Dynamic relational contracts under complete information

Citation for published version:

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Early version, also known as pre-print

Publisher Rights Statement:

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Dynamic Relational Contracts under Complete Information

Jonathan P. Thomas
(University of Edinburgh)

Tim Worrall
(University of Edinburgh)

Date
June 2014
This paper considers a long-term relationship between two agents who both undertake a costly action or investment that together produces a joint benefit. Agents have an opportunity to expropriate some of the joint benefit for their own use. Two cases are considered: (i) where agents are risk neutral and are subject to limited liability constraints and (ii) where agents are risk averse, have quasi-linear preferences in consumption and actions but where limited liability constraints do not bind. The question asked is how to structure the investments and division of the surplus over time so as to avoid expropriation. In the risk-neutral case, there may be an initial phase in which one agent overinvests and the other underinvests. However, both actions and surplus converge monotonically to a stationary state in which there is no overinvestment and surplus is at its maximum subject to the constraints. In the risk-averse case, there is no overinvestment. For this case, we establish that dynamics may or may not be monotonic depending on whether or not it is possible to sustain a first-best allocation. If the first-best allocation is not sustainable, then there is a trade-off between risk sharing and surplus maximization. In general, surplus will not be at its constrained maximum even in the long run.

KEYWORDS: relational contracts · self-enforcement · limited commitment · risk sharing

JEL CLASSIFICATION: C61 · C73 · D86 · D91 · L14

1. INTRODUCTION

This paper considers a situation where two agents repeatedly engage in joint production. In each period, both agents simultaneously undertake an action or investment that produces a joint output. Agents must decide how much to invest each period (there is full depreciation) and how to divide up joint production. We assume there is a hold-up problem, that is, contracts on action or division decisions are not enforceable and each agent has an outside option that is increasing in the investment of the other agent.\(^1\) Production and the extent of the hold-up problem may depend on an exogenous state and agents may be risk averse. The only link between periods is a Markov process determining states. There is complete information: apart from the fact that the agents choose their actions simultaneously each period, everything is observable. The only friction is that contracts cannot be enforced. We consider allocations or contracts from which no agent has an incentive to renege by imposing self-enforcing constraints at each date and state. We refer to feasible contracts that satisfy these constraints as...
dynamic relational contracts. We characterize the Pareto-efficient dynamic relational contracts; we refer to such contracts as optimal contracts.

A number of results for special or limiting cases of this model are known. First, one-sided-action versions of this model or variations on it, have been studied by a number of authors (see, e.g., Albuquerque and Hopenhayn 2004, Kovrijnykh 2013, Sigouin 2003, Thomas and Worrall 1994). Typically, this literature has considered the case where both agents are risk neutral, there is limited liability and the agent taking the action can commit. To prevent the uncommitted agent from taking his/her outside option, actions may be kept low initially. A key insight of this literature is that incentives are improved when payments to the uncommitted agent are backloaded into the future. This provides a growing carrot for adhering to the contract. Consequently, the action or investment of the other agent can be increased in the future. This generates dynamics in the agent’s actions as well as in monetary payments. In the long run, actions and transfers converge to a stationary distribution that maximizes the surplus, output less action costs, given the self-enforcing constraints. The speed of backloading is restricted by the limited liability constraints. Ray (2002) has established the most general backloading result of this type. He considers a general, but non-stochastic, principal-agent model in which both parties may take actions. The principal can commit within each period, so the self-enforcing constraint only applies to the agent. He shows that an efficient contract has terms that move in favour of the agent, converging in finite time to the efficient self-enforcing continuation that maximizes the agent’s payoff.\(^2\)

Second, consider the case where agents have no action to take, or where there is no hold-up problem. In this case, the model involves sharing a stochastic endowment. The case in which agents have their own stochastic endowment and can share risk subject to limited commitment constraints has been widely studied (see, e.g., Kocherlakota 1996, Ligon et al. 2002, Thomas and Worrall 1988). A result of this pure risk-sharing case is that a constrained Pareto-efficient allocation evolves toward a stationary distribution, and that, for some parameter values, the distribution of future expected utilities is non-degenerate.\(^3\) Although the distribution is non-degenerate, the solution exhibits an “amnesia” property that once an agent is constrained, the contract from then on is independent of the past history of shocks.\(^4\)

Third, there are a very few papers in this limited commitment literature that examine the situation where two or more agents take actions. The most relevant paper to ours is Acemoglu et al. (2011) that considers a model of

\(^2\) Opp and Zhu (2013) consider the effect of differences in discount rates where the agent can also abscond with some part of the transfer. This creates a tension between frontloading and backloading incentives that may generate oscillations in the payoffs.

\(^3\) For this result the two-sided lack of commitment is crucial because if there is only one-sided lack of commitment, utilities converge to a degenerate distribution.

\(^4\) Agents are constrained if at the optimum they are just indifferent between adhering to the contract and reneging and taking the outside option.
changes in political power. In Acemoglu et al. (2011) a Markov process determines which risk-averse political party is in power. Political parties take actions that contribute to a common pool of resources whether in power or not, but only the party in power gets to determine the allocation of resources across agents. Therefore, states are identified by the agent in power. It is shown that in a constrained Pareto-efficient allocation, the action of one of the agents (the one in power) is always chosen efficiently and actions of other agents (those not in power) are distorted downward. Furthermore, they establish a convergence result that depends on whether a first-best allocation is sustainable or not: if a first-best allocation is sustainable, then the actions and the division of resources converges to a degenerate (first-best) distribution; otherwise, allocations do not converge to a degenerate distribution. The two-agent model with quasi-linear utility considered in their paper corresponds to a limiting case of our model where in each state one agent has all the property rights. Their convergence result, when a first-best allocation is sustainable, corresponds to our Theorem 3(a). In Theorem 3(b) we impose stronger conditions on the primitives of the model and assume that the stochastic process is i.i.d., but establish convergence to a unique limiting distribution that is independent of initial conditions.

Fourth, our model is related to the broader literature on relational contracting (see, e.g., Doornik 2006, Levin 2003, Rayo 2007) that builds on the work of Macleod and Malcomson (1989). This literature has studied models with more general ingredients (including many-sided actions, enforceable payments, moral hazard, hidden information, and endogenous property rights), but has restricted attention to stationary equilibria, thus, eliminating any interesting dynamics in investments and transfers. The restriction to stationary equilibria is either derived, because stationary contracts are optimal (when agents are risk neutral and in the absence of limited liability), or imposed, because the focus is on organizational structures under which full efficiency can be achieved. One exception to the focus on stationary contracts is Fong and Li (2012) who introduce limited liability and moral hazard into a risk-neutral model firms and workers based on Levin (2003). They show that if the principal extracts most of the surplus, the backloading of the agent’s utility can lead to a probationary contract in which the agent’s wage is initially at the lower bound, and incentives are provided by the threat of termination; at some point this threat is removed and the wage increases to a higher level. This can create more volatile wages within firms and greater dispersion in wages across firms.

We impose two simplifying assumptions on our model. First, we assume that agents’ preferences are quasi-linear in consumption and actions. This simplifies the problem because with quasi-linear preferences

5 Fischer (2013) considers a somewhat related model where two agents make a choice between a safe and a risky investment. One implication of his model is that more risk tolerant agents may engage in more risk taking and therefore more informal insurance.

6 They also consider more general utility functions and more than two agents.

7 Similarly, Yang (2013) introduces agent heterogeneity as well as unobservable effort into a relational contracting model to consider wage dynamics within a firm.
efficient actions (and hence, surplus) are determined independently of the distribution of resources. Second, we impose sufficient conditions that the constrained Pareto-frontier is concave. This simplifies our problem because it allows us to focus on non-random contracts.\(^8\) We examine two main cases: where agents are risk neutral but consumption is constrained to be non-negative (limited liability) and where agents are risk averse. In the case of risk-averse agents we assume that preferences are such that non-negativity constraints on consumption can be ignored.

If agents are risk neutral, optimal contracts involve two phases. In the first phase there is backloading with zero consumption for the constrained agent.\(^9\) This backloading property extends to utilities and not just consumption and we establish that the constrained agent overinvests up to the last period of the backloading phase and the terms of the contract move monotonically in his/her favour. This overinvestment arises because it allows further transfer of utility to the other agent who consumes the extra output. It occurs despite the hold-up problem, that in a static model, would lead to underinvestment.\(^10\) The second phase is stationary and independent of the initial conditions. Consumption and investment depend on the state but not on the time period. Each agent has positive consumption and, for a given state, either both invest efficiently or both underinvest. In either case, current surplus is maximized subject to the self-enforcing constraints. Convergence to the stationary phase is monotone in the sense that whenever the same state recurs in the backloading phase, surplus is higher at the later date.

Results are somewhat different when agents are risk averse and depend on whether or not it is possible to sustain a first-best allocation for some division of the surplus, as in Acemoglu et al. (2011). If it is possible to sustain a first-best allocation, then the optimal contract is similar to the risk-neutral case: convergence is again monotone. Actions tend to first-best actions in the long-run. If the first-best allocation cannot be sustained, then there might be an initial monotone phase, but in the long-run, when there are two or more states, monotonicity does not obtain: when the same state recurs, surplus will sometimes be higher at the later date and sometimes lower. There is also a trade-off between achieving efficient risk-sharing and maximizing current surplus even in the long run. In particular, and in contrast to the risk-neutral case, current surplus is not maximized. Better risk-sharing is achieved by holding the action of one agent inefficiently low because this reduces the outside option of the other agent, that is, it relaxes the latter's self-enforcing constraint. We show that the optimal contract depends on the past history of states and does not in general exhibit the amnesia property of the pure

\(^8\) It would be straightforward to allow for random contracts by introducing a public randomization device, but at the cost of considerable complexity of notation and statements of our results. Furthermore, the assumptions we make are consistent with those that are commonly made in the literature.

\(^9\) Consumption may be positive in the last period of this phase. Note that this first phase may not exist and its existence depends on the initial split of overall surplus, the discount factor and other parameter values.

\(^10\) Nevertheless, we demonstrate that it is never the case that both agents overinvest—even at different dates—in any optimal contract.
risk-sharing model. Furthermore, we consider the limit as the hold-up problem vanishes and show how the optimal contract converges to the pure-risking contract of Kocherlakota (1996).

The paper proceeds as follows. Section 2 describes the model. Section 3 provides some general results that apply to both the risk-neutral and risk-averse cases. Section 4 analyses the risk-neutral case and Section 5 the risk-averse case. Section 6 concludes. Statements of Lemmas and the proofs of the main results are found in the Appendix. Proofs of the Lemmas are relegated to the Supplementary Material.

2. Model

We consider a dynamic model of joint production where agents repeatedly undertake an action or investment that generates a joint output. Once produced agents have the opportunity to unilaterally expropriate some of the joint output for their own benefit. In this section, we shall describe the economic environment and the set of dynamic relational contracts. We define a game played by the two agents and identify dynamic relational contracts with the subgame perfect equilibria of that game. Our interest is in optimal contracts, that correspond to the set of Pareto-efficient subgame perfect equilibria.12

2.1. Economic environment

Time is discrete and indexed by \(t = 0, 1, 2, \ldots, \infty \). At the start of each period, a state of nature \(s \) is realized from a finite state space \(\mathcal{S} \) with \(n \geq 1 \) states. The state evolves according to an irreducible, time homogeneous Markov chain with transition matrix \([\pi_{sr}] \), where \(\sum_{r \in \mathcal{S}} \pi_{sr} = 1 \), all \(s \in \mathcal{S} \). The chain starts from an initial state \(s_0 \) at date \(t = 0 \).13 We denote the state at date \(t \) by \(s_t \) and the history of states by \(s^t = \{s_0, s_1, \ldots, s_t\} \).14

There are two agents, \(i = 1, 2 \). At every date \(t \), and after the state at that date is observed, both agents simultaneously choose an action/investment \(a_i \in \mathbb{R}_+ \). Actions produce an output \(y^t(a) \geq 0 \) that depends on the state \(s \) and the action pair \(a := (a_1, a_2) \) (details are given below in Assumption 2). Having observed actions and output, the agents agree to split output and each consumes non-negative consumption \(c_i, c := (c_1, c_2) \in \mathbb{R}_+^2 \). We impose that consumption is non-negative as a simple way to reflect a limited liability constraint on the transfers

11 Ábrahám and Lacsó (2013) establish a similar result in a model of risk-sharing model and storage. The absence of the amnesia property is more consistent with the empirical evidence (see Broer 2013).

12 More precisely, we focus on efficient pure subgame-perfect equilibria relative to specified “Nash reversion” punishments, although our characterization also applies mutatis mutandis to optimal punishments, should they be different, and hence, to efficient equilibria among the set of all pure strategy equilibria.

13 For part of our convergence result in the risk-averse case of Section 5, we shall suppose that the process is i.i.d.

14 Where we write \(s^t \), we shall assume this is a positive probability event unless otherwise stated, because zero probability events play no role here.
one agent can make to the other. Consumption c is feasible if $c_1 + c_2 \leq y^i(a)$. Agent i derives per-period utility u_i from net consumption $x_i := c_i - a_i$, $x := (x_1, x_2) \in \mathbb{R}^2$. We make the following assumptions on u_i and y^i:

ASSUMPTION 1: Per-period utility $u_i: [x_i, \infty) \rightarrow (-\infty) \cup \mathbb{R}$ is a twice continuously differentiable, strictly increasing and concave function of net consumption, where $x_i \leq 0$.

ASSUMPTION 2: For each $s \in S$, the production function $y^i: \mathbb{R}_+^2 \rightarrow \mathbb{R}_+$ is twice continuously differentiable, strictly increasing in both arguments and strictly concave. Furthermore, for each $s \in S$, $\partial^2 y^i(a)/\partial a_1 \partial a_2 \geq 0$ (complementarity); $y^i(0) = 0$ and the upper contour sets $\{a \in \mathbb{R}_+^2 \mid y^i(a) - a_1 - a_2 \geq \gamma\}$, $\gamma \in \mathbb{R}$, are compact.

Assumption 2 imposes fairly standard conditions on the production function. The last part of Assumption 2 is a simple way to restrict actions to a compact set $S(s)$. Denote surplus in state s by $z^i(a) := y^i(a) - a_1 - a_2$. Define the first-best action pair $a^s(s)$ as the actions that maximize surplus in state s. Given Assumption 2, the first-best action pair exists and is unique. We refer to the surplus $z^i(a^s(s))$ as the first-best surplus. Since actions are chosen simultaneously and independently, we also define the conditionally efficient actions $a^s_i(a_j, s)$, $i, j = 1, 2, i \neq j$, such that

$$a^s_i(a_j, s) := \arg\max_{a_i \in \mathbb{R}_+} [y^i(a_1, a_2) - a_i].$$

The conditionally efficient actions are single-valued, continuous functions of the other agent’s action (Lemma 1). Given the complementarity assumption, they are weakly upward sloping. In addition, $a^s_i(s) = a^s_i(a^s_j(s), s)$ for $i, j = 1, 2, i \neq j$.

We now specify what an agent can get if there is no agreement on how to divide up output. If no agreement is reached, agent i gets a breakdown consumption of $\phi^i(a)$, and hence, a breakdown utility of $u_i(\phi^i(a) - a_i)$. An agent can always take the option of receiving her breakdown utility. More formally, we suppose the agents play a Nash demand game to divide output. In this Nash demand game, both agents simultaneously announce consumption claims $(\tilde{c}_1, \tilde{c}_2)$, $\tilde{c}_i \geq 0$. If $\tilde{c}_1 + \tilde{c}_2 = y^i(a)$, then this determines the division of output: consumption $c_i = \tilde{c}_i$. Otherwise, agents receive their breakdown consumption: $c_i = \phi^i(a)$.

The specific assumptions on $\phi^i(a)$ are given below, but a simple example with proportional defaults captures what we have in mind. Suppose that each agent can, by defaulting, capture a fraction θ_i of the available output $y^i(a)$. Here, $\phi^i(a) = \theta_i y^i(a)$. We assume that agents cannot obtain more that the available output, so

15 The linearity in actions could be replaced by a convex cost function $h_i(a_i)$ such that net consumption $x_i = c_i - h_i(a_i)$ without changing the analysis.

16 We will shortly make assumptions about the payoff when the relationship breaks down (Assumption 3) that will impose additional restrictions on the production function. These will imply that the first-best action pair is strictly positive.

17 What we want to capture is that there is an ex ante agreement on what actions should be taken, and how the resulting output should be split, and that failure to abide by it leads to the breakdown utilities. The Nash demand game is a simple way of implementing this idea – but we stress that our results are not sensitive to the way it is operationalized.
θ_1 + θ_2 ≤ 1, but we do not require that the sum exhausts available output. For example, disagreement may incur a cost, such as lawyers’ fees or bargaining costs, so that some of output is lost when there is default. In such cases, θ_1 + θ_2 < 1. We assume θ_i > 0, so that what an agent gets in the breakdown is increasing in the action of the other agent. This assumption captures the hold-up feature of joint production we wish to model.

As another example, consider the special case with additive production: \(y^i(a) = f^i_1(a_1) + f^i_2(a_2) \) and suppose \(φ^i(a) = θ^i_1 f^i_1(a_1) + θ^i_2 f^i_2(a_2), \) \(θ^i_j ≥ 0 \) and \(\sum_{i=1}^2 θ^i_j ≤ 1, j = 1, 2. \) Our hold-up assumption requires \(θ^i_j > 0, i, j = 1, 2, i ≠ j. \) With this parameterization, assuming \(\sum_{i=1}^2 θ^i_j = 1 \) and taking the limit as \(θ^i_j → 0, \) for \(i, j = 1, 2, i ≠ j \) and for all \(s ∈ S, \) produces the pure risk sharing model that has been studied by Kocherlakota (1996), Ligon et al. (2002) and others. This is discussed in Section 5.

Analogous to Assumption 2, we shall assume that \(φ^i(a) \) satisfies:

Assumption 3: For each \(s ∈ S \) and \(i = 1, 2, \) the function \(φ^i: R^2_+ → R_+ \) is continuous, twice continuously differentiable, strictly increasing in both arguments and strictly concave. Moreover, \(∂^2 φ^i(a)/∂a_i∂a_2 ≥ 0 \) (complementarity) and \(∂ φ^i(0,a_j)/∂a_i > 1 \) for all \(a_j ∈ R_+, i, j = 1, 2, i ≠ j. \) In addition, \(φ^i(0,0) = 0 \) for \(i = 1, 2 \) and

\[
∂φ^i(a)/∂a_i + ∂φ^j(a)/∂a_j ≤ ∂y^i(a)/∂a_i \forall s \text{ and } i, j = 1, 2.
\]

In the case of proportional defaults, these conditions (apart from \(∂φ^i(0,a_j)/∂a_i > 1 \)) follow directly from Assumption 2. Complementarity in Assumption 3 implies that the reaction functions in the breakdown game are weakly upward sloping, and this simplifies the arguments below. Condition (1) requires that the increase in the total breakdown consumption cannot exceed the marginal product. Together with \(φ^i(0,0) = 0, \) it implies that the \(φ^i(a) \) are feasible, that is, \(φ^i(a) + φ^j(a) ≤ y^i(a) \) for each \(a \) and \(s. \) Condition (1) together with \(∂ φ^i(0,a_j)/∂a_i > 1, i = 1, 2 \) implies that the first-best action pair is strictly positive. The assumption that \(φ^i \) is strictly increasing in both its arguments, in particular that \(∂ φ^i(a)/∂a_j > 0 \) for \(i ≠ j, \) captures the hold-up property of the model.

Denote the Nash best-response functions (functions because \(φ^i(a_1,a_2) \) is strictly concave in \(a_i \)) in the breakdown game by

\[
a^N_i(a_j,s) := \arg\max_{a_i ∈ R_+} [φ^i(a_i,a_j) − a_i].
\]

The Nash best response function \(a^N_i(a_j,s) \) is continuous and weakly increasing in \(a_j. \) Moreover, we have \(0 < a^N_i(a_j,s) < a^*_i(a_j) \) for each \(a_j \) and every state \(s ∈ S \) (Lemma 2). It is strictly positive because \(∂ φ^i(0,a_j)/∂a_i > 0 \)

18 This is very similar to the formulation used by Halonen (2002).
1 and is less than the conditionally efficient action because of the hold-up assumption that \(\partial \phi^i(a) / \partial a_j > 0 \). The best-response breakdown utility is

\[
u^i_N(a_j, s) := u_i(\phi^i(a^N_i(a_j, s), a_j) - a^N_i(a_j, s)).
\]

A Nash equilibrium of the breakdown game occurs where the best-response functions intersect (existence follows by standard arguments). Without further assumptions, the Nash equilibrium need not be unique. However, the potential non-uniqueness is not critical because the Nash equilibria can be Pareto-ranked (because the best-response functions are non-decreasing and all Nash equilibria lie below the first-best action pair \(a^*(s) \)). Henceforth, we let \((a^N_1(s), a^N_2(s))\) denote the dominant Nash equilibrium and all our results apply relative to this dominant Nash equilibrium.

2.2. Dynamic Relational Contracts

We refer to a non-negative action and consumption sequence \(\{a(s^t), c(s^t)\}_{t \geq 0} \) as a contract. Corresponding to a contract, agent \(i \)'s lifetime utility is

\[
V_i(s_0) := \mathbb{E} \left[\sum_{t=0}^{\infty} \delta^t u_i(c_i(s^t) - a_i(s^t)) \mid s_0 \right],
\]

where \(\delta \) is a common discount factor, \(0 < \delta < 1 \), and \(\mathbb{E} \) denotes expectation. A contract is feasible if \(\sum_i c_i(s^t) \leq y_i(s^t) \) for every history \(s^t \).

A **dynamic relational contract** (DRC) is a feasible contract from which neither agent has an incentive to deviate. The incentive to deviate depends on the punishment for deviation. This is given by the breakdown payoffs in the current period (subsequent to the deviation), and by play of the (dominant) equilibrium of the static breakdown game in all future periods. In particular, suppose that \(a \) is the current recommended action pair. If agent \(i \) is to deviate at \(t \), then the best she can do is to choose \(a^i_N(a_j(s^t), s_t) \), which yields a current payoff \(u^i_N(a_j(s^t), s_t) \). She is punished from \(t+1 \) by “Nash reversion” in which both agents choose their best responses in the breakdown game, that is, both will thereafter play the (dominant) Nash equilibrium of the breakdown game described above.\(^{21}\)

\(^{19}\) It is unique if defaults are proportional.

\(^{20}\) Deviation at the output division stage cannot be preferable since breakdown is triggered in either case, and \(a_i \) may not be optimal in the breakdown.

\(^{21}\) A DRC is equivalent to a pure strategy subgame perfect equilibrium relative to future reversion to this Nash equilibrium. Here, strategies are infinite sequences of history-dependent actions and consumption **claims**. Punishment consisting of immediate triggering of the breakdown, and repeated play of the (dominant) Nash equilibrium of the breakdown game thereafter, is subgame perfect (each agent just **demands** the whole output after any deviation (i.e., off the equilibrium path), triggering the breakdown game each period).
Let $D^i_j(a_j)$ denote the *deviation utility*: the best discounted payoff that agent i can get by deviating, given agent j’s putative action a_j in state s. It is defined recursively by

$$D^i_j(a_j) := u^NE_i(a_j, s) + \delta \sum_{r \in \mathcal{S}} \pi_{sr} D^i_j(a_j^{NE}(r)),$$

where $D^i_j(a_j^{NE}(r))$ is the deviation utility from the play of the Nash equilibrium in state r. Given our hold-up assumption (see Assumption 3), it follows that the deviation utility is continuous, differentiable, strictly increasing and strictly concave in the action of the other agent (Lemma 3).

We stress that replacing the Nash reversion punishments by any state dependent continuation utilities that are no greater the Nash reversion punishments leaves all the characterization results we derive intact. In particular, optimal punishments satisfy this property. Equally, if agents can take state-dependent outside options at the start of any period, then, provided these outside options satisfy the condition that they are no greater the Nash reversion punishments, all our results apply.\(^{22}\)

Since an agent can always take the option of receiving her breakdown utility, the deviation utility provides a lower bound (as a function of the other agent’s action) on the discounted utility an agent gets in any DRC. Hence, $\{a(s'), c(s')\}_{t=0}^\infty$ is a DRC if it is feasible and if for every s', and $i, j = 1, 2, i \neq j$,

$$V_i(s') := u_i(c_i(s') - a_i(s')) + \mathbb{E} \left[\sum_{t=0}^\infty \delta^{t+1} u_i(c_i(s^{t}) - a_i(s^{t})) \mid s' \right] \geq D^i_j(a_j(s')).$$

The *continuation utility* $V_i(s')$ is the discounted utility that agent i anticipates from the contract after the history s'. The right hand side of (2) is the deviation utility agent i gets from deviating from the recommended action after the history s'. We refer to the inequalities (2) as the *self-enforcing* constraints. Whenever (2) holds with equality, we say that agent i is constrained. Otherwise, we say that agent i is unconstrained.

