Dynamic Semantics for Tense and Aspect

Citation for published version:

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Proceedings of the Fourteenth International Joint Conference on Artificial Intelligence, IJCAI 95, Montréal Québec, Canada, August 20-25 1995, 2 Volumes

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Dynamic Semantics for Tense and Aspect

Mark Steedman
University of Pennsylvania
Dept. of Computer and Information Science
200 South 33rd Street
Philadelphia PA 19104-6389
USA

Abstract
A semantics for tense, modality, and aspect in natural language must capture causal and contingent relations between events and states as well as merely temporal ones. The paper investigates a non-reified dynamic logic based formulation of the situation calculus is a formalism for a computational semantics for a number of temporal categories in English and suggests that some recent claims that dynamic logics are inherently unsuitable for this purpose have taken too narrow a view of the situation calculus.

1 Temporal Ontology
The most important thing to observe about the temporal ontology implicit in natural language tense and aspect is that it is not purely temporal. To take a simple example, the English perfect when predicated of an event like losing a watch says that some contextually retrievable consequences of the event in question hold at the time under discussion. (Such consequences have sometimes been described under the heading of "present relevance of the perfect.) As a result, conjoining such a perfect with a further clause denying those consequences is infelicitous.

(1) I have lost my watch (# but I have found it again)
In this respect the perfect stands in contrast to the more purely temporal tenses, such as the past, which make no comparable claim about the consequences of the core event.

(2) Yesterday I lost my watch (but I have found it again)
It is because categories like the perfect are not purely temporal that it is usual to distinguish them from the tenses proper as 'aspects'. Another aspect whose meaning is not purely temporal is the progressive or Imperfective. The predication that it makes concerning the core event is a subtle one. While the progressive clearly states that some event is ongoing at the time under discussion it is not necessarily the event that is actually mentioned. Thus in a below there seems to be a factive entailment about an event of writing. But in b, there is no such entailment concerning an event of writing a sonnet, for b is true even if the author was interrupted before he could complete the action.

Dowty [1979] named this rather surprising property of the progressive the imperfective paradox. The imperfective paradox is a sign that we must distinguish various types or sorts of core event in natural language temporal ontology. This system, which is described at greater length in [Steedman in press.], is briefly summarised as follows.

There are two key insights into this system which most theories either build upon or are forced to reinvent. The first concerns the temporal ontology itself and is usually attributed to Vendler [1967] though there are precenders in work by Jespersen Kenny and many earlier authorites including Aristotle. Vendler's taxonomy was importantly refined by Lakoff and Dowty, and has been further extended by many others. Such taxonomies typically distinguish 'states from events' and divide the latter into a number of types or types Vendler distinguishes 'activities', (events which have duration but don't change state like heat*writing), achievements (events which have no duration but do change state like eats amng) and accomplishments (which have duration and change state like eats writing a sonnet).

Many authors have proposed recursive sort hierarchies. Moens [1987, 1988] explained the aspectual sort hierarchy and possible coercions among Achievements in terms of a structure of the kind represented schematically in figure 1, representing an association in memory or the knowledge representation of all events with characteristic preparations and consequents, an idea that has since been adopted in DR. Theory (Kamp and Reyle, [1993, p 557-570]). Moens claimed that the preparation is in Vendler's terms an activity, the consequent is a (perfect) state, and that the core event is an achievement. There is a great deal more to say about the status of these categories, but we will take it as read here, noting merely that we shall follow these authors in assuming that accomplishments like writing a sonnet are composites of an activity of writing and a culminating achievement of writing a sonnet.
Figure 2 Past vs. Perfect (from Reichenbach 1947)

finishing the sound

The second key insight concerns relations among temporal entities, and is due to Reichenbach ([1947, Chapter VII, sections 48 and 51]) who sketched a semantics for time in terms of three underlying abstract time-points (again there are precedents, notably in work by Japernet). Reichenbach's real innovation was the notion of the reference point, which can be identified with the notion "the time (or situation, or context) that we are talking about." It is easiest to convey the idea by example. Reichenbach offers the diagram in Figure 2, in which the arrow indicates the flow of time to show the distinctions between the past perfect, the simple past, the present perfect, and the present perfect progressive. The important insight here is that the simple past is used to make a statement about a past time, whereas the perfect is used to make a statement about the present as was noted earlier in connection with the "present relevance property of examples like."

