Critical single-domain grain sizes in elongated iron particles: implications for meteoritic and lunar magnetism

Adrian R. Muxworthy1 and Wyn Williams2

1Department of Earth Science and Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, United Kingdom.
E-mail: adrian.muxworthy@imperial.ac.uk
2Grant Institute of Earth Science, University of Edinburgh, Kings Buildings, West Mains Road, Edinburgh, EH9 3JW, United Kingdom

Accepted 2015 April 23. Received 2015 April 16; in original form 2014 October 7

\textbf{SUMMARY}

Kamacite particles (Fe–Ni, Ni \(<\) 5 per cent), are very common in extra-terrestrial materials, such as meteorites. It is normally assumed that for kamacite particles to be reliable recorders of magnetic fields, they need to be magnetically uniform (single domain, SD) and thermally stable. Larger particles subdivide into non-uniform multidomain (MD) magnetic structures that produce weaker magnetic signals, while small SD particles become magnetically unstable due to thermal fluctuations and exhibit superparamagnetic behaviour. In this paper we determine the first micromagnetic calculation of the stable SD range domain-state phase diagram for metallic iron; previous calculations were analytical. There is a significant increase in the critical size for the SD/MD threshold size, for example, for cube-shaped iron particles, the critical SD/MD threshold has now been estimated to be 25 nm, compared to 17 nm for previous estimates. The larger critical SD/MD threshold size for iron, agrees better with previously published nanometric observations of domain state for FeNi particles, then early analytical models.

\textbf{Key words:} Numerical approximations and analysis; Magnetic and electrical properties; Rock and mineral magnetism.

\textbf{1 INTRODUCTION}

Kamacite (Fe–Ni, Ni \(<\) 5 per cent) is commonly found to be the dominant magnetic mineral in many different types of meteorites including chondritic meteorites (Weiss et al. 2010; Pechersky et al. 2012;Gattaceca et al. 2014) and lunar rocks (Garrick-Bethell & Weiss 2010). Of particular interest are the kamacite particles found inside dusty olivines in chondrules in unequilibrated chondrites, as they have the potential to carry pristine, pre-accretionary, primary magnetic field information. Of particular interest are the kamacite particles found inside dusty olivines in chondrules in unequilibrated chondrites, as they have the potential to carry pristine, pre-accretionary, primary remanent magnetisations (Uehara & Nakamura 2006; Lappe et al. 2006; Lappe et al. 2011; Lappe et al. 2013), that is, kamacite is one of the most likely minerals to retain magnetic field intensity information acquired during Solar Nebular formation, because the particles are protected from chemical alteration by the encasing olivine. But for the kamacite particles to retain a meaningful palaeomagnetic signal, it is important that the particles’ magnetic remanences are metastable for billions of years. The magnetic state that is metastable longest, is magnetically uniform, and is termed single domain (SD; Fig. 1a). True SD states only occur in ellipsoid shapes; in other shapes, for example, parallelepipeds, the magnetisation is non-uniform in corners leading to switching. Such particles then have superparamagnetic (SP) behaviour (Newell 2006). The magnetisation in larger grains above the SD threshold size, form complex non-uniform or multidomain (MD) structures, which leads to decreased magnetic stability and a reduction in the magnetic remanence per unit volume compared to SD grains. Small MD structures usually reside in a ‘single vortex’ structure (SV; Fig. 1b).

In addition to volume, the magnetic domain state of a crystal is strongly dependent on elongation; as particles become relatively more elongated the SD to MD transition size increases. Evans & McElhinny (1969) analytically calculated the first phase diagrams for domain state (SP, SD and MD) as a function of axial ratio [length versus grain-elongation axial-ratio (AR; short-axis/long-axis or width/length)] for individual magnetite particles. Such domain state phase diagrams are commonly used to assess the magnetic stability of magnetic crystals (Schumann et al. 2008; Lappe et al. 2011).

