Patient-Specific Modelling of Abdominal Aortic Aneurysms: The Influence of Wall Thickness on Predicted Clinical Outcomes

Citation for published version:

Digital Object Identifier (DOI):
10.1016/j.medengphy.2016.03.003

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Medical Engineering and Physics

Publisher Rights Statement:
Author's final peer-reviewed manuscript as accepted for publication

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Patient-Specific Modelling of Abdominal Aortic Aneurysms: The Influence of Wall Thickness on Predicted Clinical Outcomes.

Running title: Influence of AAA wall thickness.

1 British Heart Foundation/University of Edinburgh Centre for Cardiovascular Science, Edinburgh, UK

2 Clinical Research Imaging Centre, The University of Edinburgh, Edinburgh, UK

Correspondence:
Dr. Noel Conlisk
Room E3.24,
The Queen’s Medical Research Institute,
47 Little France Crescent,
The University of Edinburgh,
EH16 4TJ, Edinburgh, UK
Phone: (+44) 7775 332506
Email: noel.conlisk@ed.ac.uk
Rupture of abdominal aortic aneurysms (AAAs) is linked to aneurysm morphology. This study investigates the influence of patient-specific (PS) AAA wall thickness on predicted clinical outcomes. Eight patients under surveillance for AAAs were selected from the MA³RS clinical trial based on the complete absence of intraluminal thrombus. Two finite element (FE) models per patient were constructed; the first incorporated variable wall thickness from CT (PS_wall), and the second employed a 1.9mm uniform wall (Uni_wall). Mean PS wall thickness across all patients was 1.77 ± 0.42mm. Peak wall stress (PWS) for PS_wall and Uni_wall models was 0.6761 ± 0.3406N/mm² and 0.4905 ± 0.0850N/mm² respectively. In 4 out of 8 patients the Uni_wall underestimated stress by as much as 55%; in the remaining cases it overestimated stress by up to 40%. Rupture risk more than doubled in 3 out of 8 patients when PS_wall was considered. Wall thickness influenced the location and magnitude of PWS as well as its correlation with curvature. Furthermore, the volume of the AAA under elevated stress increased significantly in AAAs with higher rupture risk indices. This highlights the sensitivity of standard rupture risk markers to the specific wall thickness strategy employed.

KEYWORDS: Abdominal aortic aneurysms; finite element analysis; patient-specific modelling; patient-specific wall thickness; rupture risk
Abdominal aortic aneurysms (AAAs) are typically characterised by a large dilation of the aorta below the renal arteries. Each year over 10,000 deaths in the UK are attributed to rupture of AAAs [1]. Rupture occurs when the stress at any point in the wall exceeds its strength. Surgical repair is typically considered for asymptomatic aneurysms, when the maximum diameter passes 55mm, or the growth rate exceeds 10mm/year [2]. However, intervention also carries a risk (approximately 2.5%) of mortality [1]. Furthermore, ruptured aneurysms with maximum diameters below the 55mm threshold account for 10 - 24% of all cases [3-5], conversely 60% of AAAs above 55mm never rupture [6]. This indicates that maximum diameter criterion alone is not able to discern all cases which require intervention. Several techniques have been suggested to complement the maximum diameter criterion; AAA wall stress predicted using computational models [7-13], AAA growth rate [14, 15], rupture risk indices [16-18], integrity of thrombus [19], geometrical factors (e.g. growth, asymmetry) [20-23].

A number of computational studies [24], have suggested that peak wall stress (PWS) derived from finite element (FE) models has the ability to assess rupture risk more accurately than existing clinical indices. However, the accuracy of such predictions relies on realistic physical representation of the system they are modelling [25]. Ideally a number of physical factors must be known for the individual patient including a clear definition of the aneurysm geometry, its material properties, the manner in which it interacts with other bodily structures, and the internal/external forces acting on the aneurysm. Early computational models often employed straight tubes with symmetrical central dilations or asymmetric bulges to act as aneurysm analogues [21, 22]. Due to the proliferation of high powered desktop computing and advances in three-dimensional imaging techniques, it is now possible to generate highly
accurate virtual reconstructions of patient-specific (PS) aneurysms from medical imaging data acquired using modalities such as computed tomography (CT) and magnetic resonance imaging (MRI). However, one particularly challenging aspect of the reconstruction process for AAAs is accurate determination of the vessel wall. At present, it is currently not possible to determine the wall-thrombus interface explicitly from CT with existing scanners, though recent developments in multimodal imaging may overcome this issue in the future [27], as a consequence virtually all early computational studies of AAAs have assumed a uniform wall thickness of 1.9mm e.g. [28]. However, from previous studies [29-31] it is known that aortic wall thickness varies considerably from region to region within the same patient, and across different patients. Therefore, the assumption of a uniform wall may not be adequate when attempting to characterise the response of the aneurysm. As such, this is regarded as a serious limitation of current patient-specific modelling studies [32], yet only a handful of studies have attempted to address its effects [7, 9-11, 13, 21, 28, 33-38].