DRCs exist. For example, the *trivial* contract that has $a_i(s') = a_i^{NE}(s_t)$ and $c_i(s') = \phi^N_i(a^{NE}(s_t))$ for all s' is both feasible and self-enforcing and therefore a DRC. We show below (see Lemma 8), that there exist other non-trivial DRCs. Corresponding to any DRC, $\{a(s'), c(s')\}_{t=0}^\infty$, and initial state s_0, is a pair of lifetime utilities $(V_1(s_0), V_2(s_0))$. Given the set of DRCs, let \mathcal{S}_{s_0} denote the set of the corresponding lifetime utilities. Our objective is to characterize the Pareto-frontier of the set \mathcal{S}_{s_0}. We refer to DRCs that correspond to this Pareto-frontier as *optimal contracts* (OCs) and refer to the corresponding actions as *optimal actions*. We say that agent i *underinvests* (or that the action is *inefficiently low*) at some date t in an OC if the optimal actions are such that $a_i(s') < a_i^*(a_j, s)$ and say the agent *overinvests* (or the action is *inefficiently high*) if $a_i(s') > a_i^*(a_j, s)$.

\(^{22}\) For example, if in periods after a default the breakdown consumptions/utilities were lower than they are in an on-going relationship, then our results still hold.
Given the stochastic history \(s^t \), we can treat an OC as a stochastic process for \((a,c)\). We will be interested in the long-run behaviour of this process and whether it converges, and if so, whether convergence is dependent on \(s_0 \) or \(V_1(s_0) \).

3. Preliminary Results

This section establishes some preliminary results on the Pareto-frontier of the set of DRCs and optimal actions. Section 4 will consider the case where agents are risk neutral and Section 5 the case where agents are risk averse.

3.1. Relationship to the Nash actions

Henceforth, we restrict attention to OCs. Existence of OCs follows straightforwardly from the fact that the set \(Y_{s_0} \) is compact (Lemma 4). Optimal actions are never below the Nash reaction functions, \(a_i(s^t) \geq a^N_i(a_j(s^t), s^t) \) (Lemma 5). If the action of one of the agents, say \(i \), were below the Nash reaction function, a Pareto improvement could be found by increasing that agent’s action a small amount. Although the deviation utility of the other agent increases (by hold-up), her consumption can be increased to prevent a violation of her self-enforcing constraint, and there is sufficient extra output remaining to more than compensate agent \(i \) for the increase in his/her action. This property then implies that actions can never be below the Nash equilibrium actions, \(a_i(s^t) \geq a^{NE}(s^t) \). Since it has been shown that \(a^N_i(a_j, s^t) > 0 \) (Lemma 2), the Nash equilibrium actions are strictly positive, and therefore, it follows that optimal actions are always positive too.

Next, consider the case where an agent, say agent 1, gets allocated all of the output in an OC. Lemma 6 shows that in this case agent 1 is unconstrained. Intuitively, in the current period agent 1 is receiving more of output than she would obtain in the breakdown game, if she held her action constant (because, by Assumption 3, agent 2 can claim a positive share of output in the breakdown game). Moreover, the continuation utility cannot be lower than the deviation continuation utility. However, the intuition is not conclusive because agent 1 need not hold her action constant and can optimize her action when deviating. Nevertheless, the proof of Lemma 6 shows how to adapt the argument to deal with this case (see the Supplementary Material).

3.2. Recursive formulation

We now use a recursive programming approach to examine OCs. Lemma 3 shows that there is a one-to-one relationship between an agent’s action and the deviation utility of the other agent. It is convenient for the recursive formulation to change variables and use the deviation utilities of the two agents instead of actions. This change allows a direct comparison between two of the choice variables in the recursive formulation: the deviation utilities and the continuation utilities, and means that the corresponding self-
enforcing constraints are linear in these choice variables. Thus, let \(d_j := D_i^j(a_j) \) and let \(g_i^j(d_i) := (D_i^j)^{-1}(d_j) \). With this change in variables, surplus is
\[
\zeta^j(d_1, d_2) := \zeta^i(g_i^1(d_1), g_i^1(d_2)),
\]
with output \(y^i(d_1, d_2) \) defined similarly.

It is also useful to work with net consumption \(x_i \) as a choice variable instead of consumption \(c_i \). Given the properties of \(D_i^j(a_j) \) (Lemma 3), the functions \(g_i^j(d_i) \) are continuously differentiable, strictly increasing and strictly convex. Let \(\mathcal{D}(s) := \{(d_1, d_2) = (D_1^2(a_1), D_1^2(a_2)) \mid (a_1, a_2) \in \mathbb{R}_+^2 \} \). The contract \(\{d(s'), x(s')\}_{i=0}^\infty \) is feasible if \(\sum_i x_i(s') \leq \zeta^i(d(s')) \) (total consumption does not exceed output) for every history \(s' \). For actions and consumption to be non-negative, it must also satisfy \(d(s') \in \mathcal{D}(s_i) \) for every history \(s' \) and \(x_i(s') + g_i^j(d_i(s')) \geq 0 \) for \(i, j = 1, 2, i \neq j \) and every history \(s' \). It is a DRC if it also satisfies the self-enforcing constraints \(V_i(s') \geq d_j(s') \) for \(i, j = 1, 2, i \neq j \), and every history \(s' \). The Markov assumption on the evolution of states and the infinite time horizon, together with the observation that all the self-enforcing constraints are forward looking, means that the set of continuation utilities corresponding to a DRC depends only on the state \(r \) and is independent of the past history. The projection of the Pareto-frontier of this set onto agent 1’s continuation utility will be shown to be a non-degenerate closed interval (Lemma 7 proves the interval is closed and Lemma 8 that it is non-degenerate) that we denote by \([V_1^r, \tilde{V}_1^r]\).\(^{23}\) Hence, the problem of finding OCs is reduced to one of finding, for each \(s \in \mathcal{S} \) and for each \(V_1 \in [V_1^r, \tilde{V}_1^r] \), a pair \((d, x)\) and \(V_i^r \) for each \(r \in \mathcal{S} \), the continuation utilities of agent 1, such that

\[
[P1] \quad V_2^r(V_1) = \max_{d \in \mathcal{D}(s), x \geq x, (V_1^r, V_i^r) \in \mathcal{S}} \left\{ u_2(x_2) + \delta \sum_{r \in \mathcal{S}} \pi_{sr} V_2^r(V_i^r) \right\}
\]

subject to

\[
\begin{align*}
(3a) & \quad u_1(x_1) + \delta \sum_{r \in \mathcal{S}} \pi_{sr} V_1^r \geq V_1: & \lambda \\
(3b) & \quad V_1 \geq d_2: & \mu_1 \\
(3c) & \quad u_2(x_2) + \delta \sum_{r \in \mathcal{S}} \pi_{sr} V_2^r(V_i^r) \geq d_1: & \mu_2 \\
(3d) & \quad V_1^r \geq \tilde{V}_1^r: & \delta \pi_{sr} V_1^r \\
(3e) & \quad V_i^r \leq \tilde{V}_1^r: & \delta \pi_{sr} V_i^r \\
(3f) & \quad x_i + g_i^j(d_i) \geq 0: & \gamma \quad i, j = 1, 2, \ i \neq j \\
(3g) & \quad x_1 + x_2 \leq \zeta^i(d_1, d_2): & \psi
\end{align*}
\]

\(^{23}\) Intuitively, the interval is non-empty because hold-up creates an inefficiency and provided \(\delta > 0 \), repeated game arguments allow cooperation to improve on the breakdown Nash equilibrium.
where the non-negative Lagrangian multipliers are indicated after each inequality. The expected discounted utility V_1 of agent 1 (in state s) is the state variable in this programming problem. The value function $V_2^*(V_1)$ represents the Pareto-frontier of the set of DRCs in the space of continuation utilities. It describes how the maximum continuation utility to agent 2 changes as the continuation utility of agent 1 is changed. The inequality (3a) requires that the contract delivers at least the current discounted utility and is referred to as the promise-keeping constraint. The inequalities (3b) and (3c) are the self-enforcing constraints corresponding to the inequalities given in (2). The constraints (3d) and (3e) reflect that the continuation utility for agent 1 in state r must lie in the interval $[V_1^r, \bar{V}_1^r]$. Inequalities (3f) and (3g) are the feasibility constraints. We denote a solution to [P1] by $(d^s(V_1), x^s(V_1))$ and continuation utilities $(V_1^{s,s}(V_1))$. It will be shown that $d^s(V_1)$ is unique; however, $x^s(V_1)$ and $V_1^{s,s}(V_1)$ need not be. Corresponding to this solution, and abusing notation, we define the surplus $\bar{z}^s(V_1) := z^s(d^s_1(V_1), d^s_2(V_1))$. We discuss the properties of $\bar{z}^s(V_1)$ below, but we refer to the maximal value of $\bar{z}^s(V_1)$ for $V_1 \in [V_1^s, \bar{V}_1^s]$ as the constrained maximal surplus and the actions that maximize this surplus as the constrained surplus-maximizing (CSM) actions. Let $\bar{a}(s)$ denote the CSM action in state s. If the CSM actions are equal to the first-best actions $\bar{a}(s) = a^* (s)$ (and hence the constrained maximal surplus equals the first-best surplus), then we say that the first-best is sustainable in state s. We denote the set of states in which the first-best actions are sustainable as $\mathcal{S}_s \subseteq \mathcal{S}$ and denote its complement by \mathcal{S}_s^c (it is possible that $\mathcal{S}_s = \emptyset$ or $\mathcal{S}_s^c = \emptyset$). A first-best allocation (FBA) will involve the first best actions, $a^*(s)$ in each state and date and complete risk-sharing (that is, net consumption $x^s(s)$ with $x^s_1(s) + x^s_2(s) = z^s(a^*(s))$ such that $u^s_2(x^s_2(s)/u^s_1(x^s_1))$ is constant over all states and dates).

24 The linear independence constraint qualification holds unless the constraints (3f) are inactive and $u^s_2(\partial z^s/\partial a) d\bar{g}^s_1(d_1)/dd_1 = 1$. This constraint qualification can fail, but it only fails at $V_1 = \bar{V}_1^s$ where the slope of the Pareto-frontier is infinite (examples where the constraint qualification fails at this point can be constructed). Thus, apart from $V_1 = \bar{V}_1^s$, the linear independence constraint qualification holds and the Lagrangian multipliers in the first-order conditions (reported below in subsection 3.4) exist and are unique. We can also ignore points $V_1 = \bar{V}_1^s$ without loss of generality: if $V_1(s_0) < \bar{V}_1^s$, then we will show that $V_1 \neq \bar{V}_1^s$ for any state s; if $V_1(s_0) = \bar{V}_1^s$, then it will be possible to reformulate the problem maximizing the utility of agent 1 for a given V_2 for agent 2 and the relevant constraint qualification will be satisfied.

25 The value function is a fixed point of the mapping defined by [P1]. As is well-known, this mapping is not a contraction, but it is possible to generate a sequence of functions that converges to the value function by starting with some suitable function, such as the first-best frontier. For details on such an approach see, for example, Thomas and Worrall (1994).

26 We shall show below that these constraints are not an important part of the solution.

27 When we consider the risk averse case in Section 5, it will be shown that $x^s(V_1)$ and $V_1^{s,s}(V_1)$ are unique. In the risk-neutral case considered in Section 4, $x^s(V_1)$ and $V_1^{s,s}(V_1)$ are not in general unique because risk-neutral agents care only about discounted utility and not the timing of net consumption. However, we will show that the slope of $V_1^{s,s}(V_1)$ is uniquely determined and whenever $x^s(V_1)$ is not uniquely determined, actions are chosen efficiently.

28 In principle, there may be DRCs in which there are actions that achieve a higher surplus. Our definition considers only OCs. However, in both the risk-neutral and risk averse cases that we consider below, the two concepts coincide and the CSM actions do maximize $z^s(d_1,d_2)$ subject to the self-enforcing constraints (see Theorem 1 and Lemma 14). It will also be shown below that in the cases we consider, the CSM actions are unique.
An OC is computed recursively. Start from some given initial value for agent 1’s lifetime utility, $V_1(s_0)$ in state s_0. The solution to the programming problem provides optimal values for $d(s_0)$ and $x(s_0)$ in state s_0 by setting $V_t = V_1(s_0)$ in [P1]. The solution also determines the continuation utilities for $V^s_{1-s^t}(V_1(s_0))$ in each possible subsequent state r. At date $t = 1$ and history $s^1 = (s_0, s_1)$, the value for V_t is determined by the solution for the continuation utility at date $t = 0$ for the appropriate state and the solution to the date $t = 1$ programme determines $d(s^1)$ and $x(s^1)$. The process is repeated to determine $\{d(s'), x(s')\}_{t=0}^\infty$. Doing this for each feasible initial value of the lifetime utility $V_1(s_0)$ determines the set of OCs.

3.3. Concavity, continuity and differentiability

The programming problem [P1] is not necessarily concave. This is for two related reasons: first we have not shown that the Pareto-frontiers $V^2_t(\cdot)$ are concave; and second, even if the Pareto-frontiers were concave, the constraint set need not be convex. The reason for this non-convexity of the constraint set is that the deviation utility $D_j(a_i)$ is concave in the action of the other agent. Therefore, in taking a convex combination of actions, the deviation utility from the average action is higher than the average of the deviation utilities. Thus, the self-enforcing constraints (2) may not be satisfied at the average actions. In the formulation of [P1] with d and x as the choice variables this is manifested in two ways. First, $z'(d)$ is a composite function and need not be concave in d, and therefore, at an average of the ds, the constraint (3g) may be violated. Secondly, since $g_j^i(d_i)$ is strictly convex, taking an average of (d_i, x_i) and (d'_i, x'_i) might violate the non-negativity constraint (3f). To address these issues we present two alternative assumptions.

Assumption 4: The function $z^i(d) + g^i_j(d_j): \mathcal{D}(s) \to \mathbb{R}_+$ is concave in d for each $i, j = 1, 2$, $j \neq i$.

Assumption 5: (a) $z'(d): \mathcal{D}(s) \to \mathbb{R}$ is strictly concave in d and (b) any solution to [P1] has $x_i > 0$ for $i = 1, 2$ and for each s'.

Under either Assumption 4 or Assumption 5, the Pareto-frontier is concave on $[V^r_1, V^s_1]$ (Lemma 7). Under Assumption 5, it easily checked that the constraint set is also convex. We will use Assumption 4 in considering the case where agents are risk neutral in Section 4 and Assumption 5 in considering the case where agents are risk averse in Section 5.

Although Assumptions 4 and 5 are not directly in terms of the primitives of the model, it is possible to check conditions on the primitives where the Assumptions are satisfied. Assumption 4 requires that the production function is more concave than the corresponding deviation utility. This condition is not completely straightforward because the curvature of the deviation utility depends both on the utility and production.

29 It can also be checked that if [P1] is written with c and d as choice variables, then a sufficient condition for convexity of the constraint set is that $y'(d)$ is concave in d. This condition is more stringent than concavity of $z'(d)$ and will fail in a number of natural cases.
functions. However, this condition is satisfied in many reasonable examples and Assumption 4 is a generalized version of the condition given in Thomas and Worrall (1994).30

It is easily checked that Assumption 4 implies part (a) of Assumption 5. Again, part (a) of Assumption 5 requires that the curvature of the deviation utility is less than the curvature of surplus as a function of actions.31 Part (b) of Assumption 5 is a direct assumption on the OC. However, the assumption is easily justified by placing additional assumptions on the utility function. For example, for utility functions (such as those with constant relative risk aversion with coefficient of risk aversion greater than or equal to one) where \(\lim_{x \to 0} u(x) = -\infty \), it is clear that a solution of [P1] has \(x_i > 0 \). More generally, if \(u_i(0) \) is sufficiently low, then \(x_i(s') > 0 \) in any OC.32 In either case, because optimal actions are positive, part (b) of Assumption 5 implies that consumption of both agents is positive at the solution of [P1]. Hence, part (b) of Assumption 5 means that the non-negativity constraints on consumption, (3f), can be ignored and the associated multipliers are zero at the solution of [P1].

Given concavity, it can be shown that the Pareto-frontier is continuously differentiable (Lemma 8). In the existing literature on limited commitment without actions, differentiability is established by observing that neither self-enforcing constraint is binding in the interior.33 This is not true here; indeed we will show that both constraints may be binding. Moreover, in the one-sided action case the value function can fail to be differentiable.34 It is perhaps surprising, then, that in this two-sided case we are able to establish differentiability. The key observation is that since, as we have already shown, optimal actions are positive, it is possible to vary both actions simultaneously, holding the future utilities constant, so as to vary \(V_1 \) whilst satisfying the self-enforcing and feasibility constraints. Varying both actions in this way allows a differentiable relationship between \(V_2 \) and \(V_1 \) to be established, to which the Pareto-frontier must be an upper envelope. Differentiability then follows from applying the well-known lemma of Benveniste and Scheinkman (1979). The same approach can be used to show that the Pareto-frontier can be extended to the left (right) if the absolute slope at \(V_1 \) (\(\bar{V}_1 \)) is

30To illustrate a case where Assumption 4 is satisfied, suppose that agents are risk neutral with \(u_i(x) = x \). production is additive and the breakdown consumption in each state is \(\phi_i(a) = \theta_1 f_1(a_1) + \theta_2 f_2(a_2) \). where for notational simplicity the dependence of \(\theta, f \) etc. on \(s \) is suppressed. For Assumption 4 to be satisfied it is sufficient that \(f_i'' / f_i' \leq -g_i'' / g_i' \). By definition, \(-g_i'' / g_i' = D_i'' / D_i' \). With this specification for \(\phi_i(a), D_i'' / D_i' = f_i'' / f_i' \), and hence Assumption 4 is satisfied.

31It is also easily checked that there are parameters such that part (a) of Assumption 5 is satisfied. These will typically require that agents are not too risk averse. For example, consider the case where preferences exhibit constant absolute risk aversion with coefficient \(\alpha \), the same for both agents, and the production function is separable and given by \(y_i(a_1, a_2) = (\beta)^{-1} (a_1^\beta + a_2^\beta) \). Furthermore, suppose each agent can expropriate a proportion \(\theta \) of output in the case of default. Then, it is easily checked that, for any \(\beta \in (0,1) \): if \(\theta \in (1/e,1/2] \), then \(z'(d) \) is concave for \(\alpha < -e\theta(1-\theta)^{-1} \) log \(\theta \); similarly if \(\theta \in (0,1/e] \), then \(z'(d) \) is concave for \(\alpha < (1-\theta)^{-1} \).

32More precisely, define \(\psi := \min_{[0,1]} [\phi_i^\psi(a^\text{NE}(s)) - a_i^\text{NE}(s)] \). Since the deviation utility in any OC is bounded below by the discounted utility from receiving the (positive) Nash outcome payoff each period, it follows that for any \(u_i(\cdot) \), and holding \(u_i(x_i) \) fixed for \(x_i \geq \psi \), if \(u_i(0) \) is sufficiently low relative to \(u_i(\psi) \), and given that future continuation utilities are bounded above (independently of \(u_i(0) \)), \(x_i(s') > 0 \) in any OC since otherwise the self-enforcing constraint (2) is violated.

33See, for example, Thomas and Worrall (1988).

34Typically, it fails if the first-best level of investment is not sustainable. See, for example, Thomas and Worrall (1994).
positive (finite) to establish that \(V_2^{s(+)}(V_1) = 0 \) and \(V_2^{s(-)}(\bar{V}_1) = -\infty \), where \(V_2^{s(+)} \) denotes the right and \(V_2^{s(-)} \) the left derivative.

3.4. First-order conditions

It has been shown (Lemma 8) that the Pareto-frontier is continuously differentiable and that the range of absolute slopes of the frontier is \(\mathbb{R}_+ \cup \{\infty\} \). Let \(\sigma_s(V_1) := -V_2''(V_1) \) and \(\sigma_{s,j}(V_1) := -V_2''(V_1^j(V_1)) \) be the (absolute) slopes of the Pareto-frontiers, where \(\sigma_s : [V_1^s, \bar{V}_1^s] \to \mathbb{R}_+ \cup \{\infty\} \) is strictly increasing. Lemma 9 establishes that \(d_i^r(V_1) \) is a continuous function. The first-order conditions for [P1] are given by:

\[
\begin{align*}
(4a) & \quad \sigma_{s,j}^+(V_1) - \sigma_s(V_1) = -\sigma_s(V_1) \frac{\mu_2}{1+\mu_2} + \frac{\mu_1}{1+\mu_2} + \frac{V_1^r - V_2^r}{1+\mu_2} \\
(4b) & \quad \sigma_{s,j}^+(V_1) = \frac{u'_2(\cdot)}{u'_1(\cdot)} + \frac{\gamma_2 - \gamma_1}{1+\mu_2} + \frac{V_1^r - V_2^r}{1+\mu_2} \\
(4c) & \quad \frac{\mu_j}{1+\mu_2} = \frac{\partial \sigma_s}{\partial d_i} \left(u'_2(\cdot) + \frac{\gamma_2}{1+\mu_2} \right) + g_j^i(d_i) \frac{\gamma_i}{1+\mu_2} \quad i = 1, 2 \text{ and } i \neq j.
\end{align*}
\]

The first point to notice is that the multipliers \(v_i^r = 0 \). To see this suppose that \(v_i^r > 0 \). In this case \(V_1^{s,r}(V_1) = V_1^r \), \(\sigma_{s,j}^+(V_1) = 0 \) and by a complementary slackness condition \(v_2^r = 0 \). Then using equation (4a), \(-\sigma_s(V_1) - \mu_1 = v_i^r > 0 \) which gives a contradiction since \(\sigma_s(V_1) \) and \(\mu_1 \) are non-negative. A similar argument can be made to show that \(v_2^r = 0 \). 35 Since \(v_i^r = 0 \), it follows that \(\sigma_{s,j}^+(V_1) \) is the same for each future state \(r \in \mathcal{S} \) and we write \(\sigma_{s,j}^+(V_1) \) for this common future value. This property greatly simplifies the dynamics of the contracting problem.

It follows directly from the first-order conditions (4c) that in an OC (i) there is only ever underinvestment, \(a_i(s') < a_i^*(a_j(s'), s) \), if at least one of the agents is constrained; and (ii) if agent \(i \) has positive consumption, then he/she does not overinvest, \(a_i(s') \leq a_i^*(a_j(s'), s) \) (see Lemma 10). 36

There is also a simple corollary to these results: a) both agents cannot be overinvesting (because one agent must have positive consumption); b) an agent cannot be permanently overinvesting because consumption must be positive at some future date because otherwise the self-enforcing constraint would not be satisfied.

35 The simplest way to see this is to reverse the order in the programming problem and consider maximizing the utility of agent 1 for a given \(V_2 \) for agent 2.

36 To see the intuition for the first part, suppose that agent 1 is unconstrained. If agent 2 were underinvesting, he could increase investment and generate more surplus. The surplus would be enough to compensate him for the extra investment and agent 1 won’t default because she is unconstrained. Thus, it would be possible to find a better contract, yielding a contradiction. Similarly, to see the second part, suppose that agent 1 is overinvesting. Then she could reduce her investment. This relaxes agent 2’s self-enforcing constraint (keeping consumptions now and future promises the same). However, output has fallen, so aggregate consumption must fall. If agent 1 has positive consumption, it is possible to keep the consumption of agent 2 the same, while the utility of agent 1 increases because she has cut her investment from above the conditionally efficient level.
4. Risk Neutrality

For this section, we use Assumption 4 and suppose that both agents are risk neutral, in particular, that $u_i(x) = x$ and that $x_i = -\infty$ for $i = 1, 2$. In this case, the non-negativity constraint on consumption (limited liability) plays a key role. We show that an OC exhibits a two-stage property. It starts with a backloading phase in which one of the agents consumes all of the output. This agent never overinvests, while the other agent overinvests. The second phase is stationary and actions are CSM. Therefore, if $s \in S_*$, actions are at the first-best for both agents. If $s \in S^c_*$, both agents underinvest and have positive consumption.\(^{37}\)

With risk neutrality, the lower bound for the deviation utility (Lemma 3) is strictly positive. Therefore, the Pareto-frontier is defined on $\Lambda^* := [0, \bar{V}_1] \subset \mathbb{R}_{++}$. Lemma 7 has shown that the Pareto-frontier is concave.

With risk-neutrality, it can be shown (Lemma 11) that the frontier is strictly concave if at least one of the self-enforcing constraints is binding, but if V_1 is in an interval where the efficient actions are sustainable (such values may not exist), then the frontier is linear with slope of -1 in this interval. Lemma 1 together with Lemma 7 imply that the CSM actions are unique.