Besides the authors already cited, this system has also been extended importantly by Hornstein [1990].

Reichenbach's claim is consistent with the observation that past tense unlike the perfect demands that the reference point be explicitly established, either by a modifier, such as a when clause or by the preceding discourse. Thus, below is inappropriate as the last utterance of a discourse, except to the extent that the reader "accommodates" a temporal referent in Lewis and Schuelke's sense of that term—that is, it reproduces an appropriate individual in the database as one often must at the beginning of a modern novel. It is appropriate on the assumption that the reader can identify the time in the when clause.

(4) a. #Chapman breathed a sigh of relief.
 b. When Nixon was elected, Chapman breathed a sigh of relief.

(In many North American dialects of English the past tense does double duty for the perfect. I am assuming that this reading is excluded in this case by the most readily accessible aspectual category of breathing a sigh of relief.)

The fact that the discourse can establish a "anchor" for the reference point has led a number of authors, including Pardee [1973], Lord [1974], and others to identify tense and by implication R as "pronominal" or otherwise anaphoric in character.

2 Temporal Relations and the Situation Calculus

One of the most useful and attractive features of the situation calculus of McCarthy and Hayes [1985] was the use of terms like result(arrive(person), s) as individuals denoting situations or states as functions of other situations (functions like result are known as situational fluents. In the present paper we will reserve the term fluent for this particular kind.) Such terms can be used in rules like the following to transparently capture the notion that a person is present in the situation that results from their arrival.

(5) fit Person present(person result(arrive(person), s))

The STRIPS representation of actions and the associated solution to McCarthy and Hayes frame problem was originally thought of in procedural terms. However, Kowalski [1979] (circulated in 1974) showed it to be elegantly realizable in entirely declarative terms via the introduction of a closed world assumption and a more radical use of reflection to simulate modal quantification (see Nilsson [1980] p. 308-316 for discussion). Related techniques and their relation to ramification and qualification are further explored by Schubert [1990, 1994] and Reiter [1991].

Kowalski proposed a predicate holds, which applies to a proposition represented as a term and a state. In this notation a minimal world can be defined. A starting state including three clear blocks is defined as follows:

(6) holds(clear(a), s) ∧ holds(clear(b), s) ∧
 holds(clear(c), s)

The action of putting x on y can be represented as a STRIPS rule as follows. The preconditions are defined by the following rule which says that if you can get to x and you can get at y, the preconditions for putting x on y hold.

(7) holds(clear(x), s) ∧ holds(clear(y), s) ∧ x ≠ y ∧
 holds(preconditions(put(x, y), s))

(In the rule and henceforth, we adopt a convention whereby universal quantification over bound variables is left implicit.) The new facts that result from the action of putting x on y can be defined as follows:

(8) a. holds(on(x, z), s + t)
 b. holds(clear(z), s + t) ∧ holds(preconditions(put(x, y)), s)
 c. holds(on(y), s + t) ∧ holds(preconditions(put(x, y)), s)

Since we are assuming negation as failure, we do not need to state explicitly that y is no longer clear. How facts are implied in the following frame axiom which is the only frame axiom we need for the action of putting x on y.

(9) holds(p, s) ∧ (p ≠ clear(y) ∧ (p ≠ on(x, z)))
 ⇒ holds(p, result(put(x, y), s + t))

(10) holds(result(put(x, y), s + t))

(The use of inequality rather than implication here embodies a Horn-like assumption restricting p to terms in these rules). Kowalski's proposal was followed by much work on tense using refined calculus (Allen [1984], McDermott [1984], Kowalski and Sergot [1986]). It was also closely related to the notion of "transcription of qualifications"—see McCarthy [1977, esp. p. 1040], and much other subsequent work collected and reviewed in Gurevich [1987]. In particular Reiter's [1991] shows how the restricted frame axioms of successor state axioms can be derived automatically.