This study aims to assess the importance of patient-specific wall thickness, derived directly from high resolution CT scans, in a small population of aneurysms which lacked thrombus, while also testing the validity of the widely applied uniform wall assumption and its impact on predicted clinical outcomes.
2. METHODS

2.1 Patient selection and imaging

Computed tomography (CT) scans of 350 individual patients undergoing AAA surveillance, were selected from the MA³RS clinical trial database [39] for reconstruction. Patients underwent both magnetic resonance imaging (MRI) and CT scanning as part of the trial. In each instance CT scanning of the aorta was performed from just below the thoracic arch to below the iliac bifurcation (Aquilion One, Toshiba Medical Systems Ltd, UK). The slice thickness was 0.5mm, with a pixel size of 0.625mm.

The majority of AAAs (75%) tend to have thrombus [10], this can cause great difficulty during the reconstruction phase due to the poor contrast between thrombus and adjacent wall structures, as can be seen in the last panel of Fig. 1a. Therefore, to allow reconstruction of wall thickness direct from the CT scan the selection criteria for the current study was based on the total absence of intraluminal thrombus, in such instances only the lumen and wall are visible directly on the CT scan (Fig. 1b), meaning patient-specific wall geometry can be easily extracted using basic segmentation tools.

In this study, the absence of thrombus was verified by a qualified cardiovascular surgeon on MRI scans of each patient. After exclusion only 10 patients remained, of these 10 only 8 patients had a corresponding CT available for reconstruction (7 male and 1 female). All AAAs were infrarenal, with the main sac approximately located between the L4 and L2 vertebrae. The mean patient age was 76 years (64 – 83 years) and the mean maximum diameter from ultrasound was 46mm (36 – 59mm), individual patient details for all 8 patients investigated are presented in Table 1.
Segmentation and reconstruction of each patient-specific AAA was carried out with commercial software (Mimics innovation suite, Materialise, Belgium) and followed the general workflow presented in Fig. 2. The luminal region was segmented automatically using a thresholding approach, and the outer wall was segmented in a semi-automatic manner using a 3D live wires approach with manual correction of the wall contours on certain slices where the outer boundary was ambiguous (e.g. close to the duodenum). Given that there was physically no thrombus in these selected patient, a true patient-specific wall thickness (PS\textsubscript{wall}) was then obtained as the difference between the contrast enhanced lumen and the outer wall, without any need for incorporation of complex “black box” wall thickness estimation algorithms. For comparison a uniform wall thickness version (Uni_wall) of each AAA was also reconstructed, this approach involved merely offsetting the luminal surface outward in the radial direction by a fixed distance, 1.9mm [28], thereby creating an aneurysm with a constant uniform wall thickness.

In all cases, for both wall types (PS_wall and Uni_wall), volume preserving smoothing was performed to remove scanning artefacts and tetrahedral volume meshing operations were performed in 3-matic (Materialise). It is important to note that, for each patient both model variations (PS_wall and Uni_wall) retained identical luminal surfaces, furthermore, both were identically clipped to allow comparison of the exact same regions of interest. Final FE meshes were exported to Abaqus (Abaqus 6.10-1, Dassault Systemes, Simulia, Providence, RI, USA) for analysis.
In the present study the aortic wall was modelled as non-linear, hyperelastic, and incompressible, with the same properties used to represent the behaviour of both uniform and patient-specific walls. Determination of patient-specific aortic wall mechanical properties is essential in accurately assessing the rupture risk of any AAA; however, at present this is not possible by non-invasive means. Through the experimental data of 69 AAA specimens, Raghavan and Vorp [28] characterised the diseased aortic wall by means of a 2nd order reduced polynomial strain energy density function $W = \alpha (IB - 3) + \beta (IB - 3)^2$, where W is the strain energy density function, α and β are material parameters for the wall, and IB is the first invariant of the left Cauchy-Green deformation tensor (B). This relationship has since become the de facto method for representing the material behaviour of aneurysm tissue [7-13] in the absence of patient-specific mechanical properties. The coefficients of the strain energy density function (α and β), selected for the present study, were based on the population mean values ($\alpha = 0.171 \text{N/mm}^2$, and $\beta = 1.881 \text{N/mm}^2$) proposed previously [28].