It is useful to consider three (not necessarily disjoint) subsets of Λ^*: $A^* = \{V_1 \in \Lambda^*: c_1^* = 0\}$, $B^* = \{V_1 \in \Lambda^*: c_1^* > 0 \text{ and } c_2^* > 0\}$ and $C^* = \{V_1 \in \Lambda^*: c_2^* = 0\}$ where (c_1^*, c_2^*) represents an optimal value for consumption at V_1. Note that $A^* \cup B^* \cup C^* = \Lambda^*$.\(^{38}\) We know from our previous discussion that if agent 1 overinvests, this can only occur for $V_1 \in A^*$, and if agent 2 overinvests, this occurs for $V_1 \in C^*$. Also, since optimal actions are positive, output and aggregate consumption is positive, and consequently, it is not possible that both $\gamma > 0$ for the same V_1. Equally, for $V_1 \in A^*$, $c_2 > 0$, and hence, the multiplier $\gamma_2 = 0$.\(^{39}\) We also know from Lemma 6 that if $c_1 = 0$, and therefore, that agent 2 gets all the consumption, then agent 2 is unconstrained, and hence, $\mu_2 = 0$. Likewise, for $V_1 \in C^*$, $\gamma_1 = \mu_1 = 1$. Consumption for both agents is positive for $V_1 \in B^*$, so that $\gamma_1 = \gamma_2 = 0$.

Recall that the action a_i and deviation utility d_i are monotonically related through the function g_i^*. Thus, it is possible to work with either, and to simplify some of the equations, we sometimes work with both. Consider the subset A^*. Using $\gamma_2 = \mu_2 = 0$, we have from the first-order conditions (4b) and (4c) that:

\[
\begin{align*}
\sigma_1^*(V_1) &= 1 - \gamma_1 = \frac{\partial y^*(a_1, a_2)}{\partial a_1}, \\
\sigma_2(V_1) &= 1 - \gamma_2 - \mu_1 = \frac{\partial z^*(d_1, d_2)}{\partial d_1} - \frac{\partial z^*(d_1, d_2)}{\partial d_2}.
\end{align*}
\]

\(^{37}\) Depending on the initial division of surplus, the OC might start off in the stationary phase.

\(^{38}\) A^* can be non-empty and C^* empty or vice-versa (examples of this type can be constructed).

\(^{39}\) Since the multiplier is unique, the conclusion that $\gamma_2 = 0$ is valid even if V_1 also belongs to B^* or to C^*. The same argument can be made for the other subsets and multipliers.
Hence, for $V_1 \in A^i$, $1 \geq \sigma^+_{i}(V_1) \geq \sigma_i(V_1)$. From equation (5a) it follows that if $\sigma^+_{i}(V_1) < 1$, then $\gamma_i > 0$, and hence, the consumption of agent 1 is zero. Equally, $\partial y^i(a_1, a_2)/\partial a_1 < 1$, so that agent 1 is overinvesting. From equation (5b) it follows that agent 2 doesn’t overinvest and may underinvest. A similar set of conditions apply for $V_1 \in C^a$ and imply $1 \leq \sigma^+_{i}(V_1) \leq \sigma_i(V_1)$ so that agent 1 doesn’t overinvest and if $\sigma^+_{i}(V_1) > 1$, then agent 2 has zero consumption and overinvests. For $V_1 \in B^a$, the first-order conditions show that $\sigma^+_{i}(V_1) = 1$, so there is no overinvestment. As a measure of the extent of overinvestment let $\zeta^i := \max\{0, -\ln(\partial y^i(a_1, a_2)/\partial a_1)\}$ and $\zeta^i := \max\{\zeta^i_1, \zeta^i_2\}$. Hence, $\zeta^i > 0$ if there is overinvestment and is a measure of the distortion of the marginal product below the efficient level.\(^{40}\)

To consider how variables change over time in an OC, it is useful to write $\zeta(t)$ for overinvestment at date t (when there is more than one state, then $\zeta(t)$ is the value of a random variable at date t). It can be easily checked from the first-order conditions that $\zeta(t)$ converges monotonically (weakly decreasing) to $\zeta(t) = 0$ with probability one (see Lemma 12). This convergence result derives from two properties. First, because the action of an agent is positive, the agent will need positive consumption at some time in the future to compensate him/her for the cost of actions, otherwise, he/she would default. Second, discounting and the boundedness of the output function mean that the time of this positive consumption must be bounded. Once $\zeta(t) = 0$ has been reached, it follows from the first-order conditions that $\sigma(t+1) = 1$ in every state and there is one of two possibilities: either both of the self-enforcing constraints bind or neither of them do.

Using this convergence result, we derive our two-phase characterization theorem. Here, for convenience, we also treat contracts as sequences of random variables, writing $a_i(t)$ rather than $a_i(s')$ etc.\(^{41}\)

Theorem 1: In an OC, there is a random time \hat{t}, $0 \leq \hat{t} < \infty$ with probability one, such that:

1. **Stationary phase** ($t \geq \hat{t}$): Optimal actions maximize the surplus $z^i(a_1, a_2)$ subject to the self-enforcing constraints, and hence, are CSM. The optimal actions depend only on the state s_t and are therefore, independent of the initial conditions. There is no overinvestment: $a_i(t) \leq a^*_i(a_j(t), s_t)$ for $i, j = 1, 2$, $i \neq j$. For $s_t \in S^r$, then optimal actions and the corresponding surplus are first best: $a(t) = a^*(s_t)$ and $z^r(a(t)) = z^r(a^*(s_t))$. For $s_t \in S^e$, the self-enforcing constraints bind for both agents, $c_i > 0$ for $i = 1, 2$, and there is underinvestment: $a_i(t) < a^*_i(a_j(t), s_t) \leq a^*_i(s_t)$ for $i, j = 1, 2$, $i \neq j$.

2. **Backloading phase** ($t < \hat{t}$): Overinvestment declines during the backloading phase: in particular, $\zeta(t)$ is weakly decreasing with $\zeta(\hat{t} - 1) = 0$. Depending on $V_1(s_0)$ there is an $i \in \{1, 2\}$ such that $c_i(t) = 0$, $\zeta_i(t) > 0$ ($a_i(t) > a^*_i(a_j(t), s_t)$) and $a_j(t) \leq a^*_j(a_i(t), s_t)$, for $0 \leq t < \hat{t} - 1$, $j \neq i$. At date $\hat{t} - 1$, $a_i(\hat{t} - 1) \leq a^*_i(s_{\hat{t}-1})$ and

\(^{40}\) In subset A^i, $\zeta^i = -\ln \sigma^+_{i}(V_1)$ and in subset C^a, $\zeta^i = \ln \sigma^+_{i}(V_1)$.

\(^{41}\) The Theorem shows that in the stationary phase actions depend only on the current state. The same cannot be said about the division of the surplus because, given risk-neutrality, if the first-best actions can be sustained in some state, then there may be an arbitrariness in how consumptions are allocated over time even for a given initial split of utilities.
With more than one state, we cannot rule out the possibility that in some states deviation utilities are so low that the self-enforcing constraint may not bind even when \(\sigma_0 < 1 \) (a symmetric argument applies if \(\sigma_0 > 1 \)). Then one of two possible scenarios applies. Either \(V_1(s_0) \in B^s(\sigma_0) \) or \(V_1(s_0) \in A^s(\sigma_0) \). In the former case, \(\hat{t} = 1 \) and the contract moves to the stationary phase in each state at the next period. In the latter case, either \(\zeta_1(0) = 0 \) and \(\hat{t} = 1 \) as in the previous case, or \(\zeta_1(0) > 0 \) in which case \(\hat{t} > 1 \) and there is a backloading phase in which \(c_1(t) = 0 \) and agent 1 overinvests. Correspondingly, \(V_1 \) is sufficiently low that agent 1’s self-enforcing constraint binds and agent 2 underinvests to avoid violating agent 1’s self-enforcing constraint; by contrast \(V_2 \) is high enough that agent 2’s self-enforcing constraint is slack.\(^{42} \) In this phase, backloading agent 1’s consumption allows her continuation utility to rise, which relaxes future self-enforcing constraints and allows \(a_2 \) to rise too. Since agents are risk neutral, they are indifferent to the timing of consumption flows (keeping the action plans fixed) if the expected discounted value is the same. Therefore, backloading of consumption is costless and consumption is backloaded to the maximum extent possible, that is, \(c_1(t) = 0 \) in this phase, allowing maximum surplus to be achieved as quickly as possible. Furthermore, by increasing \(a_1(t) \) above \(a_1^*(a_2(t), s) \) additional backloading can be achieved. This decreases agent 1’s current utility, and because consumption is backloaded, allocates the extra output to agent 2. However, since \(a_1(t) \) is inefficiently high, this additional backloading is achieved at the cost of a reduction in the surplus.

The incentive to overinvest diminishes over time (as can be seen from (5a), \(\sigma^+(t) \) approaches 1).\(^{43} \) Equally, if the same state recurs along the path, underinvestment diminishes as the self-enforcing constraint is relaxed. The combined effect is that surplus \(z^t(a(t)) \) increases, and reaches a maximum when \(\sigma(t) = 1 \) (Lemma 13). At values of \(V_1 \) where \(\sigma(t) = 1 \), the constrained maximal surplus is achieved and optimal actions are CSM. In addition, when \(\sigma(t) = 1 \), \(V_1 + V_2 \) is also maximized (given the concavity of the Pareto-frontier). Once \(\sigma(t) = 1 \), as noted above, we have \(\zeta(t) = 0 \), there is no overinvestment and the OC is stationary from that point on.

That there is overinvestment in the backloading phase is perhaps surprising given the hold-up problem and given that the literature, mentioned in the Introduction, that considers the case where only one agent takes an action finds that there is never any overinvestment. To see that overinvestment cannot occur in the one-sided

\(^{42} \)This characterization applies so long as \(\zeta_1(t) > 0 \) and assuming agent 1’s self-enforcing constraint binds with a positive multiplier. With more than one state, we cannot rule out the possibility that in some states deviation utilities are so low that the self-enforcing constraints may not bind even when \(\sigma(t) < 1 \). In this latter case, from (4c) and (4a), \(a_2(t) = a_2^*(a_1(t), s) \) and \(\sigma^+(t) = \sigma(t) \).

\(^{43} \)If the output function is additively separable, then the monotonicity property in the backloading phase of Theorem 1 implies that \(a_1(t') \leq a_1(t) \) and \(a_j(t') \geq a_j(t) \) for dates \(t \geq t' > t \) when the same state \(s \) occurs at date \(t \) and \(t' \).
case, suppose that only agent 1 takes an action, and that agent 2 gets all or most of the surplus from the relationship. Then, the OC will be stationary with agent 1 being compensated for her action each period and agent 2 receiving sufficient to not want to expropriate. There is no benefit from backloading agent 1’s utility.\footnote{Agent 2’s utility would be backloaded (i.e., $c_2(t) = 0$ initially) if agent 1 gets most of the surplus, allowing agent 1’s action to be increased in the long run without agent 2 wanting to renege. Since agent 2 does not take an action, overinvestment cannot result.} In particular, it can only increase agent 2’s incentive to renege in the future, potentially necessitating lower (and more inefficient) future actions by agent 1. Thus, there is no overinvestment. Now, continue to suppose that agent 2 gets all or most of the surplus from the relationship but instead suppose that agent 2 also undertakes an action that is subject to hold-up. In this case, stationarity would imply that agent 2’s action is, and remains, low to prevent agent 1 reneging, given that agent 1’s surplus from the relationship is assumed to be low. In this case, backloading agent 1’s utility allows agent 2 to increase her action in the longer run, even though there may be a cost in terms of a corresponding reduction in agent 1’s action in the longer run. As explained above, this may imply overinvestment by agent 1 in the early periods to speed up the backloading phase.

In summary, at most one agent’s utility is backloaded, and an OC converges to, and attains, a stationary allocation that maximizes surplus and the sum of lifetime utilities. This one-sided nature of the OC in which only one of the two agents is ever subject to backloading, and convergence result itself, is perhaps surprising in view of the possibility that property rights, and hence, deviation utilities, can shift radically between states.

5. Risk Aversion

For this section we suppose that agents are risk averse. In particular, we strengthen Assumption 1 and assume that u_i is strictly concave for $i = 1, 2$. We also replace Assumption 4 with Assumption 5. That is, in particular, it is assumed that net consumption and hence, consumption is strictly positive in an OC. It will follow from this that overinvestment is no longer a feature of an OC. As we have seen in Section 4, under risk neutrality, the allocation of net consumption between agents may vary, potentially considerably, across states even in the long-run. Thus, it is important to examine how allowing for risk aversion affects OCs.\footnote{As stated in the introduction, the two-agent version with quasi-linear utility in Acemoglu et al. (2011) corresponds to a limiting case of our model where in each state one agent has all the property rights.}

5.1. Characterization of Optimal Contracts

In this sub-section, we first consider the properties of the optimal contract as V_1 varies in a given state. Next, we consider how the contract is updated period-by-period: in particular, how the ratio of marginal utilities changes from one period to the next. In the following sub-section, we consider the long-run properties of the contract and show that the contract evolves towards a stationary distribution that may, or may not, depend on the value of agent 1’s lifetime utility $V_1(s_0)$.
First, consider [P1] under risk aversion and Assumption 5. By Lemma 7, the Pareto-frontier is strictly concave. This means that not only is $d^i_t(\cdot)$ a continuous function of V_1 (Lemma 9) but also that $x^i_t(\cdot)$ and $V^i_{1^{\text{fr}}}(\cdot)$ are continuous functions of V_1. Our previous discussion of [P1] has shown that the endpoint constraints (3d) and (3e) do not bind. Equally, by part (b) of Assumption 5, $x_t > 0$ in an OC and hence, since actions are nonnegative, the consumption constraints (3f) do not bind. Since constraints (3f) do not bind, setting $\gamma_t = 0, i = 1, 2$, in equation (4c) shows that $\partial z^i / \partial d_i \geq 0, i = 1, 2$. This implies, $a^i_1(V_1) \leq a^i_1(a_j(V_1), s), i, j = 1, 2, i \neq j$. That is, there is no overinvestment: actions are never above the conditionally efficient levels.

To discuss how $a^i_1(V_1)$ varies with V_1, it is necessary to consider the surplus function $z^i(V_1)$. Recall that actions corresponding to the maximal value of $z^i(V_1)$ are called constrained surplus-maximizing (CSM) actions. As mentioned in Footnote 28, Lemma 14 establishes that the CSM actions maximize $z^i(a_1, a_2)$ subject to the self-enforcing constraints $V_i \geq D^i_1(a_2)$ and $V_j \geq D^j_2(a_1)$. Next, Lemma 15 establishes that $z^i(V_1)$ is differentiable and concave in V_1. It need not be strictly concave, however, because if neither self-enforcing constraint binds, then optimal actions are first-best and hence, $z^i(V_1)$ may have a flat section at its maximum ($z^i(V_1)$ cannot be flat for all $V_1 \in [V_1, \bar{V}_1]$ for reasons to be explained in Lemma 16). Given this concavity of $z^i(V_1)$ and the uniqueness of $d^i(V_1)$, it follows that the CSM actions are unique.

Both the current action $a^i_1(V_1)$, and the evolution of the contract between t and $t+1$, depend crucially on whether the current value of V_1 is above or below the maximizer(s) of $z^i(V_1)$. Consider values of V_1 where the surplus function $z^i(V_1)$ is increasing in V_1. Then, constraint (3b) binds and $d^i_2(V_1) = V_1$ (see, Lemma 16). That is, as in the risk-neutral case, for low values of V_1, agent 2’s action is kept inefficiently low, $a^i_2(V_1) < a^i_2(a^i_1(V_1), s)$, to prevent agent 1 from defaulting. For a higher value of V_1 (but still with $\partial z^i(V_1) / \partial V_1 > 0$), the self-enforcing constraint is relaxed allowing a_2 (correspondingly d_2) to increase, increasing surplus, as confirmed formally below. (Whether agent 2’s constraint also binds for V_1 such that $z^i(V_1)$ is increasing depends on whether $s \in \mathcal{S}_s$ or $s \in \mathcal{S}_s^c$, which is discussed next.) Likewise $d^i_1(V_1) = V^i_2(V_1)$ for any V_1 where $z^i(V_1)$ is decreasing: agent 1’s action is inefficiently low, $a^i_1(V_1) < a^i_1(a^i_2(V_1), s)$, for high values of V_1.

In fact we can distinguish two cases in a given state s. For $s \in \mathcal{S}_s$ (see Figure 1a), first-best actions can be sustained by definition and there is a corresponding interval of values for V_1 such that surplus is maximized. We define \mathcal{X}^i_1 and \mathcal{Y}^i_1 as the lower and upper values of this interval. Each agent’s constraint binds only on one side of maximum surplus, that is, agent 1’s when $z^i(V_1)$ is increasing and agent 2’s when it is decreasing. So, while

46 This can be easily shown by adapting the proof of Lemma 9, using the strict concavity of the Pareto-frontiers and the strict concavity of the utility functions.

47 More generally whether $s \in \mathcal{S}_s$ or $s \in \mathcal{S}_s^c$, there are two values \mathcal{X}^i_1 and \mathcal{Y}^i_1 such that agent 1’s constraint binds for $V_1 \leq \mathcal{X}^i_1$, while agent 2’s constraint binds for $V_1 \geq \mathcal{Y}^i_1$ (see Lemma 16 for details). For $s \in \mathcal{S}_s$ there is also the knife-edge case where the first-best actions can just be sustained for $V_1 = \mathcal{X}^i_1 = \mathcal{Y}^i_1$.
for low values of V_1, agent 2 underinvests, but agent 1’s action is conditionally efficient, $a_1^*(V_1) = a_1^*(a_2^*(V_1), s)$. Likewise, for high values of V_1, agent 1 underinvests and agent 2’s action is conditionally efficient.\(^{48}\)

For $s \in \mathcal{J}^c_\pi$ (see Figure 1b), surplus is always below the first-best and $z^c(V_1)$ is strictly concave. The subsets of V_1 where agents are constrained overlap, with both agents being constrained between χ_1^t and χ_2^t. In particular, there is a unique value of V_1, which we denote by χ_1^t, at which $z^c(V_1)$ is maximized and both agents are constrained at this point (with $\mu_1, \mu_2 > 0$). Hence, both actions are inefficiently low at this point.\(^{49,50}\)

We now turn to how the contract is updated between dates t and $t + 1$. As already argued, $d_t(V_1)$ and $x_t(V_1)$ are functions of V_1 and since the Pareto-frontier is strictly concave, the relationship between V_1 and the slope of the Pareto-frontier for a given state is injective. Thus, how the choices (d, x) change over time can be described by how the slope of the Pareto-frontier changes from one period to the next. Recalling that $\sigma_i(V_1)$ is the slope of the current Pareto-frontier and that $\sigma_i^+(V_1)$ is the common slope of the Pareto-frontiers next period, it can be

\(^{48}\)Note that $a_1^t(V_1)$ increases in V_1 where $z^t(V_1)$ is increasing, but does not increase in V_1 where $z^t(V_1)$ is decreasing. The reason for this is that although $a_1^t(V_1) = a_1^t(a_2^t(V_1), s)$ where $z^t(V_1)$ is decreasing in V_1, $a_2^t(V_1)$ decreases in V_1 for such values and by complementarity of actions $a_1^t(a_2^t, s)$ is weakly increasing in a_2.

\(^{49}\)So $d_1^t(V_1) = V_2^t(V_1)$ and $d_2^t(V_1) = V_1$ for values of $V_1 \in (\chi_1^t, \chi_1^t)$ in Figure 1b. The result that both agents may be constrained is in contrast to pure risk-sharing models with limited commitment, for example, Kocherlakota (1996) or Thomas and Worrall (1988), where at most one self-enforcing constraint binds at any one time in any non-trivial optimum. The reason that both agents can be constrained here is that if actions are inefficiently low, it would always improve the contract to increase them until the relevant constraint binds.

\(^{50}\)It is possible that $\chi_1^t = V_1^t$, in which case a_1 is inefficiently low for all V_1, or $\chi_2^t = V_1^t$ in which case a_2 is inefficiently low for all V_1, or both.
This equation is easily interpreted. Consider a (small) unit increase in state μ as measured by ratio of marginal utilities at date t. The effect on agent 2’s discounted utility is to change it by approximately $V_2'(V_1) = -\sigma_2(V_1)$ units. One way to effect this change (as good as any other at the optimum) is to hold the current utility of agent 1 constant (giving any change in the current surplus to agent 2) and increase V_1' in each state r, the next-period continuation utilities of agent 1, by $1/\delta$. The effect on agent 2’s current utility is $u_2'(dz(V_1)/dv_1)$. The effect on the discounted continuation utility of agent 2 is to decrease it by $\sigma_2^+(V_1)$, the same for all future states. The combined effect for agent 2 is $u_2'(dz(V_1)/dv_1) - \sigma_2^+(V_1)$. Since the overall change in utility for agent 2 is $-\sigma_2(V_1)$, we can equate to get equation (6).

Recall that, from (4b), $\sigma_2^+(V_1) = u_2'(x_2(V_1))/u_1'(x_1(V_1))$, the current ratio of marginal utilities. It is intuitive therefore that $\sigma_2^+(V_1)$ is increasing in V_1 because an increase in V_1 may be associated with an increase in current net consumption of agent 1, lowering the marginal utility of agent 1 with the opposite effect on the marginal utility of agent 2. That $\sigma_2^+(V_1)$ is increasing in V_1 is formally proved in Lemma 18(i). Since the Pareto-frontier is strictly concave, $\sigma_2(V_1)$ is also strictly increasing in V_1, there will be a positive relationship between the slope of the Pareto-frontier this period and next period for a given state, or equivalently between the current ratio of marginal utilities and the ratio of marginal utilities at the previous date. Given the concavity of $z'(V_1)$, equation (6) therefore can be reinterpreted as showing that for a given state the ratio of marginal utilities increases when V_1 is low ($dz(V_1)/dv_1$ increasing) and decreases when V_1 is high ($dz(V_1)/dv_1$ decreasing), or otherwise does not change. Intuitively, relative to the ratio of marginal utilities at the previous date, the current consumption shares change in a direction that allows current surplus to increase.

5.2. Convergence

To examine long-run convergence, we again treat choices at date t as random variables and write $x_1(t)$ for the random value of net consumption at date t after history s^t etc. Define $mu(t) := u_2'(x_2(t))/u_1'(x_1(t))$ to be the ratio of marginal utilities at date t. In the risk-neutral case $mu(t) = 1$ and our focus was on how overinvestment as measured by $\zeta(t)$ changed over time. Here, there is no overinvestment, by virtue of Assumption 5(b), but $mu(t)$ may fluctuate over time and our next two theorems focus on the long-run properties of $mu(t)$.

To help explain the dynamics and convergence properties of an OC, we first consider the case of a single state s. If $V_1(t)$ is such that $dz(V_1(t))/dv_1 > 0$ (resp. < 0), by $\sigma_2(V_1)$ strictly increasing in V_1, (6) implies that $V_1(t + 1) > V_1(t)$ (resp. $< V_1(t)$). If $dz(V_1(t))/dv_1 = 0$, then $V_1(t + 1) = V_1(t)$. Thus, the evolution over time...
of V_1 is as illustrated by the arrows in Figure 1 with stationary behaviour when z^s is the constrained maximal surplus. In fact, we can show that V_1 cannot “overshoot” points where z^s is maximal. Recall that $\bar{a}(s)$ denotes the unique CSM action in state $s = a^+(s)$ for $s \in \mathcal{S}$. Similarly, let $\bar{z}(s)$ denote the constrained maximal surplus in state $s = z^s(a^+_1(s), a^*_2(s))$ for $s \in \mathcal{S}$. Since $\mu(t) = \sigma(t + 1)$ and since it has been established that $\sigma_+^+(V_1)$ is increasing in V_1, it can be seen from Figure 1 that there is a unique ratio of marginal utilities that is compatible with surplus maximization in states $s \in \mathcal{S}_c$ (Figure 1b) and a (possibly degenerate) interval of marginal utilities compatible with surplus maximization in states $s \in \mathcal{S}$ (Figure 1a). Note too that once $a(t)$ and $\mu(t)$ are determined, $x(t)$ is uniquely defined and therefore, we can describe convergence of the contract in terms of convergence of actions and the ratio of marginal utilities. From this we have the following theorem in the case of a single state:\footnote{We use $\| \cdot \|$ to denote the Euclidean norm.}

THEOREM 2: Suppose that there is a single state s. Then an OC converges to a contract with CSM actions and hence, constrained maximal surplus. In particular, $\|a(t) - \bar{a}(s)\| \to 0$ and the sequence $\{z^s(t)\}$ is monotone (constant or increasing) with $|z^s(t) - \bar{z}(s)| \to 0$. Moreover, the sequence $\{\mu(t)\}$ is monotonic (increasing, decreasing or constant depending on the initial condition). (a) If $s \in \mathcal{S}_c$, then the action sequences $\{a_i(t)\}$ are monotone (constant or increasing). (b) If $s \in \mathcal{S}_c$, then the action of one of the agents is monotonically increasing (which agent depends on initial conditions) and the limit of the sequence $\{\mu(t)\}$ is independent of $V_1(s_0)$.

