j | z_{1:k-1}, z_{1:k-1}, \theta)p(z_k^i, z_k^j | z_{1:k-1}, z_{1:k-1}, \theta)^{1/2})} \]

\[= \int dz_k^i dz_k^j dz_{1:k-1} dz_{1:k-1} d\theta p(z_k^i, z_k^j | z_{1:k-1}, z_{1:k-1}, \theta) \times \log \frac{p(z_k^i, z_k^j | z_{1:k-1}, z_{1:k-1}, \theta)}{p(z_k^i, z_k^j | z_{1:k-1}, z_{1:k-1}, \theta)p(z_k^i, z_k^j | z_{1:k-1}, z_{1:k-1}, \theta)^{1/2}} + 2 \log \kappa_k(\theta) \]

\[= \frac{1}{2} (I(Z_k^i, Z_k^j; Z_{1:k-1} | Z_{1:k-1}, \Theta) + I(Z_k^i, Z_k^j; Z_{1:k-1} | Z_{1:k-1}, \Theta)) + E[\log \kappa_k(\theta)]. \]

where \(H \) denotes the Shannon Entropy [21].

Proof. We apply the chain rule of information to the MI terms on the RHS of (8) leading to

\[I(Z_k^i, Z_k^j; Z_{1:k-1} | Z_{1:k-1}, \Theta) = I(Z_k^i, Z_k^j; Z_{1:k-1}, \Theta) + I(Z_k^i, Z_k^j; Z_{1:k-1} | Z_{1:k-1}, \Theta) \]

\[= I(Z_k^i, Z_k^j; Z_{1:k-1}, \Theta) + I(Z_k^i, Z_k^j; Z_{1:k-1} | Z_{1:k-1}, \Theta). \]

The MI terms on the RHSs of the equations above are for random variables which form Markov chains with the current target state \(X_k \). Consider the (conditional) chains \(Z_k^i \leftrightarrow X_k \leftrightarrow Z_{1:k-1} \), \(Z_k^j \leftrightarrow X_k \leftrightarrow Z_{1:k-1} \) and then \(Z_k^i \leftrightarrow X_k \leftrightarrow Z_{1:k-1} \) for the RHS of Eq. (13). The Data Processing Inequality [21] applied to these terms lead to

\[I(Z_k^i, Z_k^j; Z_{1:k-1} | Z_{1:k-1}, \Theta) \leq I(X_k; Z_{1:k-1} | Z_k^i, Z_k^j; Z_{1:k-1}, \Theta) \]

\[= H(X_k | Z_{1:k-1}, \Theta) - H(X_k | Z_{1:k-1}, Z_k^i, Z_k^j, Z_{1:k-1}, \Theta) \]

A similar break down of Eq. (14) results with

\[I(Z_k^i, Z_k^j; Z_{1:k-1} | Z_{1:k-1}, \Theta) \leq I(X_k; Z_{1:k-1} | Z_k^i, Z_k^j; Z_{1:k-1}, \Theta) \]

\[= H(X_k | Z_{1:k-1}, \Theta) - H(X_k | Z_{1:k-1}, Z_k^i, Z_k^j, Z_{1:k-1}, \Theta). \]

Substituting from (15) and (16) into (8) results with (12).

Corollary 3.2 relates the approximation quality of the quad-term node-wise separable updates to the uncertainties in the target state prediction and posterior distributions when individual node histories and their combinations are considered. The first term in the RHS of (12) is the sum of the uncertainty reductions in the predicted target state by taking the other sensor’s history into account. The second term involves, similarly, the reductions in the target state estimation by the introduction of the other sensor’s history. Therefore, a better quality of approximation should be expected for the cases that the local filtering densities involved concentrate around a single point in the state space. Equivalently, the quality of approximation is better if sensor \(s \) or \(j \) does not achieve a significant improvement in accuracy for predicting and estimating \(X_k \) when the measurement history of the other sensor is incorporated into local filtering.
It can be shown that the upper bound in (8) for the quad-term approximation is smaller than the exact KLD of the aforementioned dual term approximation [20]. In other words, the quad-term approximation is closer to the centralised update compared to the dual-term approximation, in terms of its KLD. On the other hand, the scaling factor of the dual term approximation is unity regardless of θ thereby admitting a significant amount of flexibility in the range of the distributions and likelihoods that can be accommodated in the state space model, for example, random finite set models [20]. Evaluation of the scaling factor in (7) might not be straightforward for general problem settings.