To remove any variability due to loading, and to allow for comparison across patient cases, a peak systolic blood pressure of 120 mm Hg (0.016 N/mm2) was applied as an outward facing uniformly distributed pressure load acting on the luminal surface of the aneurysm, as in many previous studies [9, 16, 22]. The effect of wall shear stress due to blood flow was not considered due to its negligible magnitude [40].

Residual stresses in the aortic wall, and the interaction of the aorta with the surrounding structures of the body (e.g. organs and spine), were also not considered, however, displacements at the distal and proximal most regions of each aneurysm were restrained, in all
degrees of freedom, to model attachment of the AAA to the rest of the aorta. Each AAA volume mesh typically consisted of $>160,000$ (C3D10H) elements. Based on convergence studies the maximum allowable element edge length was set to 1.5mm. All simulations were computed on a Dell Precision T7600 work station with 16 cores and 64GB of ram, with typical simulation runtimes of <2hrs (depending on simulation size). The resulting contour plots of von Mises stress and the location of PWS were output for all analyses.

2.5 Geometrical analysis

Triangular surface meshes representing the inner and outer aortic walls were extracted from the volumetric mesh, together with values of wall stress defined at each node. The Vascular Modelling Toolkit (VMTK) was then used to compute additional variables:

1. Aneurysm size, defined as the maximum diameter orthogonal to the centreline.
2. Wall thickness, defined as the local distance between the inner and outer wall.
3. Curvature, defined as the local Gaussian curvature of the outer wall.
4. Wall strength, estimated with the empirically determined relationship in [43]
5. Rupture potential index (RPI), defined as the local wall stress divided by the local wall strength.

2.6 Rupture risk calculation

Failure occurs when the stress in a system exceeds its strength, at any given point. To calculate the risk of failure requires knowledge of the stresses in the system and the precise strength of the material it is constructed from. In this study, wall strength for each individual AAA was estimated using an empirically determined relationship [43], risk of rupture was
then assessed using the Rupture Potential Index (RPI) \cite{17} which is defined as the local wall stress divided by the local wall strength. The returned index then indicates the potential likelihood of rupture occurring, where values close to 0 indicate a relatively low risk and values approaching 1 indicate a very high risk of rupture.

3. RESULTS

Maximum diameter as measured orthogonal to the centreline of each reconstructed AAA was recorded and compared to the clinically accepted ultrasound (US) derived maximum diameter (Table 2). The mean difference in measurements between these two modalities was 6.4mm. In all but one case (patient 5) maximum diameter predictions based on CT reconstructions were considerably higher than US predictions.

The mean wall thickness, in the region of interest (the aneurysm sac), across all PS_wall models was 1.77mm ± 0.42mm. For visualisation purposes, the local variations in wall thickness over the entire aneurysm for each AAA considered (for both Uni_wall and PS_wall models) can be seen in Fig. 3, where blue regions indicate a thickness in the range of 0 - 2mm, grey regions indicate a value close to 2mm, and red regions indicate a value in the range of 2 - 4mm. From the Figure it can be seen that, there is no variation in the Uni_wall thickness models (1.9mm) indicated by the constant grey colour over the entire surface. In comparison, each of the PS_wall cases exhibited a large amount of variation in thickness (e.g. Patient 7) with alternating regions of thick and thin wall (as indicated by blue and red contours respectively). Table 3 presents more quantitative information on the range of wall thickness values recorded at the aneurysm sac for each AAA.