This single state case is similar to the risk-neutral case. Actions converge to CSM actions and there is backloading of the continuation utilities. In particular, the sequence $V_1(t)$ is monotonic so that one agent has his/her continuation utility backloaded. In part (a) where there is an interval of the ratio of marginal utilities that are compatible with surplus maximization, convergence will be to the lower endpoint of the interval if the initial MU ratio lies below the interval; to the upper endpoint if initial MU ratio lies above the interval; and the sequence of MU ratios will be constant if the initial MU ratio is within the interval.

With more than one state, convergence to constrained surplus maximization may not occur because there is a conflict between risk sharing and surplus maximization. To achieve surplus maximisation in state s the distribution of consumption may differ from that in $s' \neq s$ and therefore, an OC must (dynamically) trade-off risk sharing against surplus maximization.

As just described, there is a (possibly trivial) interval of MU ratios corresponding to maximum surplus in state s for $s \in \mathcal{S}$. An FBA is sustainable if the CSM actions are efficient in every state and the intersection of all such intervals for the MU ratios is non-empty. If the intersection is not only non-empty but a non-trivial
interval, then there are multiple FBAs. If a FBA is sustainable then convergence is similar to the one state case. If however, the intersection is empty, an FBA is not sustainable and the MU ratio may not converge to a single value. It does, under a weak regularity condition, converge to a long-run invariant distribution. To describe the evolution of the MU ratio, let $F_t^{(V_1(s_0))}: \mathbb{R}_+ \to [0, 1]$ denote the distribution function of $mu(t)$ at date t given the initial value $V_1(s_0)$. This leads us to the following general convergence theorem.

Theorem 3:

(a) Suppose an FBA is sustainable. Then an OC converges with probability one to an FBA: $|a(t) - a^*(s_t)| \to 0$ and the random sequence $\{mu(t)\}$ is (weakly) monotone, with probability one. If there exist multiple FBAs, then the limit FBA depends upon $V_1(s_0)$.

(b) Suppose instead that an FBA is not sustainable. Then, provided $\pi_{ss} > 0$ for all s, $F_t^{(V_1(s_0))}$ converges weakly to a unique distribution independent of $V_1(s_0)$. Either (i) this distribution is degenerate, in which case dynamics are as in part (a), with stationary limit contract with CSM actions in each state, or otherwise (ii) this distribution is non-degenerate, and current surplus is not maximised in the long run: $|a(t) - \bar{a}(s_t)| \to 0$ with probability zero.

Parts (a) and part (b)(ii) of Theorem 3 mirror the convergence arguments of Theorem 2. In part (a), there is convergence to a FBA. There is a (possibly trivial) interval of the ratio of marginal utilities that are compatible with efficient actions and a constant MU ratio. Convergence will be to the lower endpoint of the interval if the initial MU ratio lies below the interval; to the upper endpoint if initial MU ratio lies above the interval; and the sequence of MU ratios will be constant if the initial MU ratio is within the interval. Part (b)(ii) considers the case where there is a unique MU ratio consistent with CSM actions in each state. Convergence is to the CSM actions and to this MU ratio.

Part (b)(ii) of Theorem 3 provides a description of what happens when there is a conflict between surplus maximization and risk sharing. The OC exhibits a second-best property. The MU ratio $mu(t)$ does not settle down to a single value, and whenever it differs across two dates $t - 1$ and t, actions at date t will not be CSM.

By contrast, in the risk-neutral case, once the stationary phase is reached surplus is maximized in each state by varying the continuation utility to allow the constrained maximal surplus to be achieved (Theorem 1). For example, if the state changes from one in which agent 1 can claim most of output to one in which roles are reversed, sufficient surplus and future utility is reallocated to agent 2 to satisfy his self-enforcing constraint at the CSM actions for that state. However, in the risk-averse setting of part (b)(ii) of Theorem 3, risk-sharing considerations make such an immediate step change undesirable. It is better to hold agent 1’s action at the

52 Formally, $mu(t - 1) \neq mu(t)$ implies $\sigma(t) \neq \sigma(t + 1)$, and thus from (6), $dz^u(V_1(t))/dV_1 \neq 0$. Hence, actions at date t are not CSM, as claimed.
later date inefficiently low, keeping agent 2’s default payoff from rising too much; this relaxes the latter’s self-enforcing constraint so that the share going to agent 2 does not rise to that consistent with CSM actions.\footnote{The requirement that $\pi_{\text{st}} > 0$ is a regularity condition to ensure that there can be long enough sequences along which the MU ratio is monotone and is required so that an appropriate mixing condition for convergence independent of initial conditions obtains.}

A more detailed intuition is as follows: suppose to the contrary that the ratio of marginal utilities differs across two dates $t-1$ and t, but actions at date t are CSM. Then a simple change in the contract at $t-1$ and t can produce a Pareto-improvement. Consider the case where $\text{mu}(t-1) > \text{mu}(t)$. Initially hold actions fixed at both dates and increase $x_1(t)$ by a small amount, but reduce $x_1(t-1)$ to leave $V_1(t-1)$ unchanged. If surplus were unchanged at t, this would improve risk sharing and lead to a Pareto-improvement because $V_2(t-1)$ would increase. However, because $x_2(t)$, and hence $V_2(t)$, have fallen, agent 2’s self-enforcing constraint may be violated at the initial actions (and will be, if the CSM actions are below the first-best). In order not to violate agent 2’s self-enforcing constraint, agent 1’s action at date t can be increased because $V_1(t)$ has risen. Critically, although this change may reduce surplus at date t, it does so only by a second-order amount since, by assumption, the original actions at date t were CSM.\footnote{The change in surplus would be second order when V_1 and V_2 are varied according to the Pareto frontier at t starting from maximum surplus; because the frontier’s slope is $-\text{mu}(t)$ at maximum surplus, the change we construct also only has a second-order effect. Also, note that, by construction, the self-enforcing constraints hold at t, and since $V_1(t-1)$ is unchanged and $V_2(t-1)$ is increased, they also hold at $t-1$.} Consequently, a Pareto-improvement results, contradicting the supposed optimality of the original situation.

5.3. Pure risk-sharing

We now compare our results to the standard limited commitment, two-agent, pure risk-sharing model of Kocherlakota (1996), Ligon et al. (2002), Thomas and Worrall (1988). To do this, for simplicity we consider a special case of our hold-up model with additive production (here we return to treating actions a_i as choice variables), $y^s(a) = f_1^s(a_1) + f_2^s(a_2)$, and proportional defaults, $\phi^s(a) = \theta_{11}^s f_1^s(a_1) + \theta_{22}^s f_2^s(a_2)$ where $\theta_{ij}^s \geq 0$, $i, j = 1, 2$, and $\sum_{i=1}^2 \theta_{ij}^s = 1$, $j = 1, 2$. Our hold-up assumption requires $\theta_{ij}^s > 0$, $i, j = 1, 2$, $i \neq j$, all s. Holding technology and preferences fixed, consider the limit case where hold-up vanishes: $\theta_{ij}^s = 0$, $i, j = 1, 2$, $i \neq j$, all s. This corresponds to the pure-risk sharing model. In any OC of this limit model actions are clearly efficient, as are actions in the breakdown, so only efficient levels play any role. Agent i’s “endowment” in state s is $f_i^s(a_i^s(s)) - a_i^s(s)$ and breakdown utility is $u(f_i^s(a_i^s(s)) - a_i^s(s))$.

We establish that the dynamics of the hold-up model converge to that of the risk-sharing model. In the latter, as is well known, dynamics are summarised in a simple updating rule for $\text{mu}(t)$ (which fixes surplus division given surplus depends only on s). We characterise how the corresponding updating rule in the hold-up
model converges to the risk-sharing one as hold-up disappears. One application of this is that it allows us to characterise general properties of the hold-up dynamics for cases where hold-up is low.

From Ligon et al. (2002), the updating rule in the pure risk-sharing case, which we write \(\mu_t = h_{RS}(\mu_{t-1}, s_t) \), has the property that there is a (possibly degenerate) interval \([\bar{\rho}_{RS}^s, \bar{\rho}_{RS}^s]\) for each \(s \) such that \(h_{RS}(\mu_{t-1}, s) = \bar{\rho}_{RS}^s \) if \(\mu_{t-1} > \bar{\rho}_{RS}^s \), \(h_{RS}(\mu_{t-1}, s) = \mu_{t-1} \) if \(\mu_{t-1} \in [\bar{\rho}_{RS}^s, \bar{\rho}_{RS}^s] \) and \(h_{RS}(\mu_{t-1}, s) = \bar{\rho}_{RS}^s \) if \(\mu_{t-1} < \bar{\rho}_{RS}^s \). Moreover, there exists \(\delta > 0 \) such that for \(1 \geq \delta > \delta \), OCs that improve on autarky exist, and each \([\bar{\rho}_{RS}^s, \bar{\rho}_{RS}^s]\) is non-degenerate (Proposition 2(iv) in Ligon et al. 2002).

Likewise, in the hold-up model we can also use \((\mu_{t-1}, s_t)\) as the state variable. (By \(\mu_{t-1} = \sigma(t) \), this is equivalent to \((\sigma(t), s_t)\).) Thus the evolution of the contract can be represented by \(\mu_t = h(\mu_{t-1}, s_t) \), where \(h: \mathbb{R}_+ \cup \{\infty\} \times \mathcal{S} \rightarrow \mathbb{R}_+ \). The updating functions \(h(\mu, s) \) converge to those of the pure risk-sharing model as the hold-up problem diminishes. Moreover, for \(\mu_{t-1} \) within the interior of the interval \([\bar{\rho}_{RS}^s, \bar{\rho}_{RS}^s]\), when hold-up is small enough, optimal actions at \(t \) are at the first-best levels and so \(\mu_t = \mu_{t-1} \). An illustration of this convergence for two states is depicted in Figure 2.

\[\text{Figure 2: Convergence to Pure Risk-Sharing} \]
PROPOSITION 1: For each state \(s \in \mathcal{S} \), (i) for all \(\mu \in \mathbb{R}^+ \), \(h(\mu, s) \to h^{RS}(\mu, s) \) as \(\theta_{ij} \to 0 \), \(i, j = 1, 2 \), \(i \neq j \), all \(s \). (ii) For \(\delta > \bar{\delta} \) and any \(\eta \) satisfying \((1/2)(\bar{\rho}^{RS}_s - \bar{\rho}^{RS}_s) > \eta > 0 \), all \(s \), there exists \(\varepsilon > 0 \) such that for \(\theta_{ij} < \varepsilon \), \(i, j = 1, 2 \), \(i \neq j \), all \(s \), \(h(\mu, s) = \mu \) for all \(\mu \in [\bar{\rho}^{RS}_s + \eta, \bar{\rho}^{RS}_s - \eta] \).

One well-known feature of the pure risk sharing model is the “amnesia” property that once one of the agents is constrained, then the previous history is irrelevant to the future evolution of the OC. This property no longer applies in our model of risk averse agents with actions. Suppose that agent 2’s self-enforcing constraint binds at date \(t \). In the risk-sharing problem, this fixes his continuation utility and there is a unique optimal way of delivering this continuation utility independently of past history and, in particular, independently of the previous ratio of marginal utilities. This can be seen in the flat sections of the functions \(h^{RS}(\mu, s) \) in Figure 2. In the hold-up problem, by contrast, agent 2’s self-enforcing constraint can be relaxed by cutting agent 1’s action. Although this change may reduce surplus, sacrificing surplus can be offset by improved risk sharing and the incentive to do this will vary with the lagged MU ratio. The logic of trading off surplus to improve risk sharing is similar to the explanation given above for why the partial insurance case involves optimal actions that are not CSM, even in the long run. This result is illustrated in Figure 2 by the fact that the functions \(h(\mu, s) \) are upward sloping even away from the 45° line (Lemma 18). Thus, even when an agent is constrained, past history affects the current actions and consumption and the future evolution of the OC. The amnesia property fails.

6. CONCLUSION AND FURTHER WORK

In this paper, we have analyzed the dynamic properties of a relational contract between two agents both of whom undertake a costly investment or action that yields joint benefits. We have shown that optimal contracts exhibit different properties depending on whether agents are risk neutral or risk averse. In the risk-neutral case, investments may be either above or below the efficient level and that actions and the division of the surplus converges monotonically to a stationary solution at which actions are constrained surplus maximizing (either both are first-best or both are below the first-best level). In the risk-averse case, we also establish a convergence result but convergence may or may not be monotonic depending on whether it is possible to sustain a first-best allocation or not. We have demonstrated that the optimal contract converges to the pure-risk sharing results of Kocherlakota (1996) as our hold-up problem vanishes.

In the risk averse case there is an interesting trade-off between hold-up and risk-sharing. The hold-up problem creates an opportunity to relax the default constraint by lowering actions. This in turn allows more risk-sharing to be achieved without leading to default. It would be interesting to evaluate whether the gain in risk-sharing would ever be sufficient to offset the loss in surplus created by the original hold-up problem. This
is a difficult question because without additional structure to the model little can be said about the long run distribution of the optimal contract.

The model might be extended in a number of directions. One extension would be to consider a model of repeated voluntary contributions to public good provision. Other extensions could allow for heterogeneous discount rates or to treat the actions as real investments with capital accumulation such as in a model of sovereign debt, or to consider efficient ownership structures when ownership affects the breakdown utilities.

REFERENCES

Fong, Y.-F. and J. Li (2012): “Relational Contracts, Efficiency Wages, and Employment Dynamics,” Mimeo, Kellogg School of Management, Northwestern University.

APPENDIX

Statements of Lemmas for Section 2

Lemma 1: Under Assumption 2, for $i, j = 1, 2, i \neq j$ and for each $s \in \mathcal{S}$, the conditionally efficient action, $a_i^*(a_j, s)$, is single-valued, weakly increasing and continuous in a_j.
Lemma 2: Under Assumption 3, for i, j = 1, 2, i ≠ j and for each s ∈ S, the Nash best-response, \(a^N_i(a_j, s) \), is single-valued, weakly increasing and continuous in \(a_j \). Moreover, \(0 < a^N_j(a_j, s) < a^N_1(a_1, s) \) for all \(a_j \).

Lemma 3: Under Assumptions 1 and 3, for i, j = 1, 2, i ≠ j and for each s ∈ S, the deviation utility, \(D^*_i(a_j) \), is bounded below and is a continuous, increasing, strictly concave, and differentiable function of \(a_j \).

Statements of Lemmas for Section 3

Lemma 4: Under Assumptions 1-3, the set of lifetime utilities \(\mathcal{V}_{s_0} \) that correspond to DRCs is compact for each \(s_0 \in S \). Hence, optimal contracts exist.

Lemma 5: Under Assumptions 1-3, for i, j = 1, 2, i ≠ j, optimal actions satisfy \(a_i(s) ≥ a^N_i(a_j(s), s_i) \), and \((a_1(s'), a_2(s')) ≥ a^N_j(a_j(s'), s_i) \) for any history \(s' \).

Lemma 6: Under Assumptions 1-3, for i, j = 1, 2, i ≠ j, if for any history \(s' \), \(c_i(s') = y^s(a_1(s'), a_2(s')) \), \(a^N_j(a_j(s'), s_i) ≤ a_i(s') ≤ a^*_i(a_j(s'), s_i) \) and \(V_i((s', r)) ≥ D^*_i(a^*_j(\{r\})) \) for all \(r ∈ S \), then

\[
\begin{aligned}
 u_i(y^s(a_1(s'), a_2(s'))) - a_i(s')) + \delta \sum_{r ∈ S} \pi_s V_i((s', r)) > D^*_i(a^*_j(a_j(s'))).
\end{aligned}
\]

Lemma 7: For each \(s ∈ S \) and under Assumptions 1-3 (i) under either Assumption 4 or Assumption 5, \(V^*_2(V_1) \) is a continuous and concave function of \(V_1 \) defined on a closed interval \([V^*_1, \bar{V}^*_1]\). (ii) Under Assumption 4, \(V^*_2(V_1) \) is strictly concave over any interval such that \(d^s(V_1) \) varies with \(V_1 \); under Assumption 5, \(V^*_2(V_1) \) is strictly concave over any interval such that \(d^s(V_1) \) varies with \(V_1 \), or if \(u_i \) is strictly concave, \(i = 1, 2 \).

Lemma 8: Under Assumptions 1-3 and under either Assumption 4 or Assumption 5, the Pareto-frontier \(V^*_2(V_1) \) is continuously differentiable on \((V^*_1, \bar{V}^*_1)\), where \(V^*_1 < \bar{V}^*_1 \) for each \(s ∈ S \). Moreover,

\[
 V^*_2((V_1) = 0 \quad \text{and} \quad V^*_2((-V_1)) = -\infty,
\]

where \(V^*_2((V_1) \) denotes the right and \(V^*_2((-V_1) \) the left derivative.

Lemma 9: Under Assumptions 1-3 and under either Assumption 4 or Assumption 5, \(d^i_t(V_1) \) is a continuous function of \(V_1 \) for each \(s ∈ S \) and \(i = 1, 2 \).

Lemma 10: Under Assumptions 1-3, and for i, j = 1, 2, i ≠ j, for any history \(s' \), (i) if \(V_i(s') > d_j(s') \), then \(a_j(s') ≥ a^*_j(a_i(s'), s_i) \); (ii) if \(c_i(s') > 0 \), then \(a_i(s') ≤ a^*_i(a_j(s'), s_i) \).

Statement of Lemmas and Proofs of Main Results for Section 4

For this subsection we maintain Assumptions 1-4 but additionally assume that agents are risk-neutral with \(u_i(x_i) = x_i \).

Lemma 11: For each \(s ∈ S \), the Pareto-frontier \(V^*_2(\cdot) \) is strictly concave on \([V^*_1, \bar{V}^*_1]\) where \(V^*_1 := \inf\{V_1: V^*_2(V_1) = -1\} \), and on \((\bar{V}^*_1, \bar{V}^*_1]\) where \(\bar{V}^*_1 := \sup\{V_1: V^*_2(V_1) = -1\} \). If first-best actions are not sustainable in state \(s \), i.e., for \(s ∈ S \), then \(V^*_2(\cdot) \) is strictly concave on \([V^*_1, \bar{V}^*_1]\).

Lemma 12: With probability one, there is a random time \(\tilde{t} < \infty \) such that \(\zeta(t) \) converges monotonically to 0 with \(\zeta(t) = 0 \) for all \(t ≥ \tilde{t} - 1 \).
Lemma 13: For each \(s \in \mathcal{S} \), the surplus function \(z'(V_1) \) is a continuous and single peaked function of \(V_1 \). That is, for any \(V_1^{(1)} < V_1^{(2)} < V_1^{(3)} \), it is not possible that \(z'(V_1^{(1)}), z'(V_1^{(3)}) > z'(V_1^{(2)}) \). Moreover, \(z'(V_1) \) is maximal when \(\sigma_s(V_1) = 1 \).

Proof of Theorem 1.

Stationary phase: Define \(\hat{t} \) as the earliest date at which \(\sigma(t) = 1 \). By Lemma 12, \(\hat{t} < \infty \) with probability 1. If \(\sigma = 1 \) and \(V_1 \in A \) (so that \(c_1 = 0 \)), then it follows from the first-order conditions that \(\gamma_1 = \gamma_2 = \mu_1 = \mu_2 = 0 \), and hence that \(d = d^* \). A similar argument applies for \(\sigma = 1 \) and \(V_1 \in C \). If \(\sigma = 1 \) and \(V_1 \in B \) (so \(c_1 > 0 \) and \(c_2 > 0 \)), then \(\mu_1 = \mu_2 \) from (4a). Thus, either \(\mu_i = 0 \), \(i = 1, 2 \), in which case again \(d = d^* \) and \(z'(d) \) is maximal, or \(\mu_i > 0 \), \(i = 1, 2 \), so both self-enforcing constraints bind. In the latter case, \((\partial z'/\partial d_2)/(\partial z'/\partial d_1) = 1 = -V_1''(V_1) \), from (4a) and (4c). From the concavity of \(V_2^2(V_1) \) and \(z'(d) \), this implies that \(z'(d) \) is maximized by choice of \(d \in \mathcal{D}(s) \) and \(V_1 \in [V_1^1, V_1^\alpha] \) subject to \(d_2 \leq V_1, d_1 \leq V_2(V_1) \). Since these self-enforcing constraints must hold for any DRC, it follows that at \(\sigma = 1 \), \(z'(d) \) is maximal across all DRCs whether the self-enforcing constraints bind or not and optimal actions are CSM. Also in the case where \(\mu_1 = \mu_2 > 0 \), it follows from (4c) that \(d_1(t) < d_1^*(d_1(t),s_1) \leq d_1^*(s_1), j \neq i \) (the last inequality follows because \(d_1^*(d_1,s) \) is non-decreasing in \(d_1 \)). Since \(a_i \) and \(d_i \) are positively monotonically related through the function \(g_j \) and \(a = a^* \) if and only if \(d = d^* \), the statement in the Theorem follows.

Backloading phase: Suppose \(V_1(s_0) \) is such that \(\sigma_0 < 1 \) (a symmetric argument applies if \(\sigma_0 > 1 \)). Then \(\sigma(t) \leq \sigma^+(t) \equiv \sigma(t+1) \leq 1 \) and \(\gamma_2(t) = 0 \).

We first establish the last part of the theorem. Consider \(t = \hat{t} - 1 \), so that \(\sigma^+(t) \equiv \sigma(t+1) = 1 \). Then \(\sigma^+(t) - \sigma(t) > 0 \) and from (4a), \(\mu_1(t) > 0 \). (4b) implies that \(\gamma_1(t) = 0 \). So from (4c), \(\partial z'/\partial d_1 \geq 0 \), and thus, \(d_1(t) \leq d_1^*(d_2(t),s_1) \). Likewise in (4c), \(d_2(t) < d_2^*(d_1(t),s_1) \). Together with \(d_1(t) \leq d_1^*(d_2(t),s_1) \) this implies \(d_1(t) \leq d_1^*(s_1) \) and \(d_2(t) < d_2^*(s_1) \); equivalently \(a_1(t) \leq a_1^*(s_1) \) and \(a_2(t) < a_2^*(s_1) \).

Next, suppose \(\sigma^+(t) < 1 \), so that \(t < \hat{t} - 1 \) and from (5a) \(\gamma_1 > 0 \) (so \(c_1 = 0 \) and \(V_1(t) \in A^{\alpha} \)). Equation (5a) implies that \(\partial y^s(a_1,a_2)/\partial a_1 < 1 \), so that \(a_1(t) > a_1^*(a_2(t),s_1) \). Again using (4c), \(\partial z'(d_1,d_2)/\partial d_2 \geq 0 \), so that \(d_2(t) < d_2^*(d_1(t),s_1) \) and hence \(a_2(t) \leq a_2^*(a_1(t),s_1) \).