Using a slightly different approach, Butler & Banerjee (1975a,b) determined domain state phase diagrams from analytic calculations for both metallic iron and magnetite. Subsequently, for magnetite both the SP to stable SD transition size (Winklhofer et al. 1997) and the SD to MD transition size (Fabian et al. 1996; Newell & Merrill 1999; Witt et al. 2005; Muxworthy & Williams 2006) have been re-examined and revised for individual particles through application of micromagnetic technique. In this paper we model parallelepiped structures; we refer to flower structures as SD in this paper, when strictly they are not SD.

When SD particles are smaller than a critical threshold size, they are no longer magnetically stable because thermal energy can easily overcome the energy barrier that otherwise prevents domain switching. Such particles then have superparamagnetic (SP) behaviour (Newell 2006). The magnetisation in larger grains above the SD threshold size, form complex non-uniform or multidomain (MD) structures, which leads to decreased magnetic stability and a reduction in the magnetic remanence per unit volume compared to SD grains. Small MD structures usually reside in a ‘single vortex’ structure (SV; Fig. 1b).

In addition to volume, the magnetic domain state of a crystal is strongly dependent on elongation; as particles become relatively more elongated the SD to MD transition size increases. Evans & McElhinny (1969) analytically calculated the first phase diagrams for domain state (SP, SD and MD) as a function of axial ratio [length versus grain-elongation axial-ratio (AR; short-axis/long-axis or width/length)] for individual magnetite particles. Such domain state phase diagrams are commonly used to assess the magnetic stability of magnetic crystals (Schumann et al. 2008; Lappe et al. 2011).

Using a slightly different approach, Butler & Banerjee (1975a,b) determined domain state phase diagrams from analytic calculations for both metallic iron and magnetite. Subsequently, for magnetite both the SP to stable SD transition size (Winklhofer et al. 1997) and the SD to MD transition size (Fabian et al. 1996; Newell & Merrill 1999; Witt et al. 2005; Muxworthy & Williams 2006) have been re-examined and revised for individual particles through application of micromagnetic technique. In this paper we model parallelepiped structures; we refer to flower structures as SD in this paper, when strictly they are not SD.

When SD particles are smaller than a critical threshold size, they are no longer magnetically stable because thermal energy can easily overcome the energy barrier that otherwise prevents domain switching. Such particles then have superparamagnetic (SP) behaviour (Newell 2006). The magnetisation in larger grains above the SD threshold size, form complex non-uniform or multidomain (MD) structures, which leads to decreased magnetic stability and a reduction in the magnetic remanence per unit volume compared to SD grains. Small MD structures usually reside in a ‘single vortex’ structure (SV; Fig. 1b).

In addition to volume, the magnetic domain state of a crystal is strongly dependent on elongation; as particles become relatively more elongated the SD to MD transition size increases. Evans & McElhinny (1969) analytically calculated the first phase diagrams for domain state (SP, SD and MD) as a function of axial ratio [length versus grain-elongation axial-ratio (AR; short-axis/long-axis or width/length)] for individual magnetite particles. Such domain state phase diagrams are commonly used to assess the magnetic stability of magnetic crystals (Schumann et al. 2008; Lappe et al. 2011).

Using a slightly different approach, Butler & Banerjee (1975a,b) determined domain state phase diagrams from analytic calculations for both metallic iron and magnetite. Subsequently, for magnetite both the SP to stable SD transition size (Winklhofer et al. 1997) and the SD to MD transition size (Fabian et al. 1996; Newell & Merrill 1999; Witt et al. 2005; Muxworthy & Williams 2006) have been re-examined and revised for individual particles through application of micromagnetic technique. In this paper we model parallelepiped structures; we refer to flower structures as SD in this paper, when strictly they are not SD.

When SD particles are smaller than a critical threshold size, they are no longer magnetically stable because thermal energy can easily overcome the energy barrier that otherwise prevents domain switching. Such particles then have superparamagnetic (SP) behaviour (Newell 2006). The magnetisation in larger grains above the SD threshold size, form complex non-uniform or multidomain (MD) structures, which leads to decreased magnetic stability and a reduction in the magnetic remanence per unit volume compared to SD grains. Small MD structures usually reside in a ‘single vortex’ structure (SV; Fig. 1b).