The peak wall stress (PWS) for Uni_wall models was 0.4905N/mm2 (0.3495 – 0.5676 N/mm2), for PS_wall models mean PWS was 0.6761N/mm2 (0.2502 – 1.1305N/mm2). From
the contour plots of stress (Fig. 4), it can be seen that in 4 out of 8 cases the assumption of a uniform wall leads to an underestimation of PWS, as a result of an artificially thickened aortic wall in key regions. On the other hand, in the 4 remaining cases this same assumption led to an overestimation of PWS, due to the patient-specific wall being much thicker than the assumed 1.9mm uniform wall. In all cases, the distribution of stress was found to be highly influenced by local variations in wall thickness. Table 3 summarises the peak wall stress found for each model and the percentage change in stress due to wall thickness. The accompanying pie charts (Fig. 5) show the approximate region of the aneurysm in which the PWS was observed, where the symbols correspond to a particular patient number as indicated in Table 3. The majority of PWS was observed to occur posteriorly for the Uni_wall cases [4]. Interestingly, for the PS_wall cases, the majority occurred in the anterior region, as indicated by the change in location of PWS for 4 out of 8 patients between wall types (Fig. 5a and Fig. 5b).

To further characterise the impact of wall geometry on stress distribution, the volume of the aneurysm which experienced stress ≥ 0.5N/mm² was recorded for both wall types (Fig. 6a), this value was then characterised as a percentage of the total volume of the aneurysm (Fig. 6b). From the Figures, it is clear that there is a significant increase in the overall volume of the aneurysm subject to elevated stress in patients 1 – 4 when patient-specific thickness is incorporated into these models. In cases where the value of PWS was quite similar (e.g. patients 5 – 8), little difference was observed in the volume of the aneurysm subjected to elevated stress regardless of wall type used.

The outer surface curvature (Gaussian curvature) of each aneurysm, for both wall types, was also investigated in this study and is presented in Fig. 7. Positive curvature is indicated by red regions and negative curvature is indicated by blue regions. In all cases, outer surface
curvature was found to be quite similar for both wall types, with the AAA sac being characterised by high positive curvature, and the transition zones (shoulder region and above iliac bifurcation) being characterised by high negative curvature. Only minor differences were observed in surface curvature, due to local surface features present in the PS_wall cases.

The rupture risk of each AAA was assessed in this study using the rupture potential index (RPI). Three-dimensional contour plots of RPI are presented for each AAA in Fig. 8. It can be seen by comparing Fig. 8 and Fig. 4 that areas of increased rupture risk co-locate with regions of high stress. It can also be seen that both Uni_wall and PS_wall variations having very different distributions of RPI. By examining the maximum RPI for each AAA it can be seen that wall type has a significant impact on the perceived risk of aneurysm rupture (Fig. 9), particularly in patients 1, 2, and 4 where rupture risk more than doubled after incorporation of PS wall thickness. In Patients 3, 6 and 8, patient-specific geometry only led to a marginal increase in rupture risk, while in Patients 5 and 7 a slight reduction in maximum rupture risk was observed.

4. DISCUSSION

This study aimed to assess the importance of wall thickness in a small population \((n = 8)\) of abdominal aortic aneurysms (AAAs) which physically lacked intraluminal thrombus. This was achieved by comparing patient-specific and uniform wall thickness models of each individual aneurysm investigated. The influence of wall thickness on clinically relevant markers such as AAA curvature, peak wall stress (PWS) and rupture risk index (RPI) was then assessed.

