A multi-agent approach to modelling interaction in human mathematical reasoning

Citation for published version:

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
The 2001 International Conference on Intelligent Agent Technology (IAT-01)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
A Multi-agent Approach to Modelling Interaction in Human Mathematical Reasoning

Alison Pease, Simon Colton, Alan Smaill, John Lee
Division of Informatics, University of Edinburgh.
80 South Bridge, Edinburgh, EH1 1HN, Scotland
{alisonp, simonco}@dai.ed.ac.uk, A.Smaill@ed.ac.uk, jh@cogsci.ed.ac.uk

1 Introduction

Current work in automated reasoning does not in general model social aspects of human mathematics, with a few exceptions, for example [1]. We are interested in modelling concept and conjecture refinement, i.e. the way in which the definition of a concept evolves as a conjecture develops. Modelling this process is important because (a) it will illuminate aspects of the social nature of mathematics and (b) it may be useful for improving existing automated reasoning programs. In §2 we outline descriptions by Devlin and Lakatos of the human process. In §3 we describe an agent architecture for this task and how it could be implemented using the HR theory formation system[2].

2 Social Aspects of Human Mathematical Reasoning

Devlin[3] challenges the viewpoint that mathematics should be seen as a purely logical endeavour. Logic seeks to abstract terms from their context and manipulate them in an objective way which is independent of the motivation behind the manipulation. Instead Devlin claims that any field of human knowledge should be interpreted in terms of communication and context, in which meaning and motivation play key roles. He argues that humans act rationally rather than logically, i.e. they act according to individual goals, desires and capabilities rather than following objective rules of logic. Therefore any sphere of human knowledge, even mathematics, should be seen as rational rather than logical.

Lakatos[4] highlights the roles that intuition, dialectic and group dynamics play in mathematics. He presents a rational reconstruction of the development of Euler's Conjecture and its proof, as a discussion between a cast of students and a teacher. The students start with different examples of polyhedra, from which someone suggests that 'for all polyhedra there is a relationship between the number of vertices (V), edges (E) and faces (F), namely that \(V - E + F = 2 \) (C). The discovery of counter-examples soon leads to a discussion of what constitutes a polyhedron and whether it is possible or useful to
define a subset of polyhedra for which the equation holds. According to their
intuition (influenced by their experience of objects they classify as polyhedra),
the students use different methods which enable them to accept, reject or im-
prove the concept or conjecture. We list some of the methods.
1. Induction - generalise from particulars. (Since the equation holds for all
regular polyhedra it holds for all polyhedra, i.e., C.)
2. Surrender - look for counter-examples and use them to refute C. (The
hollow cube\(^a\) is a counter-example since \(16 - 24 + 12 = 4\)).
3. Monster-barring - given a counter-example, modify the definition of the con-
cept or subconcept so as to exclude it. (The hollow cube is not a polyhedron
and therefore is not a real counter-example.) Note that Lenat’s AM program
was able to perform monster-barring [5].
4. Exception-barring 1: piecemeal exclusion - find those properties which make
a counter-example fail C and then modify C by excluding that type of counter-
example. (Generalising from the hollow cube we say that any polyhedron with
a cavity will be a counter-example. Therefore \(C'\) becomes ‘for all polyhedra
without cavities, \(V - E + F = 2\).’)
5. Exception-barring 2: strategic withdrawal - instead of listing the exceptions
(as above), withdraw into a much smaller domain for which \(C\) seems certain to
hold. (Generalising from the examples for which the equation holds we see that
they are all convex. So \(C'\) becomes ‘for all convex polyhedra, \(V - E + F = 2\).’)

Devlin and Lakatos both stress the development of mathematics through
social interaction. This indicates that an agent architecture, in which the
agents are defined by their intuitions, motivations and actions would provide
an appropriate framework.

3 An Agent Architecture for Concept Refinement

We define below an architecture of equal-status agents in terms of the problem
being addressed, what the agents do and how they communicate. Following
this, we suggest an implementation of this architecture using the HR theory
formation system.

The Problem: We want to model the social process of concept refinement in
the face of conjectured general properties and counter-examples to them.

The Agents: The task of the agents in our architecture is to develop inter-
esting concepts, conjectures and examples, and to react accordingly to the
introduction of counter-examples to a false conjecture. The methods outlined
above guide the roles that intuition, motivation and action play. Intuition is
built up via experience and used to generate concepts and conjectures via in-

\(^a\)A cube with a cube-shaped hole in it.
duction. Each agent is given a different set of examples, so that experience differs between them, and their intuitions vary. The strength of the intuition also varies, depending on the number of examples from which it derives. Intuition is used to guide the motivation to action. Motivation includes accepting, rejecting and modifying concept definitions and conjectures. Actions specify ways in which to do this, such as the methods outlined above. For example, an agent which suggests a conjecture based on many examples would have a strong intuition about it and in the face of counter-examples, the motivation would be to modify it rather than reject it, using either method 4 or 5 above. Intuition and motivation are dynamic since agents influence each other.

Communication The agents communicate by sending concepts, counter-examples and conjectures whenever one is found and negotiating about concept definitions. In Lakatos' discussion (temporary) agreement about concept definitions is reached by a strategy of accepting the most exclusive definition in order to continue the discussion. Another strategy might be to accept the definition suggested by the agent with the strongest intuition.