In addition to volume, the magnetic domain state of a crystal is strongly dependent on elongation; as particles become relatively more elongated the SD to MD transition size increases. Evans & McElhinny (1969) analytically calculated the first phase diagrams for domain state (SP, SD and MD) as a function of axial ratio [length versus grain-elongation axial-ratio (AR; short-axis/long-axis or width/length)] for individual magnetite particles. Such domain state phase diagrams are commonly used to assess the magnetic stability of magnetic crystals (Schumann et al. 2008; Lappe et al. 2011).

Using a slightly different approach, Butler & Banerjee (1975a,b) determined domain state phase diagrams from analytic calculations for both metallic iron and magnetite. Subsequently, for magnetite both the SP to stable SD transition size (Winklhofer et al. 1997) and the SD to MD transition size (Fabian et al. 1996; Newell & Merrill 1999; Witt et al. 2005; Muxworthy & Williams 2006) have been re-examined and revised for individual particles through application of micromagnetic technique. In this paper we model parallelepiped structures; we refer to flower structures as SD in this paper, when strictly they are not SD.

When SD particles are smaller than a critical threshold size, they are no longer magnetically stable because thermal energy can easily overcome the energy barrier that otherwise prevents domain switching. Such particles then have superparamagnetic (SP) behaviour (Newell 2006). The magnetisation in larger grains above the SD threshold size, form complex non-uniform or multidomain (MD) structures, which leads to decreased magnetic stability and a reduction in the magnetic remanence per unit volume compared to SD grains. Small MD structures usually reside in a ‘single vortex’ structure (SV; Fig. 1b).
of the numerical micromagnetic equations of Brown (1963). Similar numerical calculations have recently been made for elongated greigite particles (Muxworthy et al. 2013).

The micromagnetic calculations for magnetite have shown that the earlier analytical calculations of by Evans & McElhinny (1969) and Butler & Banerjee (1975b) whilst state-of-the-art at the time, yield critical SD estimates significantly higher for elongated grains than the numerical calculations, for example, for cubic particles of magnetite the SD to MD transition was calculated by Butler & Banerjee (1975b) to be ∼76 nm and Muxworthy & Williams (2006) estimated it as ∼73 nm; however, for an AR of 0.4 this was ∼420 and ∼320 nm, respectively, a volume decrease of >50 per cent. In addition, crucially numerical models have shown that there is a range of grain sizes where both SD and SV structures can co-exist depending on the magnetic history; this was not predicted by traditional domain theory.

The estimate for the stable SD range for metallic iron by Butler & Banerjee (1975a) is still the main reference for our understanding the magnetic stability of iron/kamacite (Lappe et al. 2011; Gattacceca et al. 2014). In this paper, we present a modern numerical determination of the stable SD range for individual, elongated metallic iron: We determine both the SD to MD transition size, and the SP to SD size. All the magnetic properties required to model, say, Fe$_{0.93}$Ni$_{0.05}$ are not currently known; we therefore consider metallic iron.

2 THE SD/MD THRESHOLD SIZE

To determine the SD/MD threshold size as a function of elongation we employed the numerical algorithm described by Muxworthy & Williams (2006) and Muxworthy et al. (2013), except that we use the physical parameters for iron.

2.1 The micromagnetic algorithm

In the model, a grain is subdivided into a number of subcubes. Each subcube represents the averaged magnetization direction of many hundreds of atomic magnetic dipole moments. All of the subcubes have magnetic moments of equal magnitude, but the magnetization of the different subcubes can vary in direction. To determine the magnetic structures using this finite difference model, two approaches were considered; a combination of both a conjugate gradient (CG) algorithm (Williams & Dunlop 1989) and a dynamic algorithm (Suess et al. 2002), and the CG algorithm alone. The reason for the combined approach is that the dynamic algorithm gives a more physical solution; however, it is computationally slow compared to the CG method. In the combined approach, we use the CG algorithm to rapidly generate a magnetic structure, which is then put into the dynamic solver as an initial estimate. This increases the efficiency of the algorithm by roughly an order of magnitude compared to the dynamic solver alone.