A small number of previous studies have attempted to discern the role of wall thickness in PWS and rupture risk predictions \([7, 9-11, 13, 21, 28, 33-38]\). In their rupture risk equation,
Li and Kleinstreuer [34] introduced an approximation of PS wall thickness using a curve-fitted correlation, however, their simplified approach is unable to deal with areas of extreme curvature/angulation. Studies by Raghavan et al. [28], Wang et al. [10], and Venkatasubramaniam et al. [13] detailed models which varied in thickness in the radial direction (only) based on patient-specific measurements from CT, yet each model still maintained a uniform cross-section. Work by Scotti et al. [21, 37] improved on this by varying thickness in both the radial and axial directions, however, at any given cross-section the thickness remained constant around the circumference. A more recent study by Gasser et al. [33], implemented a smart algorithm which varied the AAA wall thickness between 1.5 mm (at thrombus-free) and 1.13 mm (at covered sites), in effect approximating a physiological type wall thickness based on the amount of thrombus adjacent to the wall at a given location. Nevertheless, in the absence of thrombus, this method would again result in a uniform wall thickness being applied. As a result, these methods do not fully characterise the significant local variations in thickness which may be encountered due to the heterogeneity of the aneurysm wall [29, 30]. It wasn’t until the work of Shum et al. [38] that a physiologically representative method was developed for estimating patient-specific wall thickness based on manually trained neural networks and features extracted from the CT images, thus meaning a thickness could vary in the axial, radial and circumferential directions. Their method has formed the basis of several later studies e.g. [11, 36]. Similarly Shang et al. [7] employed a series of custom algorithms to extrapolate a “patient-specific” variable wall geometry from CT data, based on the grayscale intensity values of individual pixels. However, such methods remain open to ambiguity as to what constitutes wall and thrombus in such a highly heterogeneous structure. Any misidentification of these structures at input could significantly alter the estimated wall thickness and as a result the projected clinical outcomes. In this study
no such algorithms were applied, instead wall thickness was obtained directly from CT through careful selection of patient type. As wall thickness was free to vary in line with the CT images this allowed for non-uniformity to occur in all directions, and fine local features (e.g. very thick and extremely thin) to be resolved, as can be seen in Fig. 3. An aspect not typically accounted for by “black box” wall estimation algorithms; as such features may be obscured by the presence of intraluminal thrombus on the CT images or because they don’t fit within the minimum specified parameters for wall thickness often employed in such estimation algorithms.

The current gold standard for AAA assessment is the 55mm maximum diameter criterion. In this study, maximum diameter values were extracted from the CT based models and compared to the clinically obtained US measurements, as was shown in Table 2, these values varied considerably (-1mm to 12mm). Only some of this error in measurement could be attributed to differences in measurement plane taken, e.g. anterior-posterior measurement vs. maximal measurement in any other direction [35].

Based on the maximum diameter criterion (55mm) only Patients 3 and 7, from the current study, would be prioritised for surgery according to the ultrasound measurements, whereas the CT based diameter measurements identify an additional case over the 55mm threshold (Patient 1). Furthermore, CT measurements highlight two more cases very close to the threshold for intervention (Patients 4 and 8). These points underscore the unsuitability of the current diameter based intervention criterion and support the need for an improved marker for AAA rupture risk.

Peak wall stress (PWS) has been shown to be an improved marker of rupture risk, when compared with the traditional maximum diameter measurement [24]. In this study, the inter-patient variability in terms of both location (Fig. 5a) and magnitude of PWS ($\sigma_{\text{mean}} = 0.4905 \pm$
0.0850N/mm2) was found to be very low in uniform wall thickness (Uni_wall) models, with PWS predominately located in the posterior region, additionally the range of PWS observed in the Uni_wall models was consistent with many previous studies [8, 44]. In contrast, significantly higher values of PWS (by as much as 55%) were observed in half of the patients investigated after incorporation of patient-specific (PS) wall thickness. A similar observation was reported by Shang et al. [7] though to a lesser degree (10 – 12% increase in PWS), possibly due to the presence of thrombus in the patients recruited in their study. In the present study, all patients lack this protective buffer and as a consequence are subject to much higher stresses [18, 25]. Furthermore, the inter-patient variability in the location (Fig. 5b) and magnitude of PWS ($\sigma_{\text{mean}} = 0.6761 \pm 0.3410$N/mm2) in PS_wall models was found to be quite high in comparison to the Uni_wall models. These findings highlight how the uniform wall assumption may obscure important clinically relevant information through artificial thickening of the aneurysm wall, thus removing locally thinned regions and biasing PWS locations and magnitudes. In addition, contrary to previously reported findings [9, 37, 45], wall thickness was also observed to influence the distribution of stress within the wall of the aneurysm. In particular, dramatic changes in wall stress distribution were observed, between the two wall types, where excessive thinning or thickening of the aortic wall occurred locally.