STEEDEMAN 1293
We can now define a predicate \(\text{possible}(a) \) closely related to the (deontic) modal operator \(O \), over the set of possible states, via the following rules which say that the start state \(s_0 \) is possible and the result of an action in a state is possible if its preconditions hold.

\[
\begin{align*}
(10) & \quad \text{possible}(a) \\
& \quad \text{possible}(s) \wedge \text{preconditions}(\text{action}, s) \\
& \quad \rightarrow \text{possible}((\text{action}, s))
\end{align*}
\]

The earlier goal of stacking a on b on c can now be realized as the goal of finding a constructive proof for the following conjunction:

\[
(11) \text{possible}(s) \wedge \text{holds}(a, s) \wedge \text{holds}(b, c) \wedge \text{preconditions}(\text{action}, s)
\]

These rules can be very straightforwardly realised in Prolog and can be made to yield a proof (although the search problem of finding such proofs automatically remains hard in general), in which

\[
(12) s = \text{result}(\text{puton}(a, b) \cup \text{result}(\text{puton}(b, c)), s_0)
\]

This technique restores declarativity to the logic embodying the STRIPS solving problem. There is a sense in which – despite the involvement of the closed world assumption – it also restores monotonicity, for so long as we do not add new facts (like some previously unsuspected object being present, or a familiar one having fallen off its support) or some new rule or frame axiom (say defining a new action or stating a new precondition on an old one) then we can regard negation-as-failure as merely efficiently encoding classical negation.

Of course, in the real world we do learn new facts and rules, and we encounter exceptions to the closed world assumption of complete knowledge. These problems are known in AI as the ramification problem (that is, that actions may have indefinitely many unforeseen consequences that our default model does not and cannot predict) and the qualification problem (that actions may have indefinitely many preconditions that our default model does not and cannot anticipate). In many recent papers the frame problem is assumed to include these further problems. However, if we are in possession of an efficient default model which works reasonably well most of the time, it may well be wiser to regard the problem of coping with its failures as residing outside the logic itself, in the truth maintenance or `housekeeping system'. Rather than a nonmonotonic logic, we could think in terms of a system of truth-maintaining transition between merely monotonic logics, a view that has been proposed by Kowalski.

However, there is another way of looking at all of these variants of the situation calculus. The extent to which the accessibility relation is defined in terms of a number of different events or causal primitives, possibly a large number it is possible to regard each of these as defining its own distinct accessibility relation, possibly differing from others in properties like transitivity. Such systems can then be viewed as instances of the “dynamic” logics that were developed in the first place for reasoning about computer programs – see Pratt [1976], Harel [1984], and Goldblatt [1992]. The application of various forms of dynamic logic in knowledge representation and natural language semantics has been advocated by Moore [1980], Roeschmann [1981], Webber [1985], and Schir and Levesque [1989].

Dynamic logics generalise the modal operators to individual actions, events or programs. For example if a (possibly nondeterministic) program or command \(o \) computes a function \(F \) over the integers, then we may write the following:

\[
\begin{align*}
(13) & \quad n \geq 0 \rightarrow (a(y = F(n))) \\
(14) & \quad n \geq 0 \rightarrow (a(y = F(n)))
\end{align*}
\]

The intended meaning of the first of these is for \(n \geq 0 \), after every execution of \(a \) that terminates, \(y = F(n) \). That of the second is (dually) that there is an execution of \(a \) which terminates with \(y = F(n) \).

While all of the calculi that we have considered so far are ones in which the elementary programs \(o \) are deterministic, dynamic logics offer a framework which would generalise to concurrent and probabilistic events. Offering a notation in which all of the theories discussed so far can be compared.

The particular dynamic logic that we are dealing with here is one that includes the following dynamic axiom (the operator \(v \) is a sequence an operation related to composition and to von Wright \(\nabla T \))

\[
(15) [a][b] P \rightarrow [a \bullet b] P
\]

In this we follow Moore [1980, ch. 3] and Roeschmann [1981]. The situation calculus and its many variants can be seen as refined versions of this dynamic logic.

We achieve an immediate gain in perspicuity by replacing the refined notation in a below by the equivalent dynamic expression \(b \)

\[
\begin{align*}
(10) a & \quad \text{hold}(a, b) \wedge \text{on}(b, c) \\
& \quad \text{result}(\text{puton}(a, b) \cup \text{result}(\text{puton}(b, c)), s_0)
\end{align*}
\]

Kowalski’s `valid' version of STRIPS can be very simply represented in this logic. The initial state of the world is as follows

\[
(17) \text{clear}(a) \wedge \text{clear}(b) \wedge \text{clear}(c)
\]

The axiom defining the preconditions of \(\text{puton}(x, y) \) is now directly definable in terms of the predicate \(\text{possible} \), which can now be identified with deontic modal possibility

\[
(18) \quad (\text{clear}(x) \wedge \text{clear}(y) \wedge x \neq y) \\
& \quad \rightarrow \text{possible}(\text{puton}(x, y))
\]