To establish the monotonicity of the marginal conditions, consider dates \(t \) and \(t' \) with \(\hat{t} \geq t' > t \) such that the same state \(s \) occurs at date \(t \) and \(t' \). If \(\sigma^+(t') < 1 \), then it follows from the monotonicity of the sequence established in Lemma 12 that \(\sigma^+(t) \leq \sigma^+(t') < 1 \). Hence, \(V_1(t) \in A^{\alpha} \) and \(V_1(t') \in A^{\alpha'} \). It follows directly from (5a) that \(1 > \partial y^s(a(t'))/\partial a_1 \geq \partial y^s(a(t))/\partial a_1 \). Now suppose, contrary to the assertion that \(\partial y^s(a(t'))/\partial a_2 > \partial y^s(a(t))/\partial a_2 \) or equivalently \(\partial z^s(a(t'))/\partial a_2 > \partial z^s(a(t))/\partial a_2 \). From (5a) and (5b) \(\partial z^s(d(t))/\partial d_2 = \sigma^+(t) - \sigma(t) \geq 0 \), and hence \(\partial z^s(a(t))/\partial a_2 \geq 0 \) and \(\partial z^s(a(t'))/\partial a_2 > 0 \). Strict concavity of \(z^s(a) \) requires that \(\sum_{i=1}^2 ((\partial z^s(a'(t))/\partial a_i) - (\partial z^s(a(t))/\partial a_i))(a(t') - a_i(t)) < 0 \) for \(a(t') \neq a(t) \). Then, since \(\partial^2 z^s/\partial a_1\partial a_2 \geq 0 \), it
follows that \(a_1(t) \geq a_1(t') \) and \(a_2(t) > a_2(t') \). This however provides a contradiction. To see this, consider that \(\sigma(t') \geq \sigma(t) \) and \(\sigma(t) < 1 \) imply, from Lemma 11, that \(V_1(t') \geq V_1(t) \). Equally, because \(\partial z'(a(t'))/\partial a_2 > 0 \), \(\mu_1(t') > 0 \), and hence, \(d_2(t') = V_1(t') \geq V_1(t) \geq d_2(t) \). This implies \(a_2(t') \geq a_2(t) \), a contradiction. A similar argument applies if \(\sigma^+(t) < 1 \) and, except that in this case we have \(\gamma_1(t') = \gamma_2(t') = 0 \) and thus, from (4c), \(\partial z'(a(t'))/\partial a_1 \geq 0 > \partial z'(a(t))/\partial a_1 \) (the second inequality follows from the earlier argument because \(\sigma^+(t) < 1 \)). Finally, Lemma 13 shows that \(z'(V_1) \) is continuous and single-peaked and has a maximum when \(\sigma_s(V_1) = 1 \). From above, \(V_1(t') \geq V_1(t) \) when \(\sigma(t) < 1 \). Hence, we conclude that that \(z'(a(t)) \leq z'(a(t')) \).

\[\]

Statement of Lemmas and Proofs of Main Results for Section 5

For all lemmas and proofs in this subsection, we maintain Assumptions 1-3 and 5. Additionally it is assumed that agents are risk averse, that is, \(u_i \) is strictly concave for \(i = 1, 2 \).

Lemma 14: For each \(s \in \mathcal{S} \), a solution to \([P1]\) has the property that \(z'(a_1, a_2) \) is maximised over \(a \in \mathbb{R}^2_+ \) subject to \(V_1 \geq D_1'(a_2) \) and \(V_2'(V_1) \geq D_2'(a_1) \).

Lemma 15: For each \(s \in \mathcal{S} \), the surplus function \(z'(V_1) \) is continuous, concave and differentiable in \(V_1 \).

Lemma 16: For each \(s \in \mathcal{S} \), (i) \(\Delta z'(V_1)/\Delta V_1 > 0 \) implies \(\mu_1'(V_1) > 0 \) \(\mu_2'(V_1) > 0 \); (ii) there are two critical values \(\chi^1_s \in (V_1, V_2') \) and \(\chi^2_s \in [V_2', V_1] \), such that \(d_2'(V_1) = V_1 \) for all \(V_1 \leq \chi^1_s \) and \(d_1'(V_1) = V_1(s) \) for all \(V_1 \geq \chi^2_s \). Moreover, \(\mu_1'(V_1) = 0 \) for \(V_1' > V_1 \geq \chi^1_s \) and \(\mu_2'(V_1) = 0 \) for \(V_1' < V_1 \leq \chi^2_s \) (if such \(V_1 \) exist). If the efficient actions can be sustained in state \(s \), then \(\chi^2_s < \chi^1_s \). Otherwise, \(\chi^2_s > \chi^1_s \), and surplus is maximized for a unique value of \(V_1 \in (\chi^1_s, \chi^2_s) \) at which both constraints bind.

Lemma 17: For each \(V_1 \in [\chi^1_s, \chi^2_s] \)

\[\sigma_s^+(V_1) - \sigma_s(V_1) = u_2 \frac{d z'(V_1)}{d V_1}. \]

Proof of Theorems 2 and 3:

We proceed in several steps, first proving Theorem 3 and then specializing to prove Theorem 2.

Since \(\sigma_s^+(V_1) \) depends only on the current slope \(\sigma \) and the current state \(s \) (recall \(V_1 \) and \(\sigma \) are uniquely related for a given state) the evolution of the contract can be represented as a stochastic recursion, i.e., \(\sigma(t+1) = \sigma_0(\sigma_0^{-1}(\sigma)) \), which we write as \(\sigma(t+1) = h(\sigma(t), s_t) \), and where \(h: \mathbb{R}_+ \cup \{\infty\} \times \mathcal{S} \to \mathbb{R}_+; \sigma(0) = \sigma_0 \) is the given initial value, corresponding to the initial state \(s_0 \) and agent 1’s lifetime utility \(V_1(s_0) \). (This is the same function as \(h \) defined in the text, given that \(mu(t) = \sigma(t+1) \).)

Lemma 18: (i) The function \(h(\sigma, s) \) is continuous and strictly increasing in \(\sigma \); (ii) for each state \(s \), there is a single, possibly degenerate, interval of fixed points \([\sigma_s^+, \sigma_s^-] \), \(\sigma_s^+ > 0 \), such that \(h(\sigma, s) = \sigma \) for any \(\sigma \in [\sigma_s^+, \sigma_s^-] \); (iii) \(h(\sigma, s) < \sigma \) for \(\sigma > \sigma_s^+ \) and \(h(\sigma, s) > \sigma \) for \(\sigma < \sigma_s^+ \).
Proof. Let \(x_i(V_1) = c_i(V_1) - g_j(d_i(V_1)) \) be the net consumption of agent \(i \) (dropping the state superscript) and \(\rho(V_1) := u'_x(x_2(V_1))/u'_x(x_1(V_1)) \). Then, \(h(\sigma, s) = \rho(\sigma)^{-1}(\sigma) \).

We first prove part (i). From the concavity properties of \([P1]\) under Assumption 5, the choice variables \(s \) are continuous, and hence, \(\rho(V_1) \) is continuous in \(V_1 \). From Lemma 8, the Pareto-Frontier is continuously differentiable and hence, so too is its inverse. Thus, \(h(\sigma, s) \) is continuous in \(\sigma \).

Next, we turn to the monotonicity of \(h(\sigma, s) \). First, we show that \(\rho(V_1) \) is strictly increasing. Suppose, to the contrary, that \(\rho(V_1) \leq \rho(\tilde{V}_1) \) for some \(V_1 > \tilde{V}_1 \). It follows from \(\rho(V_1) = -V_2''(V_1) \) and the concavity of the frontier \(V_2'(V_1) \) that \(V_2'(\tilde{V}_1) \leq V_2'(V_1) \) for all \(r \in \mathcal{S} \). Also, since \(\tilde{V}_1 < V_1 \), we have \(u_1(x_1(\tilde{V}_1)) + \delta_{1} \leq u_1(x_1(V_1)) + \delta_{1} \). Hence, \(x_1(\tilde{V}_1) < x_1(V_1) \). Likewise, since the frontier is downward sloping, \(V_2(\tilde{V}_1) > V_2(V_1) \) and \(V_2'(\tilde{V}_1) \leq V_2'(V_1) \), and therefore, that \(x_2(\tilde{V}_1) > x_2(V_1) \). But then \(u_2'(x_2(\tilde{V}_1))/u_2'(x_1(V_1)) < u_2'(x_2(V_1))/u_2'(x_1(V_1)) \) or \(\rho(\tilde{V}_1) < \rho(V_1) \), which is a contradiction. Thus, we can conclude that \(\rho(V_1) \) is strictly increasing in \(V_1 \). Since the frontier \(V_2'(V_1) \) is strictly decreasing in \(V_1 \) and \(\sigma = -V_2''(V_1) \), the result is proved.

To establish parts (ii) and (iii), from Lemma 16, for \(s \in \mathcal{S}_s \), surplus is at the first-best level for \(V_1 \in [\bar{V}_1, \bar{V}_1] \). Correspondingly, there is an interval of Pareto frontier slopes \([\mathcal{S}^s, \mathcal{S}^s] := [-V_2''(\bar{V}_1), -V_2''(\bar{V}_1)] \). For \(s \in \mathcal{S}_c \), the corresponding interval is degenerate at a single point \([\mathcal{S}^s, \mathcal{S}^s] := [-V_2''(\bar{V}_1)] \) where \(\bar{V}_1 \) is at \(\text{arg max}_i \varphi(V_1) \). It follows from part (b) of Assumption 5 and equation (4b) (given \(\gamma = v_i' = 0 \) for \(i = 1, 2 \)) that \(\mathcal{S}^s(V_1) \) is positive and finite. Thus, \(0 < \mathcal{S}^s < \mathcal{S}^s < \infty \). Equation (6) therefore implies the following: If \(\mathcal{S}(V_1) \in [\mathcal{S}^s, \mathcal{S}^s] \), then \(\mathcal{S}(V_1) = \mathcal{S}(V_1) \). If \(\mathcal{S}(V_1) > \mathcal{S}^s \), then \(\mathcal{S}(V_1) / \mathcal{S}(V_1) < 0 \) (given the concavity of \(\varphi(V_1) \) by Lemma 15) and hence, \(\mathcal{S}^s(V_1) < \mathcal{S}(V_1) \). Likewise, if \(\mathcal{S}(V_1) < \mathcal{S}^s \), then \(\mathcal{S}(V_1) = \mathcal{S}(V_1) \) and hence, \(\mathcal{S}^s(V_1) > \mathcal{S}(V_1) \). \(\blacksquare \)

Let \(\bar{s} \) be a state such that \(\mathcal{S}^s \geq \mathcal{S}^s \) and \(\bar{s} \) a state such that \(\mathcal{S}^s \leq \mathcal{S}^s \) for all \(s \in \mathcal{S} \).

Lemma 19: An FBA is sustainable if and only if \(\mathcal{S}^s \leq \mathcal{S}^s \) and \(\mathcal{S}_s = \mathcal{S} \).

Proof. The “if” implication follows because there would exist an initial value \(\sigma_0 \in [\mathcal{S}^s, \mathcal{S}^s] \) such that \(\sigma_0 \in [\mathcal{S}^s, \mathcal{S}^s] \) for each state \(s \). It therefore follows that starting from \(\sigma_0 \), \(\sigma(t) \), and hence, the ratio of marginal utilities, is kept constant at \(\sigma_0 \) and since surplus is maximized for \(\sigma(t) \in [\mathcal{S}^s, \mathcal{S}^s] \), actions are CSM and thus first-best by \(\mathcal{S}_s = \mathcal{S} \) in each state. “Only if” follows because by Lemma 18 even if first-best actions are sustainable in every state, \(\mathcal{S}^s \geq \mathcal{S}^s \) would imply that whenever \(s_t = \bar{s} \) and \(s_r = s \) (such \(t, \tau \) exist with probability one given irreducibility), then either (a) \(\sigma(t) \in [\mathcal{S}^s, \mathcal{S}^s] \) and \(\sigma(\tau) \in [\mathcal{S}^s, \mathcal{S}^s] \) in which case \(\sigma(t) > \sigma(\tau) \), and the risk-sharing condition fails, or (b) either or both \(\sigma(t) \notin [\mathcal{S}^s, \mathcal{S}^s] \) and \(\sigma(\tau) \notin [\mathcal{S}^s, \mathcal{S}^s] \), in which case surplus is not maximized at least one of the dates. \(\blacksquare \)
Proof of Theorem 3.

Recalling that \(mu(t) = \sigma(t+1) \), an interval \([\sigma^*_i, \sigma^*_i] \) corresponds to an interval of MU ratios in state \(s \) and converge of \(\sigma(t) \) is equivalent to convergence of \(mu(t) \). Part (a) of the Theorem therefore follows straightforwardly from Lemmas 18 and 19. From Lemma 19 \(\sigma^*_i \leq \sigma^*_i \). Convergence is to \(\sigma^*_i \) if \(\sigma_0 < \sigma^*_i \), since \(\sigma(t) = h(\sigma(t-1), s_{t-1}) \geq \sigma(t-1) \) by Lemma 18(iii) and so \(\{\sigma(t)\} \) is a nondecreasing sequence; it is bounded above by \(\sigma^*_i \) given \(h \) continuous and increasing in \(\sigma \) and that \(h(\sigma, s) \leq \sigma \), all \(s \), for \(\sigma \geq \sigma^*_i \), by Lemma 18(ii) and (iii); with probability one \(\sigma(t) \) converges to \(\sigma^*_i \) given that \(h(\sigma, \tilde{s}) > \sigma \) for \(\sigma < \sigma^*_i \) and the irreducibility of \(\{\tau_v\} \) and finiteness of states implies that state \(\tilde{s} \) is recurrent. Likewise convergence (monotonic) is to \(\sigma^*_i \) if \(\sigma_0 > \sigma^*_i \), and \(\sigma(t) \) is constant at \(\sigma_0 \) if \(\sigma_0 \in [\sigma^*_i, \sigma^*_i] \). If there exist multiple FBA then \(\sigma^*_i < \sigma^*_i \), and the limit depends on \(\sigma_0 \) and hence on \(V_1(s_0) \). Since \(\lim_{t \to \infty} \sigma(t) \in [\sigma^*_i, \sigma^*_i] \) for all \(s \), \(mu(t) \) convergence and by continuity the limit actions are \(a^*(s_i) \), and \(x^*(s_i) \) is such that \(u'_2(x^*_2(s)) / u'_1(x^*_1(s)) = \lim_{t \to \infty} \sigma(t) \), all \(s \).

For (b), if an FBA is not sustainable, then by Lemma 19 either \(\sigma^*_i = \sigma^*_i \) and the CSM actions are below first-best levels in at least one state, or \(\sigma^*_i > \sigma^*_i \). In the former case by Lemma 18, following the argument in part (a), \(\{\sigma(t)\} \) is monotonic and converges with probability one to \(\sigma^*_i = \sigma^*_i \in [\sigma^*_i, \sigma^*_i] \) for all \(s \), implying that limiting actions are CSM in each state, establishing case (b)(i). Otherwise, part (b)(ii) obtains; \(\sigma(t) \in [\min_{s} \{h(0, s)\}, \max_{s} \{h(\infty, s)\}] \) for \(t \geq 1 \). Irreducibility and finiteness of \(\{\tau_v\} \) implies \(s \) and \(\tilde{s} \) are recurrent, and \(\sigma^*_i > \sigma^*_i \) implies that for any \(\sigma \geq 0 \), either \(h(\sigma, \tilde{s}) > \sigma \) or \(h(\sigma, s) < \sigma \) (or both). Thus, given \(h \) is continuous in \(\sigma \), weak convergence to a degenerate distribution is impossible. Next consider the sequence of r.v.s \(\{a(t) - \bar{a}(s_i)\} \). Assume w.l.o.g. that state \(s \) is uniquely defined. Consider an infinite history \(\{s_0, s_1, \ldots\} \) in which each state occurs infinitely often, which implies from the properties of \(h \) established in Lemma 18 that there exists \(t' \) such that \(\sigma(t) \geq \sigma^*_i \) for \(t \geq t' \); note that the set of such histories has probability one. Suppose that \(a(t) - \bar{a}(s_i) \to 0 \), so that along the subsequence \(\{s_{t_1}, s_{t_2}, s_{t_3}, \ldots\} \) where \(t_i \) is the \(i \)th time \(s \) occurs, \(a(t_i) \to \bar{a}(s) \) as \(i \to \infty \). Consider a \(t \geq t' \) such that \(s_i = \tilde{s} \). Then \(\sigma(t) \geq h(\sigma^*_i, \tilde{s}) > \sigma^*_i \) by \(h \) increasing in \(\sigma \) and \(h(\sigma, \tilde{s}) > \sigma \) for \(\sigma < \sigma^*_i \). If \(t_i \) is the next time \(s \) occurs, \(\sigma(t_i) \geq \min \{h(\sigma^*_i, \tilde{s}), \min_{s \neq \tilde{s}} \sigma^*_i \} > \sigma^*_i \). This implies that \(V_1(t_i) \) is bounded above \(\arg \max_{V_i} \tilde{z}(V_i) \), i.e., above \(\sigma^{-1} (\sigma^*_i) \), so \(a(t_i) \) is bounded away from \(\bar{a}(s) \). Since \(s_i = \tilde{s} \) infinitely often, this contradicts \(a(t_i) \to \bar{a}(s) \).

Next, fix any \(\sigma \in (\sigma^*_i, \sigma^*_i) \); clearly \(h(\sigma, \tilde{s}) > \sigma \) and \(h(\sigma, s) < \sigma \). Using \(\pi_{vs} > 0 \) all \(s \), there exist \(t \geq 1 \) such that

\[
(A.1) \quad \epsilon_1 := P(\sigma(t) < \sigma, | \sigma_0 = (\max_s \{h(\infty, s)\})) > 0 \quad \text{and} \quad \epsilon_2 := P(\sigma(t) \geq \sigma, | \sigma_0 = (\min_s \{h(0, s)\})) > 0,
\]

since for \(\epsilon_1 \) (respectively \(\epsilon_2 \)) consider a sufficient number of consecutive occurrences of \(s \) (respectively \(\tilde{s} \)). This implies the "splitting condition" of Bhattacharya and Majumdar (2007; Chapter 3.5, p250) for the i.i.d.
case, and the condition in Foss et al. (2014; Corollary 1) in the general Markov case. Thus, there is a unique stationary distribution \tilde{F} such that $F_t^{(V(s_0))}$ converges weakly to \tilde{F}, as $t \to \infty$, for any initial condition.

Proof of Theorem 2.

The proof of convergence is as in the proof of Theorem 3 parts (a) and (b)(i). In this one state case the monotonicity of the sequence $\{V_1(t)\}$ implies the monotonicity of $z'(V_1(t))$ given the argument relating to equation (6) in the text. Equally, if $V_1(t)$ is increasing, it follows from the constraints that $a_2(t)$ is increasing and if $V_1(t)$ is decreasing, then $a_1(t)$ is increasing. For a state $s \in \mathcal{S}_0$, the action of the constrained agent is conditionally efficient and therefore by complementarity of production, if $V_1(t)$ is strictly monotone, then both actions are increasing.

Proof of Proposition 1.

The proof is straightforward but tedious and details are provided in the Supplementary Materials.
SUPPLEMENTARY MATERIAL

This Supplementary Material contains the omitted proofs of all the lemmas from the Appendix to the paper. It also contains the statements of all these lemmas and provides the details of the proof of Proposition 1. This Supplementary Material can be used without reference to the Appendix.

Proofs of Lemmas for Section 2

Lemma 1: Under Assumption 2, for \(i, j = 1, 2, \) \(i \neq j \) and for each \(s \in S \), the conditionally efficient action, \(a^*_i(a_j, s) \), is single-valued, weakly increasing and continuous in \(a_j \).

Proof. By Assumption 2, holding \(a_j \) fixed, \(y^i(a_1, a_2) \) is strictly concave in \(a_i \). Thus, the conditionally efficient actions are uniquely defined. From the continuity and differentiability assumptions, each \(a^*_i(a_j, s) \) is a continuous function of \(a_j \). Complementarity in production implies that \(a^*_i(a_j, s) \) is weakly increasing in \(a_j \) for \(i, j = 1, 2, \) \(i \neq j \). ■

Lemma 2: Under Assumption 3, for \(i, j = 1, 2, \) \(i \neq j \) and for each \(s \in S \), the Nash best-response, \(a^N_i(a_j, s) \), is single-valued, weakly increasing and continuous in \(a_j \). Moreover, \(0 < a^N_i(a_j, s) < a^*_i(a_j, s) \) for all \(a_j \).

Proof. Since the lemma applies for any given state \(s \), the notational dependence on \(s \) can be dropped. Uniqueness of the \(a^N_i(a_j) \) follows from Assumption 3 that \(\phi_i(a_i, a_j) \) is strictly concave in its own action. Standard results imply these are continuous and differentiable functions. Since, from Assumption 3, \(\partial \phi_i(0, a_j)/\partial a_i > 1 \), it follows that \(a^N_i(a_j) > 0 \). Moreover, from the inequality in (1), \(1 \leq \partial \phi_i(0, a_j)/\partial a_i < \partial y(0, a_j)/\partial a_i \), so that \(a^N_i(a_j) > 0 \). Thus,

\[
1 = \frac{\partial \phi_i(a^N_i(a_j), a_j)}{\partial a_i} = \frac{\partial y(a^*_i(a_j), a_j)}{\partial a_i} > \frac{\partial \phi_i(a^*_i(a_j), a_j)}{\partial a_i},
\]

where the first two equalities hold from the first-order conditions for \(a^N_i(a_j) \) and \(a^*_i(a_j) \) respectively, and the last inequality follows from (1). It then follows from the strict concavity of \(\phi_i \) in its own argument (Assumption 3), that \(a^N_i(a_j) < a^*_i(a_j) \). ■

Lemma 3: Under Assumptions 1 and 3, for \(i, j = 1, 2, \) \(i \neq j \) and for each \(s \in S \), the deviation utility, \(D_i^v(a_j) \), is bounded below and is a continuous, increasing, strictly concave, and differentiable function of \(a_j \).

Proof. Using Lemma 2 and the definition of the deviation utility establishes its continuity and differentiability. The derivative satisfies:

\[
D_i^v(a_2) = u'_i(\phi_i(a^N_i(a_2, s), a_2) - a^N_i(a_2, s)) \frac{\partial \phi_i(a^N_i(a_2, s), a_2)}{\partial a_2}.
\]

Thus, \(D_i^v(a_2) \) is strictly increasing in \(a_2 \) by the hold-up assumption in Assumption 3. To show it is strictly concave, let \(v^N_i(a_2, s) := \max_{\tilde{a}_1} \phi_i(\tilde{a}_1, a_2) - \tilde{a}_1 \). Dropping the state notation, since nothing depends on it,
consider two values \(a_2 \neq \hat{a}_2 \) and the convex combination \(a^2 = \lambda a_2 + (1 - \lambda)\hat{a}_2 \) for \(\lambda \in (0, 1) \). Then,
\[
\psi_1^N(a^2) = \phi_1(a^N(a_2^2), a_2^2) - a_1^N(a_2^2) \\
\geq \phi_1(\lambda a_1^N(a_2) + (1 - \lambda)a_1^N(\hat{a}_2), a_2^2) - (\lambda a_1^N(a_2) + (1 - \lambda)a_1^N(\hat{a}_2)) \\
> \lambda (\phi_1(a_1^N(a_2), a_2) - a_1^N(a_2)) + (1 - \lambda)(\phi_1(a_1^N(\hat{a}_2), \hat{a}_2) - a_1^N(\hat{a}_2)) \\
= \lambda \psi_1^N(a_2) + (1 - \lambda)\psi_1^N(\hat{a}_2),
\]
where the first inequality follows from optimality and the second strict inequality from Assumption 3 that \(\phi_1(a) \) is strictly concave. Since \(D_1(a_2) = u_1(\psi_1^N(a_2)) + \delta \sum_{r \in \mathcal{S}} \pi_r D_1^r(a_2^{NE}(r)) \) and \(u_1 \) is itself concave, it follows that \(D_1(a_2) \) is strictly concave. From Assumption 3, \(\psi_1^N(a_2) \geq \psi_1^N(0) > 0 \). Therefore, from Assumption 1, \(u_1(\psi_1^N(a_2)) > -\infty \). Likewise, \(D_1^r(a_2^{NE}(r)) > -\infty \), and hence, \(D_1(a_2) \) is bounded below too. The same arguments apply with agent indices reversed.

Proofs of Lemmas for Section 3

Lemma 4: Under Assumptions 1-3, the set of lifetime utilities \(\mathcal{V}_{s_0} \) that correspond to DRCs is compact for each \(s_0 \in \mathcal{S} \). Hence, optimal contracts exist.

Proof. By Lemma 3, \(D_1^r(a_j) \) is bounded below and by Assumption 2, \(z^i(a) \) is bounded above for each \(s \in \mathcal{S} \). Together these facts imply that the future utility for agent \(i \) is bounded above. Therefore, in order to satisfy (2), it follows that \(u_i(x_i(s')) \), and hence \(x_i(s') \), is above some bound, say \(\tilde{x}_i \), at each \(s' \). By Assumption 2, the set of actions \(\mathcal{A}(s) = \{(a_1, a_2) \in \mathbb{R}_+^2 \mid z^i(a) \geq \tilde{x}_1 + \tilde{x}_2 \} \) is compact. Therefore, the action-consumption pairs after any history \(s' \) can be restricted to a compact subset, say \(F(s') \subset \mathbb{R}^4 \). Hence, the product space \(\prod_s F(s') \) is sequentially compact in the product topology because it is a countable product of compact spaces. Associated with any DRC (and for notational simplicity, ignoring the dependence on the initial state) is a pair of discounted utilities \((V_1, V_2) \). Let \(\Gamma \) denote the set of DRCs and \(\mathcal{V} \) the set of associated discounted utilities. Consider any convergent sequence in \(\mathcal{V} \) and the associated sequence of DRCs in \(\Gamma \). By sequential compactness, the latter has a convergent sub-sequence that converges pointwise to some limiting contract. By the dominated convergence theorem, the limit of the sequence of utilities at each \(s' \) along the subsequence must satisfy the self-enforcing constraints (2) because utilities are continuous functions of contracts in this topology when \(\delta < 1 \), and because the constraints are weak inequalities. Thus, the limit contract is a DRC, and the limiting sequence of the associated lifetime utilities has a limit point that corresponds to the limit DRC. It follows that \(\mathcal{V} \) is closed and bounded, and hence, a compact subset of \(\mathbb{R}^2 \). The existence of optimal contracts then follows by maximizing weighted sums (with non-negative weights) of utilities over this set.