It has been shown previously, that a reduction or change in wall thickness can lead to an increase in PWS [11, 13, 21, 28, 37], what has not been discussed is the impact that these changes may have on the volume over which this elevated stress acts. In the present study, the volume of stress ≥ 0.5N/mm2 in each AAA was investigated (Fig. 6a) and expressed as a percentage of the total AAA volume (Fig. 6b). These results highlight a dramatic difference in terms of the proportion of the aneurysm under elevated stress, with patients 1 – 4 experiencing significant increases in volume when PS wall thickness is considered over
uniform wall thickness. This fact is of importance as rupture occurs when the wall stress exceeds the wall strength, which may not necessarily be at the location of PWS, while the wall stress may be high in a locally thinned region this may be counterbalanced by a high wall strength [16], on the other hand a relatively thick section of wall may have a much lower wall strength [18, 31, 45] and therefore fail at a much lower value of wall stress. Consequently, aneurysms with elevated stress acting over a larger volume may have an increased risk of rupturing at these secondary locations (e.g. locations not associated with peak stress).

Previous studies have suggested a link between curvature and wall stress [46]. In this study, the wall type (Uni_wall or PS_wall) was found to have minimal impact on curvature itself, with little variation observed between wall types. However, wall thickness was observed to have a dominant influence on correlations of curvature with wall stress. By comparing curvature (Fig. 7) with the contour plots of stress presented in Fig. 4 it can be seen that negative curvature co-located with regions of increased stress (i.e. at inflection points), in the Uni_wall cases. However, when patient-specific wall thickness was considered the correlation between curvature and stress was less clear, with high stress found to co-locate with a mixture of negative and positive curvature (e.g. Patients 3, 4 and 7).

The rupture potential index (RPI), established by Vande Geest et al. [17] returns an estimate of rupture risk based on the wall stress predicted by FE and the wall strength obtained using a mathematical model which incorporates geometric and patient information to approximate the distribution of strength in the wall for a given aneurysm. Values close to 0 indicate a relatively low risk of rupture, whereas values close to 1 indicate an increased risk of rupture. In the present study, RPI was used as a means to investigate the implications of PS wall thickness on rupture risk in a more quantifiable manner. Wall thickness was observed to have a profound impact on the predicted rupture risk for certain patients (Patients 1 – 4), as shown
in Fig. 9. Moving from a Uni_wall to a PS_wall in some instances (Patients 1, 2, and 4) more than doubled the likelihood of rupture occurring. It is important to note that, under the uniform wall assumption these cases would have been dismissed as borderline, while in reality they are high risk, as indicated by a RPI values in excess of 0.5. Interestingly these particular cases (Patients 1, 2, and 4) all have maximum diameters below the 55mm criterion used clinically to discern at risk aneurysms. Conversely, some of the lowest reported RPI values occurred in patients with large AAAs (patients 7 and 8). Of the previous studies which incorporated some form of variable wall thickness [7, 13, 21, 28, 36, 37] only one such study investigated rupture risk [36]. In their study Martufi and colleagues examined the RPI of a single patient-specific AAA with a variable wall thickness, and found that rupture risk was distributed in a complex manner across the aneurysm (similar to the findings of this study). However, the influence of wall thickness on predicted RPI was not assessed in their study as no direct comparison of RPI with a uniform wall thickness model was presented. The present study has focussed on patients with aneurysms which physically lacked thrombus formations. Nevertheless, it is recognised that the majority of aneurysm encountered clinically do have some degree of thrombus [7], the influence of wall thickness under such circumstances is still significant, however, in comparison to the findings of the present study its influence is much reduced. It is therefore suggested that, PS wall thickness may be more influential in patients who lack thrombus.

In this study, all AAAs were modelled as isotropic, non-linear, hyperelastic, and incompressible. In reality, the aorta is highly anisotropic; however, the assumption of isotropy is considered valid in AAAs, where the wall tissue is fibrous [47]. Similarly, a lack of information regarding patient-specific wall strength necessitated the use of a mathematical model for strength estimation [43], which takes into account clinically relevant variables such
as thrombus thickness, aorta dilation, family history, and sex. However, as the 8 patients in this study are thrombus free, the estimated strength varies predominately with local AAA wall dilation, and global factors such as sex and family history. This leads to a very uniform distribution of strength around the circumference of the sac (see supplementary text). Realistically, strength properties may vary considerably in different regions (e.g. anterior/posterior) of the aneurysm [31, 47, 48]. Additionally, cyclical fatigue failure may also cause AAA structures to fail at much lower values of stress [49] in vivo, than presented in these static analyses.