In [2] Colton describes a multi-agent approach to concept formation in pure mathematics, using the HR program which invents concepts, makes and proves theorems and finds counter-examples to false conjectures. Four copies of HR were employed as agents in an architecture where they communicated the most interesting concepts they invented. By enabling them to communicate conjectures and counter-examples instead, we suggest that the system could model the process of concept refinement using the architecture described above.

Each copy of HR must be supplied with a set of objects of interest (for example integers in number theory) from which it makes conjectures empirically about the concepts it invents. We propose to give each agent a different set of objects of interest. This means that the conjectures they make will be more likely to be false as they are based on a subset of the empirical evidence available. However, it will provide an opportunity for concept and conjecture refinement to occur in the following way:

1. Agent X makes a conjecture about a concept and communicates it to all agents.
2. Each agent looks at the examples it has and communicates back any counter-examples it finds.
3. X uses the counter-examples to redefine the concept and restate the conjecture. For example all the others are asked for concepts which are true about their counter-examples. If one concept is true of all the counter-examples, X generalises the counter-examples into a concept definition and fixes the conjecture by exception-barring. It then starts the process again.

As a theoretical example in number theory, suppose agents X, Y and Z
are working with the numbers 1 - 10, 11 - 50 and 51 - 60 respectively. Using
the method of induction, Z forms the conjecture $C = \text{all integers have an even}
\text{ number of divisors}$, and sends it to the others. X finds and communicates
counter-examples 1, 4 and 9. Since a high proportion of his knowledge refutes
C he has a strong intuition that it is false (not worth modifying). Therefore
his motivation is to reject the conjecture and he uses the method of surrender
to claim $\neg C$. Y finds and communicates counter-examples 16, 25, 36 and
49. Since they form quite a low proportion of his knowledge his intuition
is that it might be worth modifying C, so he uses the method of exception-
baring (piecemeal withdrawal) and looks for a generalisation of the known
counter-examples. He finds the concept \textit{square numbers} which has already
been formed, and modifies C to $C_Y = \text{all integers except square numbers have an even number of divisors}$. Z might use the method of exception-barring (strategic withdrawal) to modify C to $C_Z = \text{all integers between 50 and 60 have an even number of divisors}$. The new conjectures are now considered and counter-examples sought, with none found as they are all true ($\neg C$ is a dead end, C_Y an interesting conjecture and C_Z trivial).

The methods described by Lakatos have thus led in the above example to
the discovery of the concept \textit{all integers except square numbers} and the conjectures
\textit{all integers except square numbers have an even number of divisors} and
\textit{all integers between 50 and 60 have an even number of divisors}. It shows how
we might begin to model simplified social aspects of mathematical reasoning
via agent interaction.

4 Future Work and Conclusions

We intend to implement the number theory example in the agent architecture
to observe concept and conjecture refinement. Testing will be carried out to
ascertain whether the architecture improves HR’s performance or degrades it
(by wasting time on false or trivial conjectures), where performance is measured
by the number of interesting concepts, conjectures, and examples found.

There is also much scope for extending the architecture suggested above.
Lakatos describes further methods which allow interaction between proof at-
ttempts and counter-examples. For instance, a counter-example may show
where a proof is faulty (which steps of the proof it violates) and analysis of the
faulty proof may suggest a counter-example. The value of a hierarchy should
also be investigated. In Lakatos’ discussion there is a teacher whose role is
to \textit{stimulate} (suggest a controversial conjecture), \textit{guide} (judge when a certain
topic or method has been fully explored and suggest another) and \textit{evaluate}
discussion (point out any inconsistencies in the students’ claims). This may
tie in with a notion of respect between agents (thus more realistically simu-
lating group dynamics). Agents could record the sender’s name along with a
received message and build a respect measure from the value of the message.
They would then give priority to messages from more highly respected agents.
This extended architecture would better capture what is meant by social in-
teraction. The dialogue involved in producing a mathematical theory should
then itself be evaluated, although this will be harder (since it is a qualitative
judgement).

Modelling social aspects of mathematical reasoning within an agent ar-
chitecture is worthwhile since it would lead to a better understanding of the
human process. This would have theoretical value for philosophers of math-
ematics and practical value for students of mathematics, as a history of the
proof, including failures and collaboration between experts would avoid the
mystifying steps which are often a feature of published mathematics. Ad-
ditionally in providing new methods it may show how to model aspects of
mathematics not yet automated, or provide more efficient ways of modelling
these aspects already automated. The theoretical example suggests that im-
plementation of the architecture described is a very promising approach.

Acknowledgements

We would like to thank Paul Crook for comments on an earlier draft, as well
as the anonymous reviewers for their comments. This work was supported
by EPSRC grants GR/M45030, and GR/M98012. The second author is also
affiliated with the Department of Computer Science, University of York.

References

proach to reasoning. In Proceedings of the German Conference on Artificial

The Society for the Study of Artificial Intelligence and the Simulation of

[5] D. Lenat. AM: An Artificial Intelligence Approach to Discovery in Math-