A node-wise separable likelihood built upon the quad-term update is obtained after substituting g in (6) as the update term in (1):

$$
\bar{l} \left(z_{1:t}^1, z_{1:t}^2 | \theta \right) = \prod_{k=1}^{t} \frac{1}{n_k(\theta)} \left(p(z_{k}^1 | z_{1:k-1}^1, \theta) p(z_{k}^2 | z_{1:k-1}^2, \theta) \right)^{1/2}
\times \left(p(z_{k}^1 | z_{1:k-1}^1, \theta) p(z_{k}^2 | z_{1:k-1}^2, \theta) \right)^{1/2}
= \frac{1}{K^2(\theta)} \left(r_{ij}^1(\theta) s_{ij}^1(\theta) \right)^{1/2} \left(r_{ij}^2(\theta) s_{ij}^2(\theta) \right)^{1/2}
$$

where the four terms r_{ij}^1, s_{ij}^1, r_{ij}^2, and s_{ij}^2 have recursive forms given by

$$
r_{ij}^1(\theta) \equiv r_{ij}^1(\theta) p(z_{k}^1 | z_{1:k-1}^1, \theta),
$$

$$
s_{ij}^1(\theta) \equiv s_{ij}^1(\theta) p(z_{k}^1 | z_{1:k-1}^1, \theta),
$$

$$
r_{ij}^2(\theta) \equiv r_{ij}^2(\theta) p(z_{k}^2 | z_{1:k-1}^2, \theta),
$$

$$
s_{ij}^2(\theta) \equiv s_{ij}^2(\theta) p(z_{k}^2 | z_{1:k-1}^2, \theta),
$$

for $k = 1, \ldots, t$. The normalisation constant K^2 can also be found recursively using the update terms found using (7).

This approximate likelihood can be evaluated in a distributed fashion in which sensor nodes filter their own observation histories and exchange these posteriors with the other node at every time step $k = 1, \ldots, t$. Node i, based on its local measurements and the posterior from j, computes r_{ij} and s_{ij} above for each k. Node j performs a similar operation, and, in this respect, subscript ij indicates that the associated term is computed at sensor i and will be transmitted to sensor j and vice versa. The product of the local terms and the received terms yield the quad-term node-wise separable likelihood after normalisation with (7).

4. PAIRWISE MARKOV RANDOM FIELD MODELS FOR DISTRIBUTED ESTIMATION IN STATE SPACE MODELS

The benefits of the quad-term node-wise separable likelihood introduced in the previous section can be extended to the case of $N > 2$ sensors by using the product of separable likelihoods for pairs of sensors. The filtering cost is $O(N)$ regardless of the number of quad-terms to be evaluated. Of course, selecting all possible $O(N^2)$ terms to be included might undermine the benefits obtained in terms of filtering. We are interested in cases in which the selected pairs render a connected planar graph thereby yielding the number of pairs less than $O(N^2)$. Then, the minimum number of quad-terms one can select is the number of edges in a spanning tree, i.e., $N - 1$.