In the CG algorithm, the domain structure is calculated by minimizing the total magnetic energy E_{tot}, which is the sum of the exchange energy (\propto the exchange constant A), the magnetostatic energy ($\propto M_S^2$, where M_S is the spontaneous magnetization) and the anisotropy energy (\propto the first magnetocrystalline anisotropy constant K_1) (Brown 1963). E_{tot} is calculated using a fast-Fourier transform (FFT) to give a local energy minimum (LEM) for the assemblage. The increased efficiency with which the demagnetizing energy can be calculated in Fourier space allows the high resolution needed to examine large elongated particles. The dynamic algorithm solves the dynamic Landau–Lifshitz–Gilbert equation. We used a finitely damped solver detailed by Brown et al. (1989). Instead of minimizing the energy, the solver minimizes the torque on each magnetic moment.

In this study, the following room-temperature values for metallic iron were used: $A = 2 \times 10^{-11}$ J m$^{-1}$ (Kittel 1949), $M_S = 1715 \times 10^3$ Am$^{-1}$ (Dunlop & Özdemir 1997) and K_1 (cubic) $= 4.8 \times 10^4$ J m$^{-3}$ (Graham 1958). Butler & Banerjee (1975a) used values of: $A = 1 \times 10^{-11}$ J m$^{-1}$, $M_S = 1720 \times 10^3$ Am$^{-1}$ and $K_1 = 4.5 \times 10^4$ J m$^{-3}$. The values used in this study are the ones now generally used in other micromagnetic studies of iron.

To model non-uniform structures, it is usually argued that it is necessary to have a minimum model resolution of two cells per
exchange length (exchange length = $\sqrt{A/K_\ell}$, where $K_\ell = \mu_0M_S^2/2$ and μ_0 is the permeability of free space (Rave et al. 1998). For iron at room temperature the exchange length is ~ 3 nm; we used a minimum resolution of ~ 1.5 nm at all times.

2.2 SD/MD critical sizes for individual elongated grains

There are several methods for determining the SD/MD critical size (d_{crit}). Here, the unconstrained method is employed (Fabian et al. 1996; Witt et al. 2005; Muxworthy & Williams 2006). In this approach, a small grain, say 10 nm in length, with an initial SD structure (Fig. 1a) is gradually increased in size until the domain structure collapses to a SV (i.e. MD) state at d_{max} (Figs 1b and 2). The grain size is then decreased until the vortex structure becomes SD at d_{min} (Fig. 2).

The model calculations for a cube are shown in Fig. 2. The d_{min} and d_{max} values are interpreted to represent the lower and upper bounds, respectively, of a range of sizes where both SD and SV structures can co-exist. We have calculated d_{min} and d_{max} values as function of AR. For the most elongated grains, that is, AR < 0.4, d_{min} and d_{max} are poorly defined because the collapse is gradual and less abrupt. In such cases, the d_{min} and d_{max} values are estimated at the point where the reduced magnetization passes through 0.8 on the increasing/decreasing curves, where the reduced magnetization is the magnetic moment divided by the magnetic moment of an ideal SD grain.

The elongation induced anisotropy dominates the magnetocrystalline anisotropy for AR less than ~ 0.9. For AR ~ 1, the shape of the particle becomes important, that is, configurational anisotropy and surface roughness comes into effect (Williams et al. 2006), with cubes having different surface anisotropy energies compared to other shapes, etc. It has been numerically demonstrated (Shcherbakov & Sycheva 2001) that for magnetite spheres d_{min} and d_{max} converge and that the SD/SV critical size is close agreement with analytical calculations. However, perfect spheres are uncommon in nature and display magnetic characteristics distinct from all other shapes, even shapes with small variations from a sphere (Williams et al. 2011).