Lemma 5: Under Assumptions 1-3, for \(i, j = 1, 2, i \neq j \), optimal actions satisfy \(a_i(s') \geq a_i^N(a_j(s'), s_i) \), and \((a_1(s'), a_2(s')) \geq a^{NE}(s_i) > 0 \), for any history \(s' \).
Since agent 1’s self-enforcing constraint is binding, assumption) and by construction her self-enforcing constraint is satisfied. For agent 2, the change in current utility is approximately $\Delta w_2 = a_2 N(a_1) - a_2 N(a_2)$. Suppose then, that agent 1’s self-enforcing constraint is binding. Change the contract by increasing agent 1’s consumption at date t, so that her utility increases by the same amount as the increase in her deviation utility. From the envelope theorem, the increase in the deviation utility is, to a first-order approximation, $D_1 (a_2) \Delta a_2 = u_1 (\phi_1 (a_2 N(a_2), a_2) - a_2 N(a_2)) \partial \phi_1 (a_2 N(a_2), a_2) / \partial a_2 \Delta a_2$. The remainder of the extra output (we show this is positive below because agent 2 will be better off) is given to agent 2. Keep the future unchanged. We now show that these changes meet the constraints and lead to a Pareto-improvement, contrary to the assumed optimality of the contract.

Let w_i denote the current utility of agent i. First, agent 1 is no worse off (in fact better off, given the hold-up assumption) and by construction her self-enforcing constraint is satisfied. For agent 2, the change in current utility is, to a first-order approximation,

$$
\Delta w_2 \simeq u'_2 (c_2 - a_2) \left(\frac{\partial y(a_1, a_2)}{\partial a_2} - \frac{u'_1 (\phi_1 (a_2 N(a_2), a_2) - a_2 N(a_2))}{u'_1 (c_1 - a_1)} \frac{\partial \phi_1 (a_2 N(a_2), a_2)}{\partial a_2} - 1 \right) \Delta a_2.
$$

Since agent 1’s self-enforcing constraint is binding, $V_1 = D_1(a_2)$ and therefore $u_1 (c_1 - a_1) + \delta \sum_{r \in S} \pi_r V'_1 = u_1 (\phi_1 (a_2 N(a_2), a_2) - a_2 N(a_2)) + \delta \sum_{r \in S} \pi_r D'_1 (a_2 NE(r))$. Also, since $V'_1 \geq D'_1 (a_2 NE(r))$, $u_1 (\phi_1 (a_2 N(a_2), a_2) - a_2 N(a_2)) \geq u_1 (c_1 - a_1)$. Therefore, it follows that $u'_1 (\phi_1 (a_2 N(a_2), a_2) - a_2 N(a_2)) \leq u'_1 (c_1 - a_1)$. Using this,
the fact that \(\frac{\partial y(a_1, a_2)}{\partial a_2} \geq \sum_2^2 \frac{\partial \phi_i(a_1, a_2)}{\partial a_2} \), from Assumption 3, the inequality in (S.2) above, gives

\[
\frac{\partial y(a_1, a_2)}{\partial a_2} - u'_1(\phi_i(a_1^N(a_2), a_2) - a_i^N(a_2)) \frac{\partial \phi_i(a_1^N(a_2), a_2)}{\partial a_2} \geq \frac{\partial y(a_1, a_2)}{\partial a_2} - \frac{\partial \phi_i(a_1, a_2)}{\partial a_2} \geq \frac{\partial \phi_i(a_1, a_2)}{\partial a_2}.
\]

Then using (S.1), the bracketed term in (S.3) satisfies:

\[
(\frac{\partial y(a_1, a_2)}{\partial a_2} - \frac{u'_1(\phi_i(a_1^N(a_2), a_2) - a_i^N(a_2))}{u'_1(c - a_1)} \frac{\partial \phi_i(a_1^N(a_2), a_2)}{\partial a_2} - 1) > 0.
\]

Thus, for \(\Delta a_2 \) small enough, \(\Delta w_2 > 0 \). Agent 2’s constraint is satisfied because \(a_1 \), and hence also \(D_2(a_1) \) are unchanged, while his utility has risen, so a Pareto-improvement has been demonstrated. A symmetric argument applies when \(a_1 < a_i^N(a_2) \) and \(a_2 \geq a_i^N(a_2) \).

Step 2: Suppose that \((a_1, a_2) \leq (a_1^{NE}, a_2^{NE}) \) with strict inequality for at least one agent, say agent 2. Consider replacing the actions with the Nash equilibrium actions \(a_i^{NE} \), so that output rises from \(y(a_1, a_2) \) to \(y(a_1^{NE}, a_2^{NE}) \). Let agent 1 have consumption of \(\phi_i(a_1^{NE}, a_2^{NE}) \) and give the remainder of the output to agent 2 (we shall show that utility does not fall, so consumption does not fall, and thus, the change is feasible). The change in per-period utilities are

\[
\begin{align*}
\Delta w_1 &= u_1(\phi_i(a_1^{NE}, a_2^{NE}) - a_i^{NE}) - u_1(c - a_1) \\
\Delta w_2 &= u_2(y(a_1^{NE}, a_2^{NE}) - \phi_i(a_1^{NE}, a_2^{NE}) - a_i^{NE}) - u_2(c_2 - a_2) \geq u_2(\phi_i(a_1^{NE}, a_2^{NE}) - a_i^{NE}) - u_2(c_2 - a_2).
\end{align*}
\]

By the definition of \((a_1^{NE}, a_2^{NE}) \), \(D_i(a_j^{NE}) = u_i(\phi_i(a_1^{NE}, a_2^{NE}) - a_i^{NE}) + \delta \sum_{r \in S} \pi_{ij} D_i(a_j^{NE}, r) \) for \(i = 1, 2, i \neq j \).

Hence, for agent 1

\[
D_1(a_2^{NE}) - D_1(a_2) = u_1(\phi_i(a_1^{NE}, a_2^{NE}) - a_i^{NE}) - u_1(\phi_i(a_1^N(a_2), a_2)) - a_i^N(a_2)),
\]

with a similar expression for agent 2. Using the expression for \(\Delta w_1 \) in (S.4) and (S.5) gives,

\[
\begin{align*}
\Delta w_1 - (D_1(a_2^{NE}) - D_1(a_2)) &= (u_1(\phi_i(a_1^{NE}, a_2^{NE}) - a_i^{NE}) - u_1(c - a_1)) - \\
&= (u_1(\phi_i(a_1^{NE}, a_2^{NE}) - a_i^{NE}) - u_1(\phi_i(a_1^N(a_2), a_2)) - a_i^N(a_2))) \\
&= u_1(\phi_i(a_1^{NE}(a_2), a_2)) - a_i^N(a_2) - u_1(c - a_1).
\end{align*}
\]

We can assume that \(V_1 = D_1(a_2) \), otherwise it would be possible to raise \(a_2 \) and reallocate output in a Pareto-improving way. Thus, by the same arguments as in Step 1, \(u_1(\phi_i(a_1^N(a_2), a_2) - a_i^N(a_2)) \geq u_1(c - a_1) \), so that \(\Delta w_1 - (D_1(a_2^{NE}) - D_1(a_2)) \geq 0 \): the change does not violate the self-enforcing constraint of agent 1. Moreover, since \(a_2^{NE} > a_2 \) by assumption, and since Lemma 3 shows that \(D_1(a_2) \) is strictly increasing, it follows from (S.6) that \(\Delta w_1 > 0 \). Now consider agent 2. The new consumption of agent 2 is equal to
\(y(a_1^{NE}, a_2^{NE}) - \phi_1(a_1^{NE}, a_2^{NE}) \), which by Assumption 3 is at least \(\phi_2(a_1^{NE}, a_2^{NE}) \). Thus, the change in current utility of agent 2 satisfies \(\Delta w_2 = u_2(\phi_2(a_1^{NE}, a_2^{NE}) - a_1^{NE}) - u_2(c_2 - a_2) \) and the same argument as above can be applied to show \(\Delta w_2 - (D_2(a_1^{NE}) - D_2(a_1)) \geq 0 \). Thus, we obtain a contradiction to the assumed optimality of the original contract.

Lemma 6: Under Assumptions 1-3, for \(i, j = 1, 2 \), \(i \neq j \), if for any history \(s' \), \(c_i(s') = y^i(a_1(s'), a_2(s')) \), \(a_i^N(a_j(s'), s_i) \leq a_i(s') \leq a_i^N(a_j(s'), s_i) \) and \(V_i((s', r)) \geq D_i^r(a_j^{NE}(r)) \) for all \(r \in \mathcal{S} \), then

\[
 u_i(y^i(a_1(s'), a_2(s')) - a_i(s')) + \delta \sum_{r \in \mathcal{S}} \pi_{sr} V_i((s', r)) > D_i^r(a_j(s')).
\]

Proof. We drop the state notation for the current state because nothing depends on it. Suppose \(c_1 = y(a_1, a_2) \). From Lemma 5, optimal actions satisfy \(a_1 \geq a_1^N(a_2) \). Thus, \(a_1^N(a_2) \leq a_1(a_2) \) and \(y(a_1, a_2) - a_1 \geq y(a_1^N(a_2), a_2) - a_1^N(a_2) \). Equally, by Assumption 3, \(a_1^N(a_2) > 0 \), so that \(y(a_1^N(a_2), a_2) - a_1^N(a_2) > \phi_1(a_1^N(a_2), a_2) - a_1^N(a_2) \). Thus, \(u_1(y(a_1, a_2) - a_1) > u_1^N(a_2) \). Write \(V_i^r \) for next-period continuation utility in state \(r \). Then,

\[
 D_i(a_2) := u_i^N(a_2) + \delta \sum_r \pi_{sr} D_i^r(a_2^{NE}(r)) \\
 < u_i(y(a_1, a_2) - a_1) + \delta \sum_r \pi_{sr} V_i^r,
\]

where the second inequality follows from \(u_1(y(a_1, a_2) - a_1) > u_i^N(a_2) \) and \(V_i^r \geq D_i^r(a_2^{NE}(r)) \).

Lemma 7: For each \(s \in \mathcal{S} \) and under Assumptions 1-3 (i) under either Assumption 4 or Assumption 5, \(V_2^1(V_1) \) is a continuous and concave function of \(V_1 \) defined on a closed interval \([V_1^*, \bar{V}_1^*]\). (ii) Under Assumption 4, \(V_2^1(V_1) \) is strictly concave over any interval such that \(d^s(V_1) \) varies with \(V_1 \); under Assumption 5, \(V_2^1(V_1) \) is strictly concave over any interval such that \(d^s(V_1) \) varies with \(V_1 \), or if \(u_i \) is strictly concave, \(i = 1, 2 \).

Proof. We first note that Assumption 4 implies that \(z^i(d) \) is strictly concave. Since \(z^i(d) + g_j^i(d_i) \) is concave, \(z^i(d^\lambda) - (\lambda z^i(d) + (1 - \lambda) z^i(d^\lambda)) \geq (\lambda g_j^i(d_i) + (1 - \lambda) g_j^i(d^\lambda)) - g_j^i(d_i^\lambda) \) for pairs \(d, d^\lambda \) and \(\lambda \in [0, 1] \). Since \(g_j^i(d_i) \) is strictly convex, \((\lambda g_j^i(d_i) + (1 - \lambda) g_j^i(d_i^\lambda)) - g_j^i(d_i^\lambda) > 0 \) for \(\lambda \in (0, 1) \) and \(d_i \neq d_i^\lambda \) and \(i, j = 1, 2 \), \(i \neq j \). Hence, for \(d \neq d^\lambda \) and \(\lambda \in (0, 1) \), we have \(z^i(d^\lambda) - (\lambda z^i(d) + (1 - \lambda) z^i(d^\lambda)) > 0 \), so that \(z^i(d) \) is strictly concave.

First consider Assumption 4. Let \((x(s'), d(s'))_{t=0} \) and \((\tilde{x}(s'), \tilde{d}(s'))_{t=0} \) be two OCs with utilities of \((V_1, V_2^1(V_1)) \) and \((\bar{V}_1, V_2^2(\bar{V}_1)) \) respectively, with \(V_1 \neq \bar{V}_1 \) (if there is a unique OC, i.e., a unique Pareto-efficient allocation, then the lemma is trivial). Take a convex combination of the two contract actions, such that \(d^\lambda(s') = \lambda d(s') + (1 - \lambda) \tilde{d}(s') \) is chosen each period, \(0 < \lambda < 1 \). Define, for \(i, j = 1, 2 \), \(i \neq j \),

\[
 h_j^i(s') := g_j^i(d_i^\lambda(s')) - \left(\lambda g_j^i(d_i(s')) + (1 - \lambda) g_j^i(\tilde{d}_i(s')) \right).
\]
Since g_j^s is convex, $h_j^s \leq 0$. We want to show that it is feasible to choose $\tilde{x}_i(s')$ such that $\tilde{c}_i(s') \equiv \tilde{x}_i(s') + g_j^s(d_\lambda^s(s')) \geq 0$, $\tilde{x}_1(s') + \tilde{x}_2(s') \leq z'(d_\lambda^s(s'))$, equivalently $\tilde{c}_1(s') + \tilde{c}_2(s') \leq y'(d_\lambda^s(s'))$, and $\tilde{x}_i(s') \geq \lambda x_i(s') + (1 - \lambda) \tilde{x}_i(s')$, equivalently $\tilde{c}_i(s') \geq (\lambda c_i(s') + (1 - \lambda) \tilde{c}_i(s')) + h_j(s')$, $i = 1, 2$ (where c_i and \tilde{c}_i are the consumptions corresponding to the original contracts). For notational convenience, we drop the dependence on the state and history for the moment. Let $\tilde{c}_1 = \max \{ \lambda c_1 + (1 - \lambda) \tilde{c}_1 + h_2, 0 \}$ and $\tilde{c}_2 = y(d_\lambda^s) - \tilde{c}_1$. There are two cases to consider: case I, where $\lambda c_1 + (1 - \lambda) \tilde{c}_1 + h_2 < 0$, and case II, where $\lambda c_1 + (1 - \lambda) \tilde{c}_1 + h_2 \geq 0$.

Case I. In this case, $\tilde{c}_1 = 0$ and $\tilde{c}_2 = y(d_\lambda^s)$. Then, by assumption, $\tilde{c}_1 > \lambda c_1 + (1 - \lambda) \tilde{c}_1 + h_2$. Furthermore, $\tilde{c}_2 > 0$ since actions, and hence, output is positive. Next $\tilde{c}_2 - (\lambda c_2 + (1 - \lambda) \tilde{c}_2 + h_1) \geq y(d_\lambda^s) - (\lambda y(d) + (1 - \lambda) y(\tilde{d})) - h_2 \geq 0$, where the first inequality follows because $c_2 \leq y(d)$ and $\tilde{c}_2 \leq y(\tilde{d})$ and the second inequality follows from Assumption 4 that $z(d) + g_2(d_1) = y(d) - g_1(d_2)$) is concave in d.

Case II. In this case, $\tilde{c}_1 = \lambda c_1 + (1 - \lambda) \tilde{c}_1 + h_2$ and $\tilde{c}_2 = y(d_\lambda^s) - \tilde{c}_1$. By assumption, $\tilde{c}_1 \geq 0$. Furthermore, $\tilde{c}_2 = y(d_\lambda^s) - \tilde{c}_1 = y(d_\lambda^s) - (\lambda c_1 + (1 - \lambda) \tilde{c}_1 + h_2) \geq y(d_\lambda^s) - (\lambda y(d) + (1 - \lambda) y(\tilde{d})) - h_2 \geq 0$, where the final inequality follows because $y(d) - g_2(d_1) = \lambda z(d) + g_1(d_2)$ is concave in d. Likewise, $\tilde{c}_2 - (\lambda c_2 + (1 - \lambda) \tilde{c}_2 - h_1 = y(d_\lambda^s) - (\lambda (c_1 + c_2) + (1 - \lambda) (\tilde{c}_1 + \tilde{c}_2)) - h_2 - h_1 \geq y(d_\lambda^s) - (\lambda z(d) + (1 - \lambda) z(\tilde{d})) \geq 0$, where the first inequality follows from $c_1 + c_2 \leq y(d)$ and $\tilde{c}_1 + \tilde{c}_2 \leq y(\tilde{d})$. The final inequality follows from the concavity of $z(d)$, and is a strict inequality if $d \neq \tilde{d}$ because z is strictly concave.

Now consider the contract $(\tilde{x}(s'), d_\lambda^s(s'))_{t=0}^\infty$. We have, by the foregoing and by the concavity of u_i, that:

\begin{equation}
\label{S7}
u_i(\tilde{c}_i - g_j(d_\lambda^s)) \geq u_i(\lambda (c_i - g_j(d_i)) + (1 - \lambda) (\tilde{c}_i - g_j(\tilde{d})))
\geq \lambda u_i(c_i - g_j(d_i)) + (1 - \lambda) u_i(\tilde{c}_i - g_j(\tilde{d})),
\end{equation}

where for one of the agents the first inequality is strict if $d \neq \tilde{d}$ (agent 1 in case I, agent 2 in case II).

Thus, the contract $(\tilde{x}(s'), d_\lambda^s(s'))_{t=0}^\infty$ offers at least as much utility in each date-event pair as the average contract and is feasible and self-enforcing. By construction, utilities from the new contract are at least $\lambda (V_1, V_2^s(V_1)) + (1 - \lambda)(\tilde{V}_1, V_2^s(\tilde{V}_1))$. Considering cases where $d \neq \tilde{d}$, the first claim of part (ii) follows by straightforward arguments.

Under Assumption 5, it is only necessary to consider case II. Applying the same argument using the concavity of $z(d)$ shows that $(\tilde{x}(s'), d_\lambda^s(s'))_{t=0}^\infty$ offers at least as much utility in each date-event pair as the average contract and is feasible and self-enforcing. For $d \neq \tilde{d}$ we again get a strict inequality because z is strictly concave; if u_i is strictly concave, then the second inequality in (S.7) is strict at some date, and hence, strict concavity of V_2 follows.

Using standard arguments, it then follows that $V_2^s(\cdot)$ is concave on an open interval $(\tilde{V}_1, \tilde{V}_1)$ where \tilde{V}_1 and \tilde{V}_1 are the respective infimum and supremum of the projection of the Pareto frontier onto agent 1’s utilities.
To show that $V_s^2(\cdot)$ is in fact concave, continuous and defined on $[V_1, \tilde{V}_1]$, consider a sequence $\{V_p^1\}_{p=1}^\infty \in (V_1, \tilde{V}_1)$, such that $V_p^1 \downarrow V_1$ (that is, from above). Since all variables belong to compact spaces, assume w.l.o.g. that a corresponding subsequence of optimal contracts $\{(x_t^p, d_t^p)_{t \geq 0}\}_{p=1}^\infty$ is convergent. Since all inequality constraints are weak, it is easily seen that this limit contract is self-enforcing. Therefore, an optimal contract must offer at least the utility to agent 2 from the limit contract, $V_2(V_1) \geq \lim_{p \to \infty} V_2(V_p^1)$. Equally, it cannot offer more because this would violate concavity of the value function (creating a discontinuity at V_1). The fact that $V_2(V_1)$ is continuous and decreasing on (V_1, \tilde{V}_1) then implies that $V_2(V_1) > V_2(V_1)$ for all $V_1 \in (V_1, \tilde{V}_1)$, and hence, that this point at V_1 is constrained Pareto efficient. A similar argument applies at \tilde{V}_1.

Lemma 8: Under Assumptions 1-3 and under either Assumption 4 or Assumption 5, the Pareto-frontier $V_s^2(V_1)$ is continuously differentiable on (V_1^s, \tilde{V}_1^s), where $V_1^s < \tilde{V}_1^s$ for each $s \in \mathcal{S}$. Moreover,

$$V_s^2((+))(V_1) = 0 \quad \text{and} \quad V_s^2((-))(V_1) = -\infty,$$

where $V_s^2(+)$ denotes the right and $V_s^2(-)$ the left derivative.

Proof. Assume $V_1^s < \tilde{V}_1^s$ (this is established later). Fix $V_1 = V_1^0 \in (V_1^s, \tilde{V}_1^s)$ and let the superscript “o” represent optimal values of other variables (these need not be unique). Since nothing depends on it, the notational dependence on the state s is dropped. Recall that by Lemma 5, output is positive. Hence there are three possibilities: (A) $c_1^0 = 0$ and $c_2^0 > 0$, (B) $c_1^0 > 0$ and $c_2^0 > 0$, or (C) $c_1^0 > 0 \text{ and } c_2^0 = 0$ (only possibility B is relevant under Assumption 5). First, consider case (B) and define $\Upsilon_1^0 := V_1^0 - d_2^0$ and $\Upsilon_2^0 := V_2^0 - d_1^0$ where $\Upsilon_1^0, \Upsilon_2^0 \geq 0$ in any DRC. Also $V_1^0 = V_2(V_1^0)$. Likewise, we have the recursive equations $u_1(c_1^0 - g_2(d_1^0)) + \delta \sum_{r \in \mathcal{S}} \pi_{sr} V_1^{r,o} = V_1^0$ and $u_2(z(d_1^0, d_2^0) + g_2(d_1^0) - c_1^0) + \delta \sum_{r \in \mathcal{S}} \pi_{sr} V_2^{r,o} = V_2^0$. Consider the following equations where the future values, but not (necessarily) the current values, are at their optimal levels:

$$V_1 - u_1(c_1 - g_2(d_1)) = \delta \sum_{r \in \mathcal{S}} \pi_{sr} V_1^{r,o},$$
$$V_2 - u_2(z(d_1, d_2) + g_2(d_1) - c_1) = \delta \sum_{r \in \mathcal{S}} \pi_{sr} V_2^{r,o},$$
$$V_1 - d_2 = \Upsilon_1^0,$$
$$V_2 - d_1 = \Upsilon_2^0.$$

Since the functions u_i, g_i and z are continuous and differentiable, the *implicit function theorem* asserts the existence of continuous and differentiable functions $\tilde{c}_1(V_1), \tilde{d}_1(V_1), \tilde{d}_2(V_1)$ and $\tilde{V}_2(V_1)$ in an open interval.
around \(V_1^{o} \) such that \(\tilde{c}_1(V_1^{o}) = c_1^{o} \) etc. and for each \(V_1 \) in the interval

\[
V_1 - u_1(\tilde{c}_1(V_1)) - g_2(\tilde{d}_1(V_1)) = \delta \sum_{r \in \mathcal{I}} \pi_{sr} V_1^{ro},
\]

\[
\tilde{V}_2(V_1) - u_2(z(\tilde{d}_1(V_1), \tilde{d}_2(V_1)) + g_2(\tilde{d}_1(V_1)) - \tilde{c}_1(V_1)) = \delta \sum_{r \in \mathcal{I}} \pi_{sr} V_2^{ro},
\]

\[
V_1 - \tilde{d}_2(V_1) = Y_1^{o},
\]

\[
\tilde{V}_2(V_1) - d_1(V_1) = Y_2^{o},
\]

provided the determinant of the Jacobian matrix, \(J \), of this system (all functions evaluated at the optimum \(V_1^{o} \)) satisfies:

\[
|J| = u_1'(1 - \frac{u_2' \partial z}{\partial a_1} g_2') \neq 0.
\]

Given that \(u_1' > 0 \), the condition is equivalent to the linear independence constraint qualification, which holds unless \(V_1 = \tilde{V}_1^{*} \).

We have \(\tilde{V}_2(V_1^{o}) = V_2(V_1^{o}) \) and \(\tilde{V}_2(V_1) \leq V_2(V_1) \) because \(V_2(V_1) \) is an optimal value function. Since \(V_2(V_1) \) is concave (Lemma 7, which does not depend on differentiability) and given \(\tilde{V}_2(V_1) \) is differentiable, and \(\tilde{V}_2(V_1^{o}) = V_2(V_1^{o}) \) with \(\tilde{V}_2(V_1) \leq V_2(V_1) \), Lemma 1 of Benveniste and Scheinkman (1979) can be applied, and therefore, it follows that \(V_2(V_1) \) is differentiable at \(V_1^{o} \).