The consequences of \(\text{puton}(x, y) \) are now written as follows

\[
\begin{align*}
(19) & \quad \vdash \text{on}(x, z) \rightarrow ([\text{puton}(x, y)] \text{clear}(z)) \\
& \quad \vdash [\text{puton}(x, y)] \text{on}(x, z)
\end{align*}
\]

The frame axiom is written as follows

\[
(20) \quad \vdash (p \wedge p \neq \text{clear}(z) \wedge p \neq \text{on}(z, x)) \\
& \quad \rightarrow ([\text{puton}(x, y)] p)
\]

The transitive part of the possibility relation is now reduced to the following

\[
(21) \quad \vdash (\text{possible}(a) \wedge a \rightarrow \text{possible}(b)) \rightarrow \text{possible}(a \bullet b)
\]

This fragment preserves the virtues of Kowalski's treatment in a modal notation. That is, the following conjunctive goal can, given a search control be made to deliver a constructive proof that \(\alpha = \text{puton}(b, c), \text{puton}(a, b) \).
(22) \text{possible}(a) \land \lnot \exists a \in b \land \text{on}(b, c)

The suppression of state variables in dynamic logic affords some improvement in perspicuity over the otherwise equivalent previous proposals of howald, McCarty, Schubert and Reiter that it is here used to capture, and makes it easier to extend the calculus.

The above example only concerns non-compositional or non-durative events, like the original situation calculus. However, the following dynamic Horn clauses begin to capture the composite events discussed earlier, along the lines suggested by Steedman [1982], Moens [1987] and White [1984]. (The example is greatly simplified and omits many rules needed to capture even this small domain completely.) First we need axioms defining the consequent and preconditions for starting and stopping.

(23) \begin{align*}
a &\models \text{start}(p) \in \text{progress}(p) \\
b &\models \text{not}(p) \in \text{progress}(p) \rightarrow \text{possible} \text{(start}(p))
\end{align*}

(24) \begin{align*}
a &\models \text{progress}(p) \rightarrow \text{possible} \text{(stop}(p))
\end{align*}

We also need a frame axiom for stopping (which could be derived as in Reiter [1981]).

(25) \begin{align*}
\lnot p \land (p \in \text{progress}(p)) \rightarrow \text{(stop}(p))p
\end{align*}

Finally, we need a definition of the progressive coercion achievements to accomplishments and accomplishments to preparatory activities. (Note that in b below we assume in line with the discussion in section 2.1, that accomplishments are made up of an activity and a culminating achievement. These states are here represented as terms in lieu of a proper system of sets.)

(26) \begin{align*}
a &\models \text{progress}(a) \rightarrow \text{progress}(\text{activity}(a)) \\
b &\models \text{progress}(\text{activity}(a)) \\
&\rightarrow \text{progress}(\text{accomplishment}(\text{activity}(a))) \\
c &\models \text{preparation}(\text{accomplishment}(a)) \land \text{activity}(a) \\
&\rightarrow \text{achievement}(a)
\end{align*}

The following query asks (slightly artificially) for a plan a yielding a state where kets is finishing writing the novel In Disgust of vulgar superstition

(27) \text{possible}(a) \land \text{progress}(\text{achievement}(\text{finish}(\text{write}(\text{kets in disgust}))))

(The function finish maps an accomplishment onto its culminating achievement and is distinct from stop the endpoint of an activity.) To find the plan we must assume that the knowledge base also makes explicit the relation between finishing an activity and its characteristic preparation the activity itself implies in the nucleus of figure 1.

(28) \begin{align*}
&\models \text{preparation}(\text{achievement}(\text{finish}(a)), \text{activity}(a))
\end{align*}

The accessibility relation implicit in definition 21 now gives rise to a proof where

(29) \begin{align*}
&\models \text{start}(\text{write}(\text{kets in disgust}))
\end{align*}

The proof that generates this plan does not involve the subgoal of showing \text{not(Apply(kets in disgust))}. Indeed the proof would be quite consistent with adding the denial of that fact, because the variable ach in rule 26 is not involved in the antecedent capturing the imperfective paradox.