In addition to calculating d_{min} and d_{max} as a function of AR, we have considered the relationship between the relative orientation of the cubic magnetocrystalline anisotropy and the particle elongation. We model two extreme cases: first, where the elongation is in the easy direction (i.e. (100) axes for $K_1 > 0$) (yielding d_{min}^{100} and d_{max}^{100}) and second where it is in the hard direction (d_{min}^{111} and d_{max}^{111}). In the scenario with elongation along the easy direction, the magnetocrystalline anisotropy enhances the shape effect. In contrast, when the elongation is along the hard direction, the magnetocrystalline anisotropy competes with the shape effect.

Generally d_{min}^{100}, d_{max}^{100}, d_{min}^{111} and d_{max}^{111} increase as AR decreases (Fig. 3). In Fig. 3, the y-axis is the particle length as used by Butler & Banerjee (1975a), rather than the mean diameter as used by Witt et al. (2005). Use of the particle length enables easier comparison with the results of Butler & Banerjee (1975a), but mixes
the effects of shape and volume. The d_{max}^{100} value is the largest of the four estimates for all values of AR. Orienting the magnetization along the easy axis enhances the effect of elongation, while orientation along the hard direction increases curling of the magnetization at the edges of the grains, which breaks symmetry, and encourages nucleation of vortex states and decreases d_v. As AR is reduced, the difference between d_{max}^{100} and d_{max}^{100}, and d_{min} and d_{max} decreases as the shape anisotropy increasingly dominates the magnetocrystalline anisotropy.

For comparison, the calculated results of Butler & Banerjee (1975a) are depicted in Fig. 3. Our micromagnetic estimates of the SD/MD threshold size are higher than those obtained from the analytical results of Butler & Banerjee (1975a). For example, for a cubic grain, the micromagnetic model gives an estimate of ~24 nm (d_{max}^{100}) compared to ~17 nm from of Butler & Banerjee (1975a). This trend was opposite to that found for magnetite (Muxworthy & Williams 2006), where the micromagnetic calculation produced lower estimates than the analytical one. To examine whether the difference is due to the method of calculation or the slightly different choice of material constants, we micromagnetically calculated d_{max}^{100} and d_{max}^{100} (b_{max}^{100} and b_{max}^{100}) for the parameters used by Butler & Banerjee (1975a) detailed above in Section 2.1 (Fig. 3a). It is seen that b_{max}^{100} is similar to the original calculation of Butler & Banerjee (1975a) for AR < 0.7; for AR = 1, b_{max}^{100} ~ 20 nm. For AR = 1, b_{min}^{100} ~ 17 nm, very close to the estimate of Butler & Banerjee (1975a); clearly the choice of input parameters is critical.

While the results differ to those of Butler & Banerjee (1975a), the micromagnetic results of this study are in good agreement with the threshold size of ~23 nm determined experimentally or bulk samples containing symmetric iron particles (Kneller & Luborsky 1963), and ~28 nm determined micromagnetically for cubes of iron (Snoeck et al. 2008).

The difference between d_{min}^{100} and d_{max}^{100}, and d_{min}^{111} and d_{max}^{111}, is relatively smaller than for magnetite (Muxworthy & Williams 2006) and greigite Muxworthy et al. (2013). For example, for magnetization along the magnetocrystalline easy axis, for AR = 1 for magnetite ($K_1 < 0$), d_{min}^{100} and d_{min}^{111} are ~61 and ~67 nm, respectively (Muxworthy & Williams 2006), compared to iron; d_{min}^{100} and d_{min}^{111} are ~23 and ~24 nm, respectively.

3 THE SP/SD BOUNDARY

SD grains below a certain critical volume (the blocking volume, v_b) are magnetically unstable and have SP behaviour. For an individual particle the relaxation time t_m, is given by Néel (1949):

$$t_m = t_0 \exp(E_A/kT),$$

where E_A is the anisotropy energy barrier, k is Boltzmann’s constant, T is the temperature and t_0 is the atomic reorganization time (~10−9, Worm 1998). The relaxation time t_m can be a few nanoseconds for SP particles that undergo thermal relaxation during laboratory experiments to billions of years for stable SD particles in geological and planetary samples. This equation is strictly for a system with only two possible states; however, in elongated grains this is the case. For symmetrical samples with higher order magnetocrystalline anisotropy, small errors will occur in blocking volume estimations.