Next, consider case (A): \(c_1^{o} = 0 \) and \(c_2^{o} > 0 \). We can proceed as before except that by Lemma 6, agent 2’s self-enforcing constraint is not binding. Thus, \(V_2 > d_1 \), and this constraint can be ignored. Instead, hold \(c_1 = 0 \) fixed. Therefore, consider small changes in the current contract (that is, varying \(a_1, a_2, V_1, V_2 \), which satisfy:

\[
V_1 - u_1(-g_2^{s}(d_1)) = \delta \sum_{r \in \mathcal{I}} \pi_{sr} V_1^{ro},
\]

\[
V_2 - u_2(z(d_1, d_2) + g_2(d_1)) = \delta \sum_{r \in \mathcal{I}} \pi_{sr} V_2^{ro},
\]

\[
V_1 - d_2 = Y_1^{o}.
\]

Here the implicit function theorem can be applied directly because the determinant of the Jacobian of the system is \(u_1' g_2^{s} > 0 \). Again applying Lemma 1 of Benveniste and Scheinkman (1979) shows that the function \(V_2(V_1) \) is differentiable at \(V_1 \). A similar argument applies to case (C). In particular, it can be shown that \(V_2^{-1}(V_2) \) is differentiable at \(V_2 = V_2(V_1) \). Since \(V_2^{-1}(\cdot) \) is strictly decreasing, \(V_2(\cdot) \) is differentiable at \(V_1 \). Since \(V_2(V_1) \) is differentiable and is a concave function on \([V_1^{i}, \tilde{V}_1^{*}] \), it follows as a corollary to Theorem 24.1 in Rockafellar (1997) that the function has a continuous derivative.
Next we confirm that $V_1^s < \tilde{V}_1^s$. Suppose to the contrary that the frontier consists of a single point. We establish a contradiction. For cases (A), (B) and (C) let $|J|$ denote the determinant of the Jacobian of the systems described above and let $|J'|$ be the corresponding determinant of the Jacobian with the agent indices swapped. If either $|J| \neq 0$ or $|J'| \neq 0$, then the existence of the differentiable subfunction $\tilde{V}_2(V_1)$ establishes that there are feasible points which offer one of the agents a higher utility, contradicting the hypothesis. Thus, it can only be that case (B) applies and that $|J| = |J'| = 0$. Rewriting the term in brackets in (S.8), this implies

\[(S.9)\quad (1 - u'_i((\partial z)/(\partial a_i))g'_j) = (u'_i/D'_j)((\partial \phi_j/\partial a_i) + 1 - (\partial y/\partial a_i)) = 0,\]

\[i \neq j, i, j = 1, 2.\] Since $(u'_i/D'_j) > 0$, this implies $(\partial y/\partial a_i) - 1 - (\partial \phi_j/\partial a_i) = 0.\) Consider a small increase in a_1 of Δ. Suppose that of the increase in output, agent 2 receives the increase in her default, approximately $\Delta \partial \phi_2/\partial a_1$, while the remainder is allocated to agent 1. Given equation (S.9), the remainder is approximately $\Delta \partial y/\partial a_1 - \Delta \partial \phi_2/\partial a_1 = \Delta$. Since Δ is agent 1’s extra effort cost, she suffers no more than a second-order loss, while agent 2 has a first-order gain in utility of approximately $u'_2 \Delta \partial \phi_2/\partial a_1$. When state s recurs, make a corresponding increase in a_2, and thereafter continue alternating between the two agents. Since $\delta > 0$, for Δ small enough, there is a first-order gain in discounted utilities for both agents, and the first-order increase in deviation utilities is always more than matched by an increase in the constructed contract utilities. Thus, an allocation which offers strictly more than the initial equilibrium can be supported as an equilibrium, again giving a contradiction.

We now show that

$$V_2^{(+)}(V_1) = 0 \quad \text{and} \quad V_2^{(-)}(V_1) = -\infty.$$ Suppose to the contrary of the assertion that $V_2^{(+)}(V_1) < 0$ (it cannot be positive by definition of it being a Pareto frontier). By a previous argument, for every $V_1 \in [V_1, \tilde{V}_1]$ at which the implicit function theorem can be applied, there is a continuously differentiable function $\tilde{V}_2(V_1)$ which describes utilities to agent 2 from DRCs which yield V_1 to agent 1. Moreover, the theorem together with the optimality of the function $V_2(V_1)$ imply that there is an open neighborhood of V_1 such that $V_2(V_1 + \epsilon) \geq \tilde{V}_2(V_1 + \epsilon)$ for all $\epsilon > 0$. At $V_1 = V_1$ this therefore implies $\tilde{V}_2'(V_1) \leq V_2^{(+)}(V_1) < 0$. The implicit function theorem (which applies if $\tilde{V}_2'(V_1)$ is finite) then implies that there is an $\epsilon > 0$ with $\tilde{V}_2'(V_1 - \epsilon) > \tilde{V}_2'(V_1) = V_2(V_1)$ corresponding to a DRC. Consequently, the Pareto frontier must extend below V_1, which is a contradiction. A similar argument applies at \tilde{V}_1. ■

Lemma 9: Under Assumptions 1-3 and under either Assumption 4 or Assumption 5, $d_i^s(V_1)$ is a continuous function of V_1 for each $s \in \mathcal{S}$ and $i = 1, 2$.
Proof. Again we suppress the notational dependence on the state s. To see the uniqueness of d as a function of V_1, suppose to the contrary that $(x, d, (V'_1)_{r \in \mathcal{R}})$ and $(\tilde{x}, \tilde{d}, (\tilde{V}'_1)_{r \in \mathcal{R}})$ are both optimal at V_1 with $d \neq \tilde{d}$. Consider the convex combinations $d^\lambda = \lambda d + (1-\lambda)\tilde{d}$ for some $\lambda \in (0, 1)$ and define \tilde{c} and cases I and II as in the proof of Lemma 7. In case I, agent 1 is strictly better off while agent 2 is no worse off; in case II, as $d \neq \tilde{d}$, agent 2 is strictly better off while agent 1 is no worse off. As shown in Lemma 7, this change is feasible, and delivers a payoff profile that is Pareto-superior to that at V_1, contrary to the optimality of the two original contracts. To establish continuity of $d_i(V_1)$, let $\{V^p_1\}_{p=1}^\infty$ be such that $V^p_1 \to V^*_1$. Since all variables belong to compact spaces, assume w.l.o.g. that the corresponding sequence of optimal choices $\{(x^p, d^p, (V'^p_1)_{r \in \mathcal{R}})\}_{p=1}^\infty$ is convergent to $(\tilde{x}, \tilde{d}, (\tilde{V}'_1)_{r \in \mathcal{R}})$, and let $(x^*, d^*, (V'^*_1)_{r \in \mathcal{R}})$ be the optimal choices at V^*_1. Assume that $\tilde{d} \neq d^*$; a contradiction will be established. By continuity of all the constraints, $(\tilde{c}, \tilde{d}, (\tilde{V}'_1)_{r \in \mathcal{R}})$ is feasible for V^*_1, and since $V^*_2(V_1)$ is continuous (from Lemma 7), this choice attains the maximum, contradicting the uniqueness of d as a function of V^*_1. ■

Lemma 10: Under Assumptions 1-3, and for $i, j = 1, 2$, $i \neq j$, for any history s', (i) if $V_i(s') > d_j(s')$, then $a_j(s') \geq a^*_j(a_i(s'), s_t)$; (ii) if $c_i(s') > 0$, then $a_i(s') \leq a^*_i(a_j(s'), s_t)$.

Proof. Again we drop the state notation for the proof. Parts (i) and (ii) follow directly from the first-order condition (4c). (i) If $V_i > d_j$, then $\mu_i = 0$ and therefore, from (4c), $\partial z^i(a)/\partial a_j \leq 0$. Thus, $a_j \geq a^*_j(a_i, s_t)$, that is, there is no underinvestment. (ii) Equally, if $c_i > 0$, then $\gamma = 0$ and therefore, from (4c), $\partial z^i(a)/\partial a_i \geq 0$. Thus, $a_i \leq a^*_i(a_j, s_t)$, that is, there is no overinvestment. ■

Proofs of Lemmas for Section 4

For this subsection we maintain Assumptions 1-4 but additionally assume that agents are risk-neutral with $u_i(x_i) = x_i$.

Lemma 11: For each $s \in \mathcal{S}$, the Pareto-frontier $V^*_2(\cdot)$ is strictly concave on $[V^*_1, V'^*_1]$ where $V'^*_1 := \inf\{V_1: V'^*_2(V_1) = -1\}$, and on (\tilde{V}^*_1, V'^*_1) where $\tilde{V}^*_1 := \sup\{V_1: V'^*_2(V_1) = -1\}$. If first-best actions are not sustainable in state s, i.e., for $s \in \mathcal{S}^c$, then $V^*_2(\cdot)$ is strictly concave on $[V^*_1, \tilde{V}^*_1]$.

Proof. It follows from Lemma 7 that the Pareto-frontier is strictly concave provided that for any two values V_1 and \tilde{V}_1, $V_1 \neq \tilde{V}_1$, such that the corresponding choices satisfy $d \neq \tilde{d}$. If $d(V_1) \neq d^*$, then one or other of the self-enforcing constraints is binding, therefore, taking a neighborhood about V_1 shows that d cannot be constant on this neighborhood, and hence, that the frontier is strictly concave (on the neighborhood). If, however, $d(V_1) = d^*$, then the actions are first-best, implying $\mu_i = \gamma = 0$. Thus, from the first-order condition (4b) with $u'_1 = 1$, it follows that $V^*_2(V_1) = -1$. By concavity, the set of values of V_1 where $V^*_2(V_1) = -1$ is an interval (possibly degenerate). Since $V^*_2(\hat{Y}_1) = 0$ and $V^*_2(\bar{Y}_1) = -\infty$, this interval is contained in the interior of $[V_1, \bar{Y}_1]$. ■
LEMMA 12: With probability one, there is a random time $\hat{t} < \infty$ such that $\zeta(t)$ converges monotonically to 0 with $\zeta(t) = 0$ for all $t \geq \hat{t} - 1$.

Proof. Recall the three subsets of $\Lambda^s = [V_1^*, \tilde{V}_1^*] \subset \mathbb{R}_{++}$: $A^s = \{V_1 \in \Lambda^s; c_1^s = 0\}$, $B^s = \{V_1 \in \Lambda^s; c_2^s > 0\}$ and $C^s = \{V_1 \in \Lambda^s; c_2^s = 0\}$ where (c_1^s, c_2^s) represents an optimal value for consumption at V_1. For notational convenience, we drop the state superscripts and define $\sigma(t+1) := \sigma^+(t)$. Recall that $\zeta(t) = \max\{\zeta_1(t), \zeta_2(t)\}$ and that from the first-order conditions $\zeta_1(t) = -\ln(\sigma(t+1))$ and $\zeta_2(t) = \ln(\sigma(t+1))$. First, if $\sigma(t) = 1$, then $\sigma(t+1) = 1$. Using (4b), this is immediate if $V_1 \in B$. It also follows that $\sigma(t+1) = 1$ for $V_1 \in A$ or $V_1 \in C$ because, for $V_1 \in A, 1 \geq \sigma^+ \geq \sigma$ and for $V_1 \in C, 1 \leq \sigma^+ \leq \sigma$. Next, suppose w.l.o.g. that $\sigma_0 < 1$. Since $\sigma \geq 1$ for $V_1 \in C$, it follows that $V_1 \in A$ or $V_1 \in B$. For $V_1 \in B, \sigma(1) = 1$, and for $V_1 \in A, 1 \geq \sigma^+ \geq \sigma$. Hence, $1 \geq \sigma(t+1) \geq \sigma(t)$. Thus, $\zeta(t)$ declines for all σ_0. It remains to establish that convergence to $\sigma(t) = 1$ occurs. Let t' be the random period when $c_1 > 0$ first occurs. We first show that $t' < \infty$ almost surely. Notice that by virtue of $a_{\text{opt}}(s) > 0$ for any state s, when $c_1 = 0$, agent 1’s utility is at most $-a_{\text{opt}}(s)$. Let $q_1 := \max_{s \in \mathcal{S}}\{-a_{\text{opt}}(s)\} < 0$. Since net utilities are bounded in equilibrium, denote by \tilde{u}_i the maximum utility to agent 1 in any state. Let τ be such that $\delta^*\tilde{u}_i/\delta < q_1$. Then, starting in any state s at any date t, it must be the case that $c_1 > 0$ on some some positive probability path within the next τ periods because otherwise future utility after $t + \tau$ cannot compensate the current negative utility. Letting π be the minimum probability of any such τ-period path (that is, the minimum probability of a positive probability path), we conclude that after history s', there is a probability of at least $\pi > 0$ that $c_1 > 0$ before $t + \tau$. Consequently, $\Pr[\exists t \text{ such that } c_1(t) > 0] = 1$. From the above argument, we have $\sigma(t) \leq 1$, but if $c_1(t) > 0$ at t, then $V_1 \in B$ or $V_1 \in C$. If $V_1 \in B$, then $\sigma(t+1) = 1$; if $V_1 \in C$, then $\sigma(t) \geq 1$, and hence, combining inequalities, $\sigma(t) = 1$. Hence, $\Pr[\exists t \text{ such that } \zeta(t) = 0] = 1$. □

LEMMA 13: For each $s \in \mathcal{S}$, the surplus function $z^*(V_1)$ is a continuous and single peaked function of V_1. That is, for any $V_1^{(1)} < V_1^{(2)} < V_1^{(3)}$, it is not possible that $z^*(V_1^{(1)}), z^*(V_1^{(3)}) > z^*(V_1^{(2)})$. Moreover, $z^*(V_1)$ is maximal when $\sigma_i(V_1) = 1$.

Proof. Continuity follows from Lemma 9. Suppose, to the contrary, that $z^*(V_1)$ is not single peaked and that there is $V_1^{(1)} < V_1^{(2)} < V_1^{(3)}$ such that $z^*(V_1^{(1)}) > z^*(V_1^{(2)})$ and $z^*(V_1^{(3)}) > z^*(V_1^{(2)})$. By concavity of the Pareto-frontier, there is some $\lambda \in (0, 1)$ such that the convex combination of contracts satisfies $V_1^{(1)} + (1 - \lambda)V_1^{(2)} \leq V_1^{(1)} + (1 - \lambda)V_1^{(2)}$. Let $d_i^{(k)}$ and $c_i^{(k)}$ denote the optimal choices at $V_1^{(k)}$ for $k = 1, 2, 3$. In addition, let $d_i^{(k)} = \lambda d_i^{(1)} + (1 - \lambda)d_i^{(3)}$. Lemma 7 shows that under Assumption 4 surplus is a concave function. Hence, $z^*(d_i^{(1)}, d_2^{(1)}) \geq \lambda z^*(d_i^{(1)}, d_2^{(1)}) + (1 - \lambda)z^*(d_i^{(3)}, d_2^{(3)}) \geq z^*(V_1^{(1)} + (1 - \lambda))$. Now consider the contract at $V_1^{(1)}$ and replace $d_i^{(2)}$ by $d_i^{(1)}$, and replace $c_i^{(2)}$ by $c_i^{(1)}$, such that $\tilde{e}_i - g_i^{(4)}(d_i^{(1)}) > c_i^{(1)} - g_i^{(4)}(d_i^{(2)})$ and $\tilde{e}_i + e_2^{(4)}(d_i^{(1)}) - g_1^{(2)}(d_i^{(1)}) = z^*(d_i^{(1)}, d_2^{(1)})$.
While making these changes to current utilities, keep continuation utilities unchanged. The new utilities satisfy
\[V_i > V_i^{(2)} \geq V_i^{(\lambda)} \geq d_i^{(\lambda)} \], where the first inequality follows from the construction of the new contract, the second inequality follows from the concavity of the frontier and the choice of \(\lambda \), and the third follows from the definitions of \(V_i^{(\lambda)} \) and \(d_i^{(\lambda)} \) and the constraints \(V_i^{(k)} \geq d_i^{(k)} \). This provides a contradiction, and hence, we conclude that \(z(V_1) \) is single peaked.

Consider \(\sigma_s(V_1) = 1 \). If \(V_1 \in A^s \) or \(V_1 \in C^s \), then it follows from the first-order conditions that actions and surplus are first-best. For \(V_1 \in B^s \), there are two possibilities: either \(\mu_1 = \mu_2 = 0 \), or \(\mu_1, \mu_2 > 0 \). In the former case, actions and surplus are first-best. In the latter case, note that the first-order conditions can be used to show \(\mu_1 = (\partial z'/\partial d_2)/(1 - (\partial z'/\partial d_1)) \) and \(\mu_2 = (\partial z'/\partial d_1)/(1 - (\partial z'/\partial d_1)) \). It has already been shown in Lemma 8 that \(1 - (\partial z'/\partial d_1) \neq 0 \) except possibly where \(V_1 = \bar{V}_1^1 \). Hence, from Lemma 9 and the continuity of the functions \(z' \) (and \(g_i^1 \)), the multipliers are continuous functions of \(V_1 \) and \(\mu_1, \mu_2 > 0 \) in an open neighborhood of \(V_1 \). Thus, in this neighborhood, \(d_2(V_1) = V_1 \) and \(d_1(V_1) = V_2^1(V_1) \). Since \(V_2(\cdot) \) is a differentiable function, \(d_i \) is a differentiable function of \(V_1 \) in this neighborhood, with derivatives \(dd_2/dV_1 = 1 \) and \(dd_1/dV_1 = -\sigma_s(V_1) \).

Hence,
\[
\frac{dz'(V_1)}{dV_1} = -\sigma_s(V_1) \frac{\partial z'(d_1, d_2)}{\partial d_1} + \frac{\partial z'(d_1, d_2)}{\partial d_2}.
\]

It can also be checked from the first-order conditions that the derivative \(dz'(V_1)/dV_1 \) is zero when \(\sigma_s(V_1) = 1 \). Moreover, it can be seen that \(z'(V_1) \) is concave in this neighborhood, and hence, the surplus is maximal. ■

Proofs of Lemmas for Section 5

For all proofs in this subsection, we maintain Assumptions 1-3 and 5. Additionally it is assumed that agents are risk averse, that is, \(u_i \) is strictly concave for \(i = 1, 2 \).

Lemma 14: For each \(s \in \mathcal{S} \), a solution to \([P1]\) has the property that \(z'(a_1, a_2) \) is maximised over \(a \in \mathbb{R}^2_+ \) subject to \(V_1 \geq D_1(a_2) \) and \(V_2^1(V_1) \geq D_2(a_1) \).

Proof. We work in terms of the variables \(d \) rather than directly in terms of the actions \(a \) and show that \(z'(d_1, d_2) \) is maximised subject to \(V_1 \geq d_2 \) and \(V_2^1(V_1) \geq d_1 \). Suppose otherwise, and replace \((d_1(V_1), d_2(V_1))\) by some \((d_1, d_2) \in \mathcal{D}(s)\) satisfying these constraints with \(z'(d_1, d_2) > z'(d_1(V_1), d_2(V_1)) \). In doing so, hold \(c_1 - g_2^1(d_1) \) and \((V_1^r)_{r \in \mathcal{S}}\) constant. With these changes, all constraints are satisfied, but the maximand is increased, leading to a contradiction. ■

Lemma 15: For each \(s \in \mathcal{S} \), the surplus function \(z'(V_1) \) is continuous, concave and differentiable in \(V_1 \).

Proof. Taking each property in turn.

Continuity: Continuity follows straightforwardly from the Theorem of the Maximum.
Concavity: Take any \(V_1 \) and \(V'_1 \) in \([V_1', \tilde{V}_1']\) and the convex combination \(V_1^\lambda = \lambda V_1 + (1-\lambda)V'_1 \), \(0 \leq \lambda \leq 1 \). Let \(d_1^\lambda := \lambda d_1(V_1) + (1-\lambda)d_1(V'_1) \). Since \(V_1 \geq d_1(V_1) \) and \(V'_1 \geq d_1(V'_1) \), it follows that \(V_1^\lambda \geq d_1^\lambda \). Similarly, \(V_2^\lambda(V_1^\lambda) \geq d_2^\lambda \), from the concavity of \(V_2^\lambda(V_1) \). Consequently, \((d_1^\lambda, d_2^\lambda)\) is feasible at \(V_1^\lambda \), and therefore, by Lemma 14 and the concavity of \(z'(d_1, d_2) \), \(z'(d_1(V_1^\lambda), d_2(V_1^\lambda)) \geq z'(d_1^\lambda, d_2^\lambda) \geq \lambda z'(d_1(V_1), d_2(V_1)) + (1-\lambda)z'(d_1(V'_1), d_2(V'_1)) \). Thus, the concavity of \(z'(V_1) \) is established.

Differentiability: To establish differentiability fix \(\hat{V}_1 \in (V_1', \hat{V}_1') \) with optimal choices \(d_1(\hat{V}_1) \) and \(d_2(\hat{V}_1) \), and consider a \(V_1 \) in a neighborhood of \(\hat{V}_1 \) (\(\subset [V_1', \tilde{V}_1'] \)). Consider \((\hat{d}_1(V_1), \hat{d}_2(V_1))\) satisfying \(\hat{d}_2(V_1) - d_2(\hat{V}_1) = V_1 - \hat{V}_1 \) and \(\hat{d}_1(V_1) - d_1(\hat{V}_1) = V_2^\lambda(\hat{V}_1) - V_2^\lambda(V_1) \). By construction, \((\hat{d}_1(V_1), \hat{d}_2(V_1))\) is feasible, and by the differentiability of \(V_2^\lambda(V_1) \) and \(z'(d_1, d_2) \), this traces out a differentiable function for \(V_1 \), \(z'(\hat{d}_1(V_1), \hat{d}_2(V_1)) \), in the neighborhood of \(\hat{V}_1 \), with \(z'(\hat{d}_1(\hat{V}_1), \hat{d}_2(\hat{V}_1)) = z'(\hat{V}_1) \). From Part A, \(z'(d_1(V_1), d_2(V_1)) \leq z'(V_1) \). Therefore, applying Lemma 1 of Benveniste and Scheinkman (1979) establishes differentiability.

Lemma 16: For each \(s \in \mathcal{S} \) (i) \(d_2^s(V_1)/dV_1 > 0 \) \((< 0) \) implies \(\mu_1^s(V_1) > 0 \) \((\mu_1^s(V_1) < 0) \); (ii) there are two critical values \(\chi_1^s \in (V_1', \tilde{V}_1') \) and \(\chi_2^s \in [V_1', \tilde{V}_1'] \), such that \(d_2^s(V_1) = V_1 \) for all \(V_1 \leq \chi_1^s \) and \(d_2^s(V_1) = V_2^s(V_1) \) for all \(V_1 \geq \chi_1^s \). Moreover, \(\mu_1^s(V_1) = 0 \) for \(\chi_1^s < V_1 \leq \chi_2^s \) and \(\mu_2^s(V_1) = 0 \) for \(\chi_1^s < V_1 < \chi_2^s \) (if such \(V_1 \) exist). If the efficient actions can be sustained in state \(s \), then \(\chi_1^s \leq \chi_2^s \). Otherwise, \(\chi_1^s > \chi_2^s \), and surplus is maximized for a unique value of \(V_1 \in (\chi_1^s, \chi_2^s) \) at which both constraints bind.

Proof. Since nothing depends on it, we drop the state superscript in what follows. Result (i) follows immediately from (6) (which follows from the first-order conditions) and the first-order condition (4a) (setting \(V'_1 = 0 \) for \(i = 1, 2 \)).

To prove result (ii), let the surplus function be at a maximum between \(V_1^* \) and \(\tilde{V}_1^* \) (with a unique maximum if \(V_1^* = \tilde{V}_1^* \)). There are two possibilities: case (a), \(V_1^* < \tilde{V}_1^* \), and case (b), \(V_1^* = \tilde{V}_1^* =: \hat{V}_1^* \). In case (a), it follows from (i) that \(\mu_1(V_1) > 0 \) for \(V_1 < V_1^* \), and hence, \(d_1(V_1) = V_2(V_1) \) for \(V_1 \leq V_1^* \), where the weak inequality follows by continuity of \(d_1(V_1) \) and \(V_2(V_1) \). Likewise, \(\mu_2(V_1) > 0 \) for \(V_1 > V_1^* \), and \(d_2(V_1) = V_1 \) for \(V_1 \geq V_1^* \).