Of course, asking for a plan to bring about a situation in which Watts is finishing writing In Disgust of vulgar superstition is slightly artificial because such states are extenuative, and there may be several such plans. For example, consider the effect of adding the following rule defining the consequent and preconditions of arriving.

\begin{align*}
&\models \text{arrive}(x) \rightarrow \text{possible} \text{(arrive}(x)) \\
&\models \text{not} \text{(present}(x)) \rightarrow \text{possible} \text{(arrive}(x))
\end{align*}

The accessibility relation 21 now allows

(30) \begin{align*}
&\models \text{start}(\text{write}(\text{kets in disgust})) \land \text{arrive}(x) \\
&\models \text{start}(\text{write}(\text{kets in disgust})) \land \text{arrive}(x) \\
&\models \text{arrive}(y) \text{etc.}
\end{align*}

As plans these are rather foolish because of well-known inherent limitations in the simplest SHRPS planner although incorrect plans such as the following are still correctly excluded for the goal in question.

(31) \begin{align*}
&\models \text{start}(\text{write}(\text{kets in disgust})) \land \text{arrive}(x) \\
&\models \text{stop}(\text{write}(\text{kets in disgust}))
\end{align*}

Part of the problem is that we are not yet distinguishing true consequences of fluents, including causal relations among fluents themselves, from facts that are merely coincidentally true in the state that results because of the inertial property of the frame axiom. Nor are we distinguishing causal relations between fluents from non-temporal sequence.

We can remedy this shortfall by distinguishing the temporal sequence operator from a causal or contingent sequential operator, which we will write as \text{cause} for its relation to one of Kowalski's [1986] operators. Accordingly we need to add some further rules parallel to 21 reflecting dynamic modal causality including the following

(32) \begin{align*}
&\models \text{possible}(a) \land \text{not}(\text{ach}(b)) \rightarrow \text{possible}(\text{ach}(b))
\end{align*}

We now add a rule saying that anyone else being present causes kets to stop writing.

(33) \begin{align*}
&\models \text{present}(z) \land (z \neq \text{kets}) \\
&\models \text{progress}(\text{write}(\text{kets in disgust})) \\
&\models \text{stop}(\text{write}(\text{kets in disgust}))
\end{align*}

We can now search for plans that make an event of kets stopping writing necessarily occur like a below, as distinct from those that merely make it possible like b. By constructively searching for a proof that \text{possible}(\text{stop}(\text{write}(\text{kets in disgust}))))

(34) \begin{align*}
&\models \text{ach}(a) \\
&\models \text{ach}(b)
\end{align*}

Again, the examples are artificial though usefulness for an account of tense and temporal anaphora will become apparent in the next section.

3 Temporal Anaphora

The event-based calculus over counterfactual partially specified states discussed in the previous section offers a promising candidate for a representation of Reichenbach's reference point, \text{R}, in the form of determinate situational fluents \text{a}. This opens up the possibility of applying the general modal apparatus developed so far...
not only for quantifying over states but to act as the temporal link between sentences and clauses, as in when-clauses and multi-sentence discourse. Several logical and computational approaches have explored this possibility.

Temporal anaphora like all discourse anaphora and reference resolution is even more intimately dependent upon world knowledge than the other temporal categories that we have been considering. In order to control this influence, WP will follow the style of much work in AI drawing most of our examples from a restricted domain of discourse. We will follow Isard [1974] in taking a board game as the example domain. Imagine that each model in a modal structure is represented as a database, or collection of facts describing not only the position of the pieces in a game of chess, and the instantaneous moves at each frame, but the fact that at certain times durative or composite events like exchanging Rooks or White attacking the Black Queen are in progress across more than one state.

Consider the following examples from such a domain:

(36) a. When I took your pawn you took my queen.
 b. 1 took your pawn. You took my queen.

The the-clause in a, above establishes a reference point for the tense of the main clause, just as the definite NP I eat establishes a referent for the pronoun. Indeed the the-clause itself behaves like a definite, in that it seems to presuppose that the event of my taking your pawn is identifiable to the hearer. Of course, the reader will have effortlessly accommodated this presupposition in Lewis and Stalnaker’s sense of the term. The first sentence in b, above, behaves exactly like the when clause in setting the reference point for the second. The only difference is that the simple declarative I took your pawn itself demands a previously established reference point to be anaphoric to, whereas the when clause causes a new reference point to be constructed.