A particularly interesting case is when θ is a concatenation of unknown parameters local to nodes, i.e., $\theta = [\theta_1, \ldots, \theta_N]$. Let us denote by \mathcal{E} the set of pairs for which the quad-term likelihood will be incorporated and by \mathcal{V} the set of sensor nodes. Together with a priori distributions selected for Θ, s, the corresponding parameter posterior is a pairwise Markov random field over $\mathcal{G} = (\mathcal{V}, \mathcal{E})$ [23]:

$$
p(\theta | Z_{1:t}^1, Z_{1:t}^2) \propto \prod_{i \in \mathcal{V}} \psi_i(\theta_i) \prod_{(i,j) \in \mathcal{E}} \psi_{ij}(\theta_i, \theta_j),
$$

$$
\psi_i(\theta_i) = p_0(\theta_i),
\psi_{ij}(\theta_i, \theta_j) = \bar{l}(z_{1:t}^1, z_{1:t}^2 | \theta_i, \theta_j),
$$

where the node potential functions (i.e., ψ_is) are arbitrary priors for θ_i (e.g., uniform distributions over bounded sets θ_i take values from) and the edge potentials (i.e., ψ_{ij}s) are the quad-term separable likelihoods for the pairs (i, j)s based on sensor histories up to time t.

This model is illustrated in Fig. 1 and enables the estimation of θ in a distributed fashion: The pairwise MRF model in (22) allows the computation of the marginal densities through iterative local message passing such as Belief Propagation (BP) [24]. In BP, the nodes maintain distributions over their local variables and update them based on messages from their neighbours which summarise the information neighbours have gained on these variables. This is described for all $i \in \mathcal{V}$ by

$$
m_{ij}(\theta_j) = \int \psi_{ij}(\theta_i, \theta_j) \psi_j(\theta_j) \prod_{i' \in \mathcal{V} \setminus \{i\} \setminus \{j\}} m_{i'i}(\theta_i) d\theta_i,
$$

$$
p_i(\theta_i) \propto \psi_i(\theta_i) \prod_{j \in \mathcal{V} \setminus \{i\}} m_{ji}(\theta_j).
$$

In BP iterations, nodes simultaneously send messages to their neighbours using (23) (often starting with constants as the previously received messages) and update their local “belief” using (24). If \mathcal{G} contains no cycles (i.e., \mathcal{G} is a tree), ψ_is are guaranteed to converge to the marginals of (22), in a finite number of steps [24]. For the case in which \mathcal{G} contains cycles, iterations of (23) and (24) are known as loopy BP (LBP) and has been very successful in computing approximate marginals in a distributed fashion, in fusion, self-localisation and tracking problems in sensor networks [13, 14, 25].

In the resulting algorithm, we consider the pairwise MRF model in (22) equipped with quad-term node-wise separable likelihoods. The sensor histories are filtered individually and the filtered posteriors are exchanged with the neighbouring sensors which are then used to compute the update terms in (18)–(21). This yields a cost of filtering linear in the number of sensors. At the end of k steps, the edge potentials in (22) are computed using (17). Finally, the marginal parameter posteriors are found using LBP message passing operations specified by (23) and (24).

5. EXAMPLE: SELF-LOCALISATION IN LINEAR GAUSSIAN STATE SPACE MODELS

In this example, we consider a state space model which is linear with additive Gaussian uncertainties given (unknown) sensor loca-
tions θ_i, i.e.,
\[
\pi(x_k|z_{k-1}) = N(x_k; F_{x_{k-1}}, Q)
\]
\[
g_i(z_i^k|x_k^i; \theta_i) = N(z_i^k; H_i(x_k - \theta_i), R_i)
\]
where $N(;)$, F, P is a multi-dimensional Gaussian density with mean vector m and covariance matrix P. The linear transformation F specifies the state transition dynamics whereas Q is the process noise covariance matrix. H_i is the observation matrix and R_i is the observation noise covariance, both associated with sensor i.

For given values of the unknowns, optimal Bayesian filtering is carried out by Kalman filtering (KF) owing to the conditionally linear/Gaussian nature of the model. Specifically, for each sensor i, we use a KF with the history z_i^k which yields the following Gaussian prediction and posterior distributions at time k:
\[
p(x_k|z_{i}^{k-1}; \theta_i) = N(x_k; F_{x_{k-1}} + \theta_i, P_{x_{k|k-1}})
\]
\[
p(x_k|z_{i}^{k-1}; \theta_i) = N(x_k; H_i z_i^k + \theta_i, P_{x_{k|k}})
\]