We directly determine the SP/SD threshold from the energy barrier (eq. 1) from the anisotropy energy surface. The model includes both the cubic magnetocrystalline anisotropy of iron plus a ‘shape anisotropy’, which is calculated in the magnetostatic energy term.

4 DOMAIN-STATE PHASE DIAGRAM

We have constructed a domain-state phase diagram for elongated metal iron particles (Fig. 5), using $t_m = 100$ s and 4 Gyr at 300 K calculations for the SP/SD transition, and the d_{max} and d_{max}^{100} data. The micromagnetic models are theoretically more accurate than previous analytical models (Butler & Banerjee 1975a), but the choice of input material parameters is also important.

In agreement with Butler & Banerjee (1975a), for long t_m (~4 Gyr) at 300 K, there is a direct SP to MD transition for near equate iron particles. This paper finds the transition to be for AR > 0.95, in contrast Butler & Banerjee (1975a) predicted this transition for AR > 0.8.

4.1 Comparison with electron holography data

Plotted in Fig. 5 are domain-state observational data for 40 olivine-hosted FeNi (kamakite) particles from Lappe et al. (2011), determined by the advanced transmission electron microscopy technique of off-axis electron holography. Electron holography directly images the magnetisation on nanometric scales allowing the identification
of domain state, that is, SD-like or SV-like (Dunin-Borkowski et al. 1998). Lappe et al. (2011) examined each particle more than once, and determined whether they were always SD, always SV or displayed mixed states; there was little indication of inter-grain magnetostatic interaction. The samples were synthetic ‘dusty-olivines’ produced from natural olivine crystals from Iceland.

Generally the SD states plot within the theoretical SD region, and the SV states within the theoretical MD region; importantly, the micromagnetic model better describes the data than the model of Butler & Banerjee (1975a). There are a few particles that do not agree with the numerical results, however, there are three possible causes for this: (1) The dimensions of the particles were determined from 2-D images, not tomography, therefore the thickness (and volume) of the particles is not accurately known, that is, there is a large degree of error as to the exact position of the particles on the domain state plot (Fig. 5). (2) The amount of nickel in the Fe–Ni is unknown; the model assumes stoichiometric iron; as the Ni content increases in the Fe–Ni system, increases slightly, whilst and decrease slightly (Tarasov 1993; Bozorth 1951). This will cause the SD/MD boundary limit to increase slightly. (3) It is becoming increasingly realised that the interpretation of electron holography images is not always straightforward, and commonly it is necessary to use micromagnetic solutions to interpret the images (Bryson et al. 2013; Almeida et al. 2014); Lappe et al. (2011) did not do this as this has only recently become standardised.

5 CONCLUSIONS

We have calculated and constructed the first domain-state phase diagram using a 3-D micromagnetic algorithm for elongated iron particles (Fig. 5). The predicted SD to MD transition size is larger than in the previous calculations of Butler & Banerjee (1975a). This difference has been shown to be partially related to the choice of material parameters used. For AR = 1 the SD to MD transition size agrees well with previous micromagnetic results (Snoeck et al. 2008). The analytically determined SP to SD transition is similar to that of Butler & Banerjee (1975a), except for equant grains as this paper calculated the transition using a combination of shape and magnetocrystalline anisotropy. Direct observations of the domain state of FeNi particles by electron holography (Lappe et al. 2011), agree better with the new domain-state phase diagram (Fig. 5) than that of Butler & Banerjee (1975a). Increasing levels of Ni, will increase the SD to MD transition size.

ACKNOWLEDGEMENTS

This work was funded by STFC consolidated grant ST/J001260/1.

REFERENCES