As has been frequently noticed, the state to which the tense in you taking my queen refers in a, above, is not strictly the state in which I took your pawn. It is the state that resulted from that action. However, it is not invariably the case that the temporal reference point moves on in this way. Most obviously a stative main clause is primarily predicated of the original reference point of the when-clause.

(37) When I took your pawn, T did not know it was protected by your knight.

(38) When I took your pawn, I used a rook.

In fact, as Ritchie [1979], Partee [1984], Moens and Steedman [1988], and Kamp and Reyle [1993] have pointed out, in strictly temporal terms, we can find main clauses that precede the reference point established by a when clause.

(39) When I won my only game against Bobby Fischer, we played Australian Rules.

These phenomena arise because the temporal referent is not strictly temporal. Rather than being a time or an interval it is (a pointer to) an event-nucleus of the kind discussed earlier.

In the terms of our modal frame, the preparation of an event is the activity or action that led to the state in which that achievement took place. The consequent is the consequent state, and includes the entire sub-tree of states accessible from that state. The referent-setting effect of a when-clause can then be seen as identifying such a nucleus. The main clause is then temporally located with respect to the nucleus. This may be by lining it up with the core event itself either as a property of the initial state, as in example 37, or as a property of the transition itself as in 38. Alternatively, since accessibility is defined in terms of the subsequent actions, the actual subsequent actions are a possible main clause as in 36. Or the main clause may be located with respect to the preparation, as in 39. Which of these alternatives a given example gives rise to is a matter determined by the knowledge representation, not by rules of the semantics.

On the assumption that the consequent in the nuclear referent includes the entire subtree of future states, the information needed by conditionals, modals, and other referent-setting adverbials will be available.

In the dynamic situation calculus, the history of events is a sequence of fluents such as the following:

(40) (36) a. If you take my queen, you may win.
 b. If you had taken my queen, you might have won.
 c. Since you took my queen, you have been winning.

All of this suggests that states of partial possible worlds in a logic of action deriving ultimately from von Wright and McCarthy and Hayes, with a much enriched ontology involving a rather intimate connection to the knowledge-base are appropriate candidates for a Kripkean-anaphoric account of tense and temporality. But this does not tell us how the temporal referent is set up to act as a referent for anaphora.

In the dynamic situation calculus, the history of events is a sequence of fluents such as the following:

(41) start(write(keats in disgust)) arrive(chapman) stop(write(keats in disgust))

The referent of a when-clause such as When Chapman arrived is simply the sequence up to and including arrive(chapman), namely.

(42) start(write(keats, in disgust)) arrive(chapman)

To identify the referent we need the following definition of a relation we might call evoke. This is merely a logic-programming device which defines a search for a determinate situational fluent of the form α, β or α and over a history in which the sequence operators are "left-associative" (we only give the rules for the operator, here):

(43) a. evoke(α, β, γ) - α evoke(α, β, γ)
 b. evoke(α, β, γ) - α evoke(α, β, γ)

The referent-setting effect of when can then be captured in the following rules which first find the current history of events, then evoke a suitable reference point, then test for the appropriate relation when (Again this is a logic programming hack which could be passed over, and again there are two further rules with δ for these omitted here).
(44) \[S(history) \leftrightarrow \langle a, \beta \rangle, history \] \[\left[o, \delta \right] p \rightarrow \langle \beta, state(p) \rangle \]
\[S(history) \leftrightarrow \langle a, \beta \delta \rangle, history \] \[\left[o, \delta \right] p \rightarrow \langle \beta, event(t) \rangle \]

The predicate \(S \) determines the Rechenbachian speech point, which is a fluent or sequence of fluencts \(S(history) \) is assumed to be available in the database, as a fact. The first rule, \(a \), applies to when sentences with state-type main clause propositions, and says that \(\langle \beta, state(p) \rangle \) is true if you can evoke a fluent ending in \(\beta \) after which \(p \) holds. The second applies to when sentences with event-type main clauses, and says that \(\langle \beta, event(t) \rangle \) is true if you can evoke a fluent whose last two events are \(\beta \) and then \(t \). The question \(b \), below concerning the ensuing state, therefore translates into the query \(b \).