After multiplying these densities with the measurement likelihood of sensor i and marginalising out the state variable, we obtain the update terms in (18) and (19) as follows:
\[
p(z_k^i|z_{i}^{k-1}; \theta_i) = N(z_k^i; H_i (\hat{x}_k ^i + \theta_i - \theta_i), S_k^i)
\]
\[
p(z_k^i|z_{i}^{k-1}; \theta_i) = N(z_k^i; H_i (\hat{x}_k ^i + \theta_i - \theta_i), S_k^i)
\]
\[
S_{k|k} = R_i + H_i P_{k|k} H_i^T
\]
\[
p(z_k^i|z_{i}^{k-1}; \theta_i) = N(z_k^i; H_i (\hat{x}_k ^i + \theta_i - \theta_i), S_k^i)
\]

The four terms in (18)-(21) as well as the scaling factor $\kappa_k(\theta_i,j)$ in (7) can be found in closed form, the latter using integration rules of quadratic exponentials.

We consider the scenario depicted in Fig. 2. Nine sensors observe a moving object. We select F and Q to model near constant velocity motion with random acceleration and H and R to model noisy position measurements from the object. Location of sensor 1 is selected as the origin and the respective locations of the remaining sensors are to be estimated.

We perform quad-term separable edge potential computations using (27)-(28) in (18)-(21) and (17) for $t = 20$ time steps. We compare the performance with that achieved by using the actual edge potentials found by joint filtering as well as the dual-term approximation in [20]. These edge potential evaluations take place within LBP message passing iterations given by (23)-(24). In particular, we consider a particle based implementation strategy known as non-parametric BP [26].The iterations are initiated with sets of samples $\{\theta_i(t)\}_{i=1}^N$ generated from local position priors $p_{0,i}(\theta_i)$s for $i \in V$. Non-parametric BP approach represents the message from node j to i by a sample set $\{\tilde{\theta}_i(t)\}_{k=1}^L$ associated with the weights given by

\[
\omega_i^{(l)} \propto \psi_{ij}(\theta_i^{(l)}, \theta_j^{(l)}), \quad \theta_j^{(l)} \sim \left(\psi_j(\theta_j) \prod_{j' \in n(i) \setminus i} m_{i,j'}(\theta_j) \right)
\]

where the node and edge potentials have been selected as the prior densities and quad-term separable likelihoods in (22) (or, centralised or dual-term likelihoods, for comparison).

We use 30 iterations of LBP on the pairwise graph G in Fig. 2. First, we consider the accuracy of estimation in terms of the maximum localisation error in the network averaged over 200 Monte Carlo simulations. In Fig. 3, we provide log-plots of this term over iterations after normalisation with 1000m. All three edge potentials result with a maximum of less than 10m error on the average by iteration 30. Note that the quad-term approximation performs on par with the baseline joint filtering term, both of which perform slightly better than the dual-term approximation. The computation time for both of the separable edge potentials are similar and average to 12.2s per edge per iteration whereas the joint filtering results with an average of 28.3s. Therefore, the proposed approximation provides significant savings in computational time for a negligible loss in estimation accuracy, in this example.

6. CONCLUSIONS

We propose a node-wise separable likelihood for local parameter estimation in distributed state space models. The separable structure enables us to evaluate this likelihood using local filtering operations thereby scaling with the number of sensors whereas the actual likelihood requires joint multi-sensor filtering which often has a prohibitive cost. We provide closed form expressions and bounds for the KLD of the proposed approximation with respect to the actual likelihood and show that the approximation quality improves as the local filtering accuracy gets better. We leverage the node-wise separable likelihoods with pairwise Markov random fields and obtain a message passing scheme for parameter estimation in distributed state space models. We demonstrate the resulting distributed estimation scheme on a sensor self-localisation example.

7. REFERENCES

Fig. 2. Example scenario: Sensors (S1-S9) collect measurements from an object (T1) with initial position denoted by the black square. The blue lines depict the MRF model for the estimation task.

Fig. 3. Log normalised average error versus LBP iterations for the joint, dual-term and the quad-term separable likelihoods.

