Towards a cognitive model of conceptual blending

Citation for published version:

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Proceedings of the 10th International Conference on Cognitive Modeling

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Abstract

We outline a way to use Goguen’s (2006) account of conceptual blending in the cognitive architecture ACT-R. Despite recent advances in linguistics and general accounts of conceptual blending (for example, Fauconnier and Turner 2002, 2008) it has received scant attention in cognitive modelling, which is partly due to the fact that there are hardly any computational accounts of this phenomenon, Goguen’s being one of them.

Keywords: conceptual blending; metaphor; analogy; linguistics; conceptualisation; scientific creativity; ACT-R; Theory of Institutions.

Analogy, metaphor, conceptual blending

A major factor for the power and flexibility of the human cognitive system is its ability to create new concepts, in particular by combining existing ones. We are particularly interested in the role of this mental machinery in the creation of new mathematical concepts (Guhe, Smaill and Pease 2009). Most current accounts of scientific creativity emphasise the role of analogy (Gentner & Markman, 1997) or metaphor (Lakoff & Núñez, 2000). Here, we outline the more general process of conceptual blending, its role in creating new concepts, and how it can be integrated into the cognitive architecture ACT-R (Anderson, 2007).

Analogy and metaphor, which we take to be essentially the same, are cognitive processes that (1) establish mappings between parts of a cognitive system’s knowledge representations (usually called domains) and that (2) can transfer knowledge between domains for which a mapping was established. For example, in the extensively studied metaphor TIME IS SPACE, the expression Christmas is two days away recasts an event (Christmas) as a location with respect to the speaker’s current location in time by specifying a temporal interval (two days) as a distance.

According to Fauconnier and Turner (2002) metaphors and analogies are only special cases of conceptual blending. A metaphor is simply a ‘cross space mapping’ (Goguen, 2006, p. 8). The TIME IS SPACE metaphor, for example, not only provides the basic mapping, but allows reconceptualisations as well as the integration of knowledge from other domains. A common reconceptualisation of the TIME IS SPACE conceptual blend is, for example, a change in perspective, where time is conceptualised as passing a static observer, e.g. in the expression Time passes slowly (Fauconnier and Turner 2008). It is important to note that a metaphorical or analogical mapping alone cannot account for this additional mental flexibility.

Goguen’s approach

Fauconnier and Turner’s account of concept blending is not directly suited for computational cognitive modelling, because it remains purely descriptive. Goguen (2006) outlines a computational account of conceptual blending – based on Fauconnier and Turner – using the theory of Institutions, a theory similar to Information Flow, which we used earlier (Guhe, Smaill, & Pease, 2009).

We cannot go into much detail here, so we will restrict ourselves to one of Goguen’s (2006) motivating examples of a conceptual blend between the concepts HOUSE and BOAT, resulting in the conceptual blends HOUSEBOAT and BOATHOUSE, cf. Figure 1 for a depiction of the HOUSEBOAT blend. A base domain (shown at the bottom) provides the ‘glue’ needed for mapping two domains (in the middle, left and right) and creating a conceptual blend (at the top). The most important mapping here is the one of live-in and ride, which provides the reconceptualisation of a BOAT as an OBJECT in which a person can not only RIDE but also LIVE.

Goguen restricts the many possible conceptual blends by specifying sortal frames, which must match in order for a mapping between domains to succeed. Sortal restrictions are

![Figure 1: HOUSEBOAT conceptual blend](image)
specified in a signature, for example for the HOUSEBOAT case Goguen defines the following sortal frames:

<table>
<thead>
<tr>
<th>resident: Person</th>
<th>passenger: Person</th>
</tr>
</thead>
<tbody>
<tr>
<td>house: Object</td>
<td>boat: Object</td>
</tr>
<tr>
<td>land, water: Medium</td>
<td>land, water: Medium</td>
</tr>
<tr>
<td>livein: Person Object → Bool</td>
<td>ride: Person Object → Bool</td>
</tr>
<tr>
<td>on: Object Medium → Bool</td>
<td>on: Object Medium → Bool</td>
</tr>
<tr>
<td>livein(resident, house)</td>
<td>ride(person, boat)</td>
</tr>
<tr>
<td>on(house, land)</td>
<td>on(boat, water)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>par1 sort1 sort2</th>
</tr>
</thead>
<tbody>
<tr>
<td>par1 object</td>
</tr>
</tbody>
</table>

A more severe alteration is to check all slot values that a chunk specifies and match not only the values themselves but check for values higher up in the sortal hierarchy. For example, if a request to the declarative module specifies a chunk with a slot–value pair like

retrieval>
 isa predicate
 name on
 par1 house ...

the par1 slot would also match for chunks like:

retrieval>
 isa predicate
 name on
 par1 object ...

Solution 2 predicts much faster processing than solution 1, because all checks are performed within one memory retrieval. Thus, it neither requires firing multiple productions nor multiple retrievals from declarative memory.

Conclusion

Conceptual blending is a central, powerful and productive aspect of human cognition, allowing, for example, to conceptualise time in terms of space. However, cognitive modelling has not yet seriously addressed this issue. We outlined in broad terms a way to transfer Goguen’s notion of conceptual blending into the cognitive architecture ACT-R as a first step to include conceptual blending in cognitive models of scientific creativity, in particular mathematical thinking. Whether a modification of ACT-R’s declarative module will provide better cognitive adequacy will have to be decided on the basis of empirical data.

Acknowledgements

The research reported here was carried out in the Wheelbarrow project, funded by the EPSRC grant EP/F035594/1.

Bibliography