(45) \[S(history) \leftrightarrow \langle a, \beta \rangle, history \] \[\left[o, \delta \right] p \rightarrow \langle \beta, state(p) \rangle \]
\[S(history) \leftrightarrow \langle a, \beta \delta \rangle, history \] \[\left[o, \delta \right] p \rightarrow \langle \beta, event(t) \rangle \]

In our greatly simplified world, this is true despite the fact that under the closed world assumption, the event of Chapman finishing writing the Disguise of Vulgar Superstition did not finish the poem, because of the earlier elimination of the phenomenon of periphrastic paradigms.

A fluent-question with an event in the main clause as in \(a \) below translates as in \(b \).

(46) \[S(history) \leftrightarrow \langle a, \beta \rangle, history \] \[\left[o, \delta \right] p \rightarrow \langle \beta, state(p) \rangle \]
\[S(history) \leftrightarrow \langle a, \beta \delta \rangle, history \] \[\left[o, \delta \right] p \rightarrow \langle \beta, event(t) \rangle \]

In the case to hand, this last will yield a proof with the following constructive instantiation:

(47) \[\langle start(writing(keats in disguise)) \rangle arr(keats) \]
\[\langle stop(writing(keats in disguise)) \rangle arr(keats) \]

Either way, the enduring availability of the Rechenbachian reference point for later simple tense sentences can be captured on the assumption that the act of evoking a new fluent causes a subevent to the database, causing a new fluent (e.g. of the form \(F(n) \)) to be asserted, after any existing fact of the same form has been removed, or retracted. (We pass over the formal details here, merely noting that for this purpose a notion of non-declarative STRIPS-like formulation seems to be the natural one, although we have seen how such non-declarativeness can be eliminated from the system.)

The representation also captures the fact that Keats stopped writing the poem because Chapman arrived after Keats started writing, not because of it.

Of course, it will be clear from the earlier discussion that such a system remains oversimplified. Such examples also suggest that the fluencts themselves should be considerably enriched on lines hinted at in earlier sections. They need a system of types or sorts of the kind discussed in section 1. They should also be structured into nested structures of causal or, more generally, contingent sequences.

Since we have also observed that main clause events may be simultaneous with, as well as consequent upon, the when clause event, fluencts must also be permitted to be simultaneous, perhaps using the connective \(\& \) introduced by Feleg [1987] to capture the relation between embedded events like starting to write "in Disguise of Vulgar Superstition" and starting to write, generalising the above rules accordingly. Partial ordering of fluencts must also be allowed. The inferential possibilities implicit in the notion of the nucleus must be accommodated, in order to capture the fact that one event may cause the preparation of another event to start, thereby embodying a non-immediate causal effect.

Very little of this work has been done, and it may be useless to speculate in advance of concrete solutions to the many real problems that remain. However, the limited fragment outlined above suggests that dynamic logic may be a promising framework in which to pursue this further work and bring together a number of earlier approaches. In this connection, it is perhaps worth remarking that of the seven putative limitations of the situation calculus and its relatives claimed in the critical review by Shoham and Goyal [1988b, p. 422-424] five limitation to instantaneous events, difficulty of representing non-immediate causal effects, dittos of concurrent events, dittos of continuous processes, and the frame problem either have been overcome or have been addressed to some extent in the published work within the situation calculus, while the remaining two (the qualification problem and the ramification problem) have not been overcome in any framework, possibly because they do not belong in the logic at all.

Acknowledgements

Thanks to John van Beulhem, Stephen Isard, Mark Johnson, Marc Moens, Charlie Orens, Jong Park, Matthew Stone, John Thompson, Benny Webber, and Michael White for advice and criticism. Support was provided in part by NSF grant no. IRI-81-17110 and CISE IP, CDA 88-24719, DARPA grant no. N60001-94-C-0041 and ARO grant no. DAAB04-94-1-0426.

References

[Isard, 1974] Stephen Isard What would you have done if Theoretical Linguistics 1 233-255

STEEEDMAN 1297
[Kamp and Reyle, 1993] Hans Kamp and Uwe Reyle
From Discourse to Logic, Dordrecht, Kluwer

[Kowalski 1979] Robert Kowalaki
Logic for Problem Solving
Amsterdam, North Holland

[Kowalski and Sergot, 1986] Robert Kowalski and
Michael Sergot
A logic-based calculus of events
NeW Generation Computing 4 67-95

[Lansky 1986] Amy Lansky
A representation of parallel activity based on events
Proceedings of the workshop on planning and reasoning
about action
Timberline Lodge, Mount Hood OR, 50-86