In this study, loading consisted of a uniformly distributed static pressure applied to the luminal surface of each AAA. In the aorta, the pressure on the wall is dynamic and changes throughout the cardiac cycle, and as a result of flow instabilities. This could lead to a non-uniform distribution of pressure and as a consequence, a very different distribution of stress than observed in the current study. However, previous studies have shown that while overall distribution of stress changes, the actual influence on PWS is less than 4% [37, 40, 50]. Other factors such as inclusion of: pre-stressing [25], calcification [51-53], spinal contact and soft tissue constraints [54, 55], also play a role in altering the mechanical environment in the AAA and may need to be considered depending on the application of the model.

While these limitations are important from the perspective of precision in rupture risk prediction for a given patient, they are unlikely to influence the overall outcomes relating to wall thickness presented in this work due to the comparative nature of the study.

4.1 Conclusions
This study has highlighted the impact of one possible source of variation, patient-specific vs. uniform aneurysm wall thickness, which has the potential to seriously affect predicted clinical
The findings of this study have shown that incorporation of PS wall thickness dramatically influences; the overall distribution of stress, its correlation with curvature, the location and magnitude of peak wall stress (PWS), the volume of the AAA wall under elevated stress, and the calculated rupture risk index for each AAA. Uniform wall thickness, has been found to be inadequate when investigating outcomes in patients with no intraluminal thrombus, as the uniform wall removed key local geometrical features (e.g. very thick and very thin regions of wall), which have a significant influence on risk estimation. This highlights the sensitivity of standard rupture risk markers to the specific wall thickness strategy employed. Furthermore, this study represents a key first step in establishing a set of ground truth models with which to verify and validate the output of wall thickness estimation algorithms, and in the future, wall thickness measurements obtained from multimodal image reconstructions, paving the way for studies which incorporate such techniques to assess true patient-specific wall thickness in a wider selection of patients with intraluminal thrombus formations.

5. ACKNOWLEDGEMENTS

The authors would like to acknowledge Scott I. Semple, Tom J. MacGillivray, and Julian Sparrow of the Clinical Research Imaging Centre, Edinburgh for maintaining and facilitating access to the medical imaging data from the MA3RS clinical trial.
6. REFERENCES

[9] Xiong J, Guo W, Wang J, Zhou W. Effects of Wall Thickness on Stress Distribution in Patient-Specific Models of Abdominal Aortic Aneurysm. Biomedical Engineering and

[51] Li ZY, J UK-I, Tang TY, Soh E, See TC, Gillard JH. Impact of calcification and

7. LEGEND TO FIGURES

Figure 1: Comparison of two AAAs one with intraluminal thrombus (a) and one without (b).
The blue line in the top panel indicates the location of the cross-sectional slices presented for each AAA (middle panel). The bottom panel then presents a zoomed in view of each cross-sectional slice.

Figure 2: Model generation workflow outlining the major steps required to convert medical scan data into patient-specific finite element models of abdominal aortic aneurysms.

Figure 3: Contour plots of wall thickness distribution for both Uniform (left) and Patient-specific (right) cases.

Figure 4: Contour plots showing the magnitude and distribution of wall stress (von Mises) for both Uniform (left) and Patient-specific (right) wall thickness cases.

Figure 5: Charts showing the approximate location of PWS for a) the uniform wall, and b) PS wall models.

Figure 6: Charts showing a) volume of the AAA which experiences stress above 0.5 N/mm², and b) this volume expressed as a percentage of the total AAA volume.

Figure 7: Comparison of outer wall curvature for both Uniform (left) and Patient-specific (right) wall thickness cases.

Figure 8: Comparison of outer wall RPI for both Uniform (left) and Patient-specific (right) wall thickness cases.

Figure 9: Graph showing calculated maximum rupture risk index for both wall types using the RPI method, for all patients investigated. The dashed black line represents the point after which risk of rupture increases significantly.
Table 1: Patient details for each of the reconstructed aneurysms. Strength estimation relies on knowledge of patient family history of AAAs, where this information was unavailable a worst case scenario of yes was assumed as indicated by the accompanying *.