Since \(z(d) \) is strictly concave, and \(z(V_1) \) is constant on \([V_1^*, \tilde{V}_1^*] \), it follows (see proof of Lemma 13) that actions are first-best and \(\mu_1(V_1) = \mu_2(V_1) = 0 \) on this interval. Next, consider some \(\hat{V}_1 < V_1^* \). We want to show that \(\mu_2(\hat{V}_1) = 0 \). Suppose to the contrary that \(\mu_2(\hat{V}_1) > 0 \). Then, setting \(\gamma = 0 \), \(i = 1, 2 \) in the first-order condition (4c) shows that \(\partial z(d_1(\hat{V}_1), d_2(\hat{V}_1))/\partial d_1 > 0 \) and \(d_1(\hat{V}_1) = V_2(\hat{V}_1) > V_2(V_1^*) \geq d_1(V_1^*) \), where the strict inequality follows because \(V_2(\cdot) \) decreasing. Since \(\mu_2(V_1^*) = 0 \) (by efficiency), it follows that \(\partial z(d_1(V_1^*), d_2(V_1^*))/\partial d_1 = 0 \). Since \(d_1(\hat{V}_1) > d_1(V_1^*) \), and because by assumption \(\partial^2 z/\partial d_1^2 < 0 \) and \(\partial^2 z/\partial d_1 \partial d_2 \geq 0 \), it follows that \(d_2(\hat{V}_1) > d_2(V_1^*) \). But \(\mu_2(V_1) > 0 \) for \(V_1 < V_1^* \) by the first part of the proof, so that \(d_2(\hat{V}_1) = \tilde{V}_1 < V_1^* = d_2(V_1^*) \) (where the last equality follows by continuity), yielding a contradiction. A similar argument shows that \(\mu_1(V_1) = 0 \) for \(V_1 \geq \tilde{V}_1^* \).

For case (b), define \(\hat{V}_1^{\mu_2} \in [V_1', \chi_1] \) to be the largest (supremum) value of \(V_1 \) with \(\mu_2(V_1) = 0 \) (recall \(\mu_2(V_1) > 0 \)
for $V_1 > \hat{V}_1$ by part (i)). First, suppose such a value exists. Noting that $\mu_1(V_1) > 0$ for $V_1 < \hat{V}_1$, for $\hat{V}_1 < V_1^{\mu_2}$, replace V_1^* by $\hat{V}_1^{\mu_2}$ in the argument given in case (a), to show that $\mu_2(\hat{V}_1) = 0$ for $\hat{V}_1 < V_1^{\mu_2}$. A symmetric argument can be used to show $\mu_1(\hat{V}_1) = 0$ for all $\hat{V}_1 > \hat{V}_1^{\mu_1}$, if there exists a $\hat{V}_1^{\mu_1} \in [\hat{V}_1, \tilde{V}_1]$ such that $\mu_1(\hat{V}_1^{\mu_1}) = 0$. Then $\mu_1(\hat{V}_1) = 0$ for all $\hat{V}_1 > \hat{V}_1^{\mu_1}$. Therefore, set $\hat{V}_1 = \hat{V}_1^{\mu_2}$ and $\tilde{V}_1 = \tilde{V}_1^{\mu_1}$. Note also, that if $\hat{V}_1 = \hat{V}_1^{\mu_1} (= \tilde{V}_1)$, then $\mu_1(\hat{V}_1) = \mu_2(\tilde{V}_1) = 0$, by continuity of the multipliers in V_1 (setting $\gamma = 0, i = 1, 2$ in equation (4c) and modifying the argument in Lemma 13), then actions are first-best at \hat{V}_1. Finally, if there is no $\hat{V}_1^{\mu_2} \in [V_1, \hat{V}_1]$ to be the largest (supremum) value of V_1 with $\mu_2(V_1) = 0$, then set $\hat{V}_1 = V_1$. In this case, $\mu_2(V_1) > 0$ and both actions are under-efficient at V_1. Likewise, if there is no $\hat{V}_1^{\mu_1}$ such that $\mu_1(\hat{V}_1^{\mu_1}) = 0$, then $\tilde{V}_1 = V_1$, $\mu_1(V_1) > 0$ and both actions are under-efficient at $V_1 = \hat{V}_1$. ■

Lemma 17: For each $V_1 \in [V_1^*, \hat{V}_1^*]$,

$$\sigma_i^+(V_1) - \sigma_i(V_1) = u_2 \left(-\sigma_i(V_1) \frac{\partial z_i'(d_1^*(V_1), d_2^*(V_1))}{\partial d_1} + \frac{\partial z_i'(d_1^*(V_1), d_2^*(V_1))}{\partial d_2} \right).$$

Proof. Setting $v_i^* = 0$ for $i = 1, 2$ in equation (4a), and also setting $\gamma = 0$ for $i = 1, 2$ in equation (4b), and substituting gives:

(S.10) $$\sigma_i^+(V_1) - \sigma_i(V_1) = u_2 \left(-\sigma_i(V_1) \frac{\partial z_i'(d_1^*(V_1), d_2^*(V_1))}{\partial d_1} + \frac{\partial z_i'(d_1^*(V_1), d_2^*(V_1))}{\partial d_2} \right).$$

The bracketed term on the right-hand-side of equation (S.10) is equal to $dz_i'(V_1)/dV_1$. To see this recall that $\partial z_i'/\partial d_i \geq 0$ and first note that if $\partial z_i'/\partial d_1 > 0$, then $\mu_2 > 0$ and (3c) holds as an equality. Therefore, $d_1^*(V_1) = V_2^2(V_1)$ and consequently $dd_1^*/dV_1 = V_2''(V_1) = -\sigma_i(V_1) < 0$. Hence, $-\sigma_i(V_1)(\partial z_i'/\partial d_1)$ equals $(\partial z_i'/\partial d_1)(dd_1^*/dV_1)$, with the same equality trivially holding if $\partial z_i'/\partial d_1 = 0$. Likewise, if $\partial z_i'/\partial d_2 > 0$, then (3b) holds an equality and $dd_2^*/dV_1 = 1$, and hence, $(\partial z_i'/\partial d_2) = (dd_2^*/dV_1)(\partial z_i'/\partial d_2)$ (again, also holding trivially if $\partial z_i'/\partial d_2 = 0$). From Lemma 15, the surplus function is differentiable and therefore, using the total derivative of $z_i'(d_1^*(V_1), d_2^*(V_1))$ with respect to V_1, it follows that bracketed term in equation (S.10) is equal to $dz_i'(V_1)/dV_1$. Hence, equation (S.10) can be written as

$$\sigma_i^+(V_1) - \sigma_i(V_1) = u_2 \frac{dz_i'(V_1)}{dV_1},$$

which is equation (6) in the text. ■

Proof of Proposition 1 in Section 5

Proposition 2: For each state $s \in \mathcal{S}$, (i) for all $mu \in \mathbb{R}_+, h(mu, s) \to h^{RS}(mu, s)$ as $\theta_{ij} \to 0$, i, j = 1, 2, $i \neq j$, all s. (ii) For $\delta > \hat{\delta}$ and any η satisfying $(1/2)(\hat{\rho}^{RS} - \rho_s^{RS}) > \eta > 0$, all s, there exists $\varepsilon > 0$ such that for $\theta_{ij} < \varepsilon$, i, j = 1, 2, $i \neq j$, all s, $h(mu, s) = mu$ for all $mu \in [\rho_s^{RS} + \eta, \rho_s^{RS} - \eta]$.

We call this the ξ where the first inequality follows from a (dropping the dependence on s)
θ made explicit) and
F
To nest the hold-up and risk-sharing models consider the following problem:

\[\max_{(a(s'), \geq 0, x(s')) \geq 0} \mathbb{E} \left[\sum_{t=0}^{\infty} \delta^t u_2(x_2(s')) \right | s_0 \] subject to \[\mathbb{E} \left[\sum_{t=0}^{\infty} \delta^t u_1(x_1(s')) \right | s_0 \] \geq V(s_0) \quad \text{(S.11a)}
\[u_i(x_i(s')) + \mathbb{E} \left[\sum_{t=t}^{\infty} \delta^t u_i(x_i(s')) \right | s' \] \geq F_i^s(a_j(s'), \theta, \xi) \quad i = 1, 2 \quad \text{and } \forall s' \quad \text{(S.11b)}
\[x_1(s') + x_2(s') \leq \xi(a(s')) \quad \forall s'. \quad \text{(S.11c)} \]

For \(F_i^s(a_j, \theta, \xi) = D_i^s(a_j; \theta) \) (where the dependence of the deviation utility on the default parameters has been made explicit) and \(\hat{\xi}(a) = \xi(a) := f_1^s(a_1) + f_2^s(a_2) - a_1 - a_2 \), the solution to this problem is the solution to our hold-up problem (henceforth, the HU problem). Define \(Y_i^s := f_1^s(a_1^s(s)) - a_1^s(s), \hat{\xi}(a) = Y_1^s + Y_2^s \) and for \(\xi \geq 0 \),
\[F_i^s(a_j, \theta, \xi) = u_i(Y_i^s) + \mathbb{E} \left[\sum_{t=1}^{\infty} \delta^t u_i(Y_i^{s_t}) \right | s_0 = s \] + \xi.

We call this the \(\xi \)-RS problem (it is independent of \(a \)). When \(\xi = 0 \), this is the standard risk-sharing problem. Define \(\theta \equiv (\theta^s_{i,j}), i,j = 1,2, s \in \mathcal{S} \) with \(\theta^s_{1,j} = 1 \) and for \(i \neq j \), \(\theta^s_{i,j} = 0 \), \(i = 1, 2 \), all \(s \in \mathcal{S} \), and denote this by \(\theta^0 \). There exists \(\hat{\xi}(\theta) > 0 \), \(\hat{\xi}(\theta) \to 0 \) as \(\theta \to \theta^0 \), such that for all \(\theta (\theta^s_{i,j} \geq 0, i,j = 1,2, \text{and } \sum_{i=1}^{2} \theta^s_{i,j} \leq 1, j = 1,2) \), all \(0 \leq a_2 \leq a_2^s(s) \), all \(s \in \mathcal{S} \),
\[D_i^s(a_2; \theta) := \max_{a_1} u_1 (\theta^s_{12} f_2(a_2) + \theta^s_{11} f_1^s(a_1) - a_1) + \] \[\mathbb{E} \left[\sum_{t=t}^{\infty} \delta^t u_1 (\theta^s_{12} f_2^s(a_2^s(s)) + \max_{a_1} (\theta^s_{11} f_1^s(a_1) - a_1)) \right | s_t = s \] \[\leq \mathbb{E} \left[\sum_{t=t}^{\infty} \delta^t u_1 (Y_1^s + \theta^s_{12} f_2^s(a_2^s)) \right | s \] \[\leq \mathbb{E} \left[\sum_{t=t}^{\infty} \delta^t u_1 (Y_1^s) \right | s \] + \(\hat{\xi}(\theta) \),

where the first inequality follows from \(a_2^s(s) \leq a_2^s(s) \) and the fact that if agent 1 deviates, then he gets at most \(\theta^s_{12} f_2^s(a_2^s(s)) \) more consumption today than his autarkic income \(Y_1^s \), given that \(\max_{a_1} (\theta^s_{11} f_1^s(a_1) - a_1) \leq Y_1^s \) and \(\theta^s_{12} f_2^s(a_2) \leq \theta^s_{12} f_2^s(a_2) \); likewise in the future given that \(\theta^s_{12} f_2^s(a_2^s) \leq \theta^s_{12} f_2^s(a_2^s) \). (That is, for any \(\theta \) near enough to \(\theta^0 \), we can find a \(\xi \) also small such that adding it to autarkic utility in the risk-sharing problem gives a deviation utility bigger than the deviation utility in the hold-up problem.) Likewise for agent 2. Define \(\left[V_1^{RS}, \hat{V}_1^{RS} \right] \) to be the projection of the Pareto frontier onto agent 1’s utilities in the RS case in some state \(s \) (dropping the dependence on \(s \) for notational simplicity, and where possible in what follows). By Ligon
et al. (2002), $u'_2(x^{RS}_2(Y^{RS}_2))/u'_1(x^{RS}_1(Y^{RS}_1)) = \bar{p}^{RS}$, $u'_2(x^{RS}_2(\bar{V}^{RS}_1))/u'_1(x^{RS}_1(\bar{V}^{RS}_1)) = \bar{p}^{RS}$. By the assumption that $\delta > \delta, V^{RS}_1 < V^{RS}_2$, and there exists a continuous function $\xi(V_1): (V^{RS}_1, \bar{V}^{RS}_1) \rightarrow \mathbb{R}_{++,}$ such that for $\xi \leq \xi(V_1)$, the solution to the ξ-RS problem exists at $V_1 \in (\bar{V}^{RS}_1, \bar{V}^{RS}_1)$ (adapting the arguments in Thomas and Worrall 1988).

A. Fix $V_1 \in (\bar{V}^{RS}_1, \bar{V}^{RS}_1)$. Then, for θ close enough to θ^0 such that $\xi(\theta) \leq \xi(V_1)$, $\{x(s') = w(s'), a(s')\}_{t \geq 0}$ is feasible in the HU problem, where $\{w(t)\}_{t \geq 0}$ solves the $\xi(\theta)$-RS problem at V_1 and $a(t) = a^*(s_t)$, which implies (see (S.11b)) at all s'

$$u_1(w_1(s')) + \mathbb{E} \left[\sum_{t \geq t+1} \delta^{t-i} u_1(w_1(s^*)) \mid s^* \right] \geq \mathbb{E} \left[\sum_{t \geq t} \delta^{t-i} u_1(Y^{s_t}) \mid s_t \right] + \tilde{\xi}(\theta)$$

$$\geq D^y_1(a_2(s_t); \theta),$$

where the second inequality follows from (S.12); and also (S.11c) holds trivially. Likewise for agent 2. Thus, the constraints in the HU problem are satisfied. Denote by $C(\theta)$ a solution to the HU problem at V_1 (when it exists) and by $\tilde{V}_2(C(\theta))$ the corresponding payoff to agent 2, and likewise by $R(\tilde{\xi})$ and $\tilde{V}_2(R(\tilde{\xi}))$ the corresponding contract and values in the $\tilde{\xi}$-RS problem, with $R(0)$ the optimal risk-sharing contract at V_1. We have just shown that for θ close enough to θ^0:

(S.13) $$\tilde{V}_2(C(\theta)) \geq \tilde{V}_2 \left(R \left(\tilde{\xi}(\theta) \right) \right).$$

Let $\theta \rightarrow \theta^0$. We assert that $\lim C(\theta) = \lim R(\tilde{\xi}(\theta)) = R(0)$. Suppose otherwise, then we can find a subsequence (recall from Lemma 4 that the space of contracts is compact in the usual product topology, and payoffs are continuous in this topology) for which $\lim C(\theta)$ exists and $\lim C(\theta) \neq R(0)$. For this subsequence, then, $\tilde{V}_2(\lim C(\theta)) = \lim \tilde{V}_2(C(\theta)) \geq \lim \tilde{V}_2(R(\tilde{\xi}(\theta))) = \tilde{V}_2(\lim R(0))$ (from (S.13)), but since $\lim C(\theta)$ satisfies the RS constraints ($\xi(a^s)$ is maximal in the RS problem, so (S.11c) must hold) and offers agent 2 a payoff at least that in the RS problem, this contradicts the uniqueness of the RS solution. Moreover, for all θ such that $\tilde{\xi}(\theta) < \tilde{\xi}(V_1)$, neither self-enforcing constraint binds and $a(0) = a^*$. To see this, recall that for $\xi \leq \xi(V_1)$, the solution to the ξ-RS problem exists at V_1, so that $V_1 \geq \mathbb{E}[\sum_{t \geq 0} \delta^t u_1(Y^{s_t}_1) \mid s_0 = s] + \tilde{\xi}(V_1) > \mathbb{E}[\sum_{t \geq 0} \delta^t u_1(Y^{s_t}_1) \mid s_0 = s] + \tilde{\xi}(\theta) \geq D^y_1(a_2; \theta)$ (the latter follows from (S.12)). Hence, agent 1’s self-enforcing constraint does not bind, and this also holds for agent 2 because $\tilde{V}_2(C(\theta)) \geq \tilde{V}_2(R(\tilde{\xi}(\theta))) > \mathbb{E}[\sum_{t \geq 0} \delta^t u_2(Y^{s_t}_2) \mid s_0 = s] + \tilde{\xi}(\theta) \geq D^y_2(a_1; \theta)$. Since neither self-enforcing constraint binds, $a(0) = a^*$. Consequently, with $\mu_1 = \mu_2 = 0$, from (??) $\sigma_\tau = \sigma_\tau$ for all such θ, while, (from $\lim C(\theta) = R(0)$, $\sigma_\tau = \sigma_\tau$ and (??), $\sigma_\tau(V_1) \rightarrow u'_2(x^{RS}_2(V_1))/u'_1(x^{RS}_1(V_1))$ because $\theta \rightarrow \theta^0$, where x^{RS}_i is agent i’s allocation at V_1 in the optimal risk-sharing contract. So far V_1 has been held fixed, but we extend the above arguments for a range of values for V_1. For $\epsilon > 0$ small enough that $V^{RS}_1 + \epsilon < \bar{V}^{RS}_1 - \epsilon$, consider $[V^{RS}_1 + \epsilon, \bar{V}^{RS}_1 - \epsilon]$. Since $\tilde{\xi}(V_1) > 0$ and continuous
on $[V_{1}^{RS} + \varepsilon, \bar{V}_{1}^{RS} - \varepsilon]$, we can define $\tilde{\xi}(\varepsilon) := \min_{V_{1} \in [V_{1}^{RS} + \varepsilon, \bar{V}_{1}^{RS} - \varepsilon]} \xi(V_{1})$, where $\tilde{\xi}(\varepsilon) > 0$. Thus, for θ such that $\tilde{\xi}(\theta) < \tilde{\xi}(\varepsilon)$, current actions are efficient (see above) for all $V_{1} \in [V_{1}^{RS} + \varepsilon, \bar{V}_{1}^{RS} - \varepsilon]$, so that $\sigma^{I} = \sigma^{s}$ on this interval. Moreover, at $V_{1}^{RS} + \varepsilon$, $\sigma_{I}(V_{1} + \varepsilon) \rightarrow u'_{2}(x_{2}^{RS}(V_{1}^{RS} + \varepsilon))/u'_{1}(x_{1}^{RS}(V_{1}^{RS} + \varepsilon))$, and at $\bar{V}_{1}^{RS} - \varepsilon$, $\sigma_{I}(\bar{V}_{1}^{RS} - \varepsilon) \rightarrow u'_{2}(x_{2}^{RS}(\bar{V}_{1}^{RS} - \varepsilon))/u'_{1}(x_{1}^{RS}(\bar{V}_{1}^{RS} - \varepsilon))$. Also, for $V_{1} \in [V_{1}^{RS} + \varepsilon, \bar{V}_{1}^{RS} - \varepsilon]$, $\sigma_{I}(V_{1}^{RS} + \varepsilon) \leq \sigma_{I}(V_{1}) \leq \sigma_{I}(\bar{V}_{1}^{RS} - \varepsilon)$ by the concavity of the value function. It follows that for any $\eta > 0$ and for all θ close enough to θ^{0}, $\sigma_{I} = \sigma_{I}$ for any $\sigma_{I} \in [u'_{2}(x_{2}^{RS}(V_{1}^{RS} + \varepsilon))/u'_{1}(x_{1}^{RS}(V_{1}^{RS} + \varepsilon)) + \eta, u'_{2}(x_{2}^{RS}(\bar{V}_{1}^{RS} - \varepsilon))/u'_{1}(x_{1}^{RS}(\bar{V}_{1}^{RS} - \varepsilon)) - \eta]$. Since ε and η can be made arbitrarily small, and $u'_{2}(x_{2}^{RS}(V_{1}^{RS}))/u'_{1}(x_{1}^{RS}(V_{1}^{RS})) = \hat{\rho}_{s}^{RS}, u'_{2}(x_{2}^{RS}(\bar{V}_{1}^{RS}))/u'_{1}(x_{1}^{RS}(\bar{V}_{1}^{RS})) = \hat{\rho}_{s}^{RS}$, the claim in part (ii) of the proposition follows.

B. Maintain the assumption that $\delta > \delta$. Define $V_{1}(\theta)$ to be the minimum efficient value for V_{1} in state s in the HU problem (i.e., where $V_{2}(\theta) = 0$). Recall that agent 1’s self-enforcing constraint binds at this point, $D_{1}(a_{2}; \theta) = V_{1}(\theta)$ (see Lemma 16). Since $\theta \rightarrow \theta^{0}, V_{1}(\theta) = D_{1}(a_{2}; \theta) \rightarrow E[\varepsilon_{s}^{\tau}u_{1}(Y_{s}^{\tau}) \mid s_{0}] = V_{1}$, and consider the sequence of optimal contracts at $V_{1}(\theta)$, denoted by $C(\theta)$, as $\theta \rightarrow \theta^{0}$. From the foregoing, $\lim V_{1}(\theta)$ as before, taking a convergent subsequence if necessary) yields agent 1 a payoff of V_{1}. Let R denote the optimal risk-sharing contract at V_{1}. We assert that $\lim C(\theta) = R$. If $V_{2}(\lim C(\theta)) > V_{2}(R)$, then since $\lim C(\theta)$ satisfies the risk-sharing constraints at V_{1} ((S.11c) holds because $z'(a')$ is maximal in the RS case), this contradicts the optimality of R. If $V_{2}(\lim C(\theta)) < V_{2}(R)$, this implies that we can fix $V_{1} > V_{1}$ close enough to V_{1} such that the RS payoff, say, $V_{2}^{RS}(V_{1}) > V_{2}(\lim C(\theta)) + \eta$, for some $\eta > 0$, and from part A, $V_{2}(V_{1}; \theta)$ (where we make the dependence of V_{2} on θ in the HU problem explicit) is defined for θ close enough to θ^{0} and converges to $V_{2}^{RS}(V_{1})$ as $\theta \rightarrow \theta^{0}$. Thus, for θ close enough to θ^{0}, $V_{2}(V_{1}; \theta) - V_{2}^{RS}(V_{1}) < \eta/2$. Since for θ close enough to θ^{0} that $V_{1} > V_{1}(\theta)$, $V_{2}(\bar{C}(\theta)) = V_{2}(\bar{V}_{1}(\theta); \theta) > V_{2}(V_{1}; \theta)$ by $V_{2}(\cdot; \theta)$ decreasing, then for all θ close enough to θ^{0} we have $V_{2}(\bar{C}(\theta)) > V_{2}(V_{1}; \theta) > V_{2}(\lim C(\theta)) + \eta/2 = \lim V_{2}(\bar{C}(\theta)) + \eta/2$, a contradiction. Thus, $V_{2}(\lim C(\theta)) = V_{2}(R)$, and so $\lim C(\theta) = R$, otherwise, there would be two optimal RS contracts at V_{1}, which is impossible. Next, at $V_{1}(\theta), \sigma_{I} = 0$, and $\lim C(\theta) = R$ implies that $\sigma_{I} \rightarrow u'_{2}(x_{2}^{RS}(V_{1}))/u'_{1}(x_{1}^{RS}(V_{1}))$. A symmetric argument applies at $V_{1}(\theta)$ defined as the maximum value for V_{1} in state s. Given the updating equation is continuous and nondecreasing, and from part A, the claim of part (i) of the proposition then follows (for $\delta > \delta$).

C. Finally, assume $\delta \leq \delta$: So $V_{1}^{RS} = V_{1}^{RS} =: V_{1}^{AUT}$ say, and there is a unique feasible contract in the RS case, autarky, which we denote R^{AUT}. As in part B, consider the sequence of optimal contracts at $V_{1}(\theta)$, denoted by $C(\theta)$, as $\theta \rightarrow \theta^{0}$. $V_{1}(\theta) = D_{1}(a_{2}; \theta) \rightarrow E[\varepsilon_{s}^{\tau}u_{1}(Y_{s}^{\tau}) \mid s_{0}] = V_{1}^{AUT}$, and likewise $V_{2}(\bar{C}(\theta)) > D_{2}(a_{1}; \theta) \rightarrow E[\varepsilon_{s}^{\tau}u_{2}(Y_{s}^{\tau}) \mid s_{0}] = V_{2}(R^{AUT})$. Hence, $\lim C(\theta)$ (as before, taking a convergent subsequence if necessary) yields agent 1 a payoff of V_{1}^{AUT} and agent 2 a payoff of at least $V_{2}(R^{AUT})$. If $V_{2}(\lim C(\theta)) > V_{2}(R^{AUT})$, then since $\lim C(\theta)$ satisfies the risk-sharing constraints at V_{1}^{AUT} ((S.11c) holds because $z'(a(\tau))$
is maximal in the RS case), this contradicts the optimality of R^{AUT}. Hence, $\tilde{V}_2(\lim \tilde{C}(\theta)) = \tilde{V}_2(R^{AUT})$ and so $\lim \tilde{C}(\theta) = R^{AUT}$ by the uniqueness of the optimal RS contract. Since a symmetric argument applies at $\tilde{V}_1(\theta)$, both at $\sigma_s = 0$ and $\sigma_s = \infty$, $\sigma_r \to u'_2(x_2^{RS}(V_1^{AUT}))/u'_1(x_1^{RS}(V_1^{AUT})) = \rho_{rs}^{RS} = \tilde{\rho}_{rs}^{RS}$, so part (i) of the proposition follows. ■