<table>
<thead>
<tr>
<th>Patient</th>
<th>Age</th>
<th>Gender</th>
<th>Family History</th>
<th>Diameter from US (mm)</th>
<th>AAA Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>83</td>
<td>Male</td>
<td>No</td>
<td>44</td>
<td>Fusiform</td>
</tr>
<tr>
<td>2</td>
<td>80</td>
<td>Male</td>
<td>Yes</td>
<td>40</td>
<td>Fusiform</td>
</tr>
<tr>
<td>3</td>
<td>81</td>
<td>Male</td>
<td>No</td>
<td>59</td>
<td>Fusiform</td>
</tr>
<tr>
<td>4</td>
<td>82</td>
<td>Female</td>
<td>No</td>
<td>44</td>
<td>Fusiform</td>
</tr>
<tr>
<td>5</td>
<td>70</td>
<td>Male</td>
<td>No</td>
<td>41</td>
<td>Saccular</td>
</tr>
<tr>
<td>6</td>
<td>64</td>
<td>Male</td>
<td>Yes*</td>
<td>36</td>
<td>Saccular</td>
</tr>
<tr>
<td>7</td>
<td>65</td>
<td>Male</td>
<td>No</td>
<td>59</td>
<td>Fusiform</td>
</tr>
<tr>
<td>8</td>
<td>81</td>
<td>Male</td>
<td>No</td>
<td>47</td>
<td>Fusiform</td>
</tr>
</tbody>
</table>
Table 2: Comparison of clinically accepted maximum diameter measurements from ultrasound, with maximum diameter measurements from CT reconstructions of each patient.

<table>
<thead>
<tr>
<th>Patient number</th>
<th>Diameter (mm)</th>
<th>Difference (mm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>From US</td>
<td>From CT</td>
</tr>
<tr>
<td>1</td>
<td>44</td>
<td>56</td>
</tr>
<tr>
<td>2</td>
<td>40</td>
<td>47</td>
</tr>
<tr>
<td>3</td>
<td>59</td>
<td>64</td>
</tr>
<tr>
<td>4</td>
<td>44</td>
<td>53</td>
</tr>
<tr>
<td>5</td>
<td>41</td>
<td>40</td>
</tr>
<tr>
<td>6</td>
<td>36</td>
<td>43</td>
</tr>
<tr>
<td>7</td>
<td>59</td>
<td>66</td>
</tr>
<tr>
<td>8</td>
<td>47</td>
<td>52</td>
</tr>
</tbody>
</table>
Table 3: Highlights the difference in wall thickness observed between wall types and the corresponding PWS for each patient investigated.

<table>
<thead>
<tr>
<th>Patient ID</th>
<th>Chart Symbol (Fig. 5)</th>
<th>Uni wall PS wall</th>
<th>Wall thickness (mm)</th>
<th>PWS (N/mm²)</th>
<th>% change in PWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>X</td>
<td>1.9</td>
<td>0.5676</td>
<td>-43.42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X 1.35 – 2.01</td>
<td></td>
<td>1.0031</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>X</td>
<td>1.9</td>
<td>0.5133</td>
<td>-54.60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X 1.33 – 2.45</td>
<td></td>
<td>1.1305</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>X</td>
<td>1.9</td>
<td>0.5181</td>
<td>-32.99</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X 0.96 – 1.64</td>
<td></td>
<td>0.7732</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>X</td>
<td>1.9</td>
<td>0.5622</td>
<td>-43.34</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X 0.90 – 1.39</td>
<td></td>
<td>0.9923</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>X</td>
<td>1.9</td>
<td>0.4109</td>
<td>4.18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X 1.31 – 1.96</td>
<td></td>
<td>0.3944</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td>X</td>
<td>1.9</td>
<td>0.3495</td>
<td>39.69</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X 2.01 – 2.77</td>
<td></td>
<td>0.2502</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>X</td>
<td>1.9</td>
<td>0.5042</td>
<td>14.67</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X 1.66 - 2.68</td>
<td></td>
<td>0.5039</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>X</td>
<td>1.9</td>
<td>0.4244</td>
<td>17.42</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X 1.67 - 2.19</td>
<td></td>
<td>0.36144</td>
<td></td>
</tr>
</tbody>
</table>