Epistemological Problems of Artificial Intelligence
Proceedings of the 5th International Joint Conference on Artificial Intelligence, 1038-1044

[McCarthy and Hayes 1960] John McCarthy and Pat Hayes
Some philosophical problems from the standpoint of Artificial Intelligence
in Bernard Meltzer and Donald Michie (eds), Machine Intelligence 4
Edinburgh, Edinburgh University Press, 473-502

[McDermott, 1982] Drew McDermott
A temporal logic for reasoning about processes and actions
Cognitive Science, 6 101-155

[Moens 1987] Marc Moens
Tense Aspect and Temporal Reference
PhD dissertation, University of Edinburgh

[Moens and Steedman, 1988] Marc Moens and Mark Steedman
Temporal ontology and temporal reference
Journal of Computational Linguistics 14 15-28

[Moore 1980] Robert Moore
Reasoning about Knowledge and Action
PhD dissertation, Cambridge MA
MIT Press, published as TN-191, Menlo Park CA, SRI International

Principles of Artificial Intelligence
Palo Alto CA, Tioga

[Partee 1973] Barbara Partee
Some structural analogies between tenses and pronouns in English
Journal of Philosophy, 70 601-609

[Partee 1984] Barbara Partee
Nominal and temporal anaphora
Linguistics and Philosophy, 7 243-286

[Pednault, 1989] Edward Pednault
ADL exploring the middle ground between STRIPS and the situation calculus,
in Ronald Brachman et al (eds), Proceedings of the 1st International Conference on Principles of Knowledge Representation and Reasoning, Palo Alto CA
Morgan Kaufmann, 324-332

Concurrent Dynamic Logic
Journal of the Association for Computing Machinery, 34 450-479

[Pratt 1976] Vaughan Pratt
Process logic
Proceedings of the 6th Annual ACM Conference on Principles of Programming Languages, 93-100

[Reichenbach, 1947] Hans Reichenbach
1947, Elements of Symbolic Logic
Berkeley CA, University of California Press

[Reiter, 1991] Ray Reiter
The frame problem in the situation calculus: a simple solution (sometimes) and a completeness result for goal regression,
in Vladimir Lifschitz, (ed), AI and Mathematical Theory of Computation
Papers in Honour of John McCarthy
New York, Academic Press, 359-380

[Reiter, 1993] Ray Reiter
Proving properties of states in the situation calculus
Artificial Intelligence 64 337-351

[Ritchie, 1979] Graeme Ritchie
Temporal clauses in English
Theoretical Linguistics, 6 87-115

[Rosenschein, 1981] Stanley Rosenschein
Plan synthesis: a logical perspective,
in Proceedings of the 7th International Joint Conference on Artificial Intelligence, Vancouver, August 1981, 331-337

[Scherl and Levesque, 1993] R Scherl and Hector Levesque
The Frame Problem and knowledge producing actions
Proceedings of the 11th National Conference on Artificial Intelligence
Washington, AAAI 689-695

[Schubert, 1990] Lenhart Schubert
Monotonic solution of the frame problem in the situation calculus
An efficient method for worlds with fully specified actions,
in Henry Kyburg R Loui and G Carlson (eds), Knowledge Representation and Defeasible Reasoning
Dortrecht, Kluwer, 23-G7

[Schubert 1994] Lenhart Schubert
Explanation closure, action closure and the Sandewall test suite for reasoning about change
Journal of Logic and Computation (to appear)

[Shoham, 1988a] Yoav Shoham
Reasoning about Change
Cambridge MA MIT Press

[Shoham and Goyal, 1988b] Yoav Shoham and N Goyal
Temporality reasoning in AI,
in Howard Shrobe, (ed), Exploring Artificial Intelligence
Palo Alto CA Morgan Kaufmann 419-438

[Steedman, 1982] Mark Steedman
Reference to past time,
in Robert Jarvella and Wolfgang Klein, (eds)
Speech, Place, and Action
New York, Wiley, 125-157

[Steedman, in press] Mark Steedman
Temporality in J van Benthem and A ter Meulen (eds)
Handbook of Logic and Language
North Holland

[Vendler, 1967] Zeno Vendler
Linguistics in Philosophy
Ithaca, Cornell University Press

[Webber, 1983] Bonnie Webber
Logic and Natural Language
IEEE Computer, Special Issue on Knowledge Representation, October 1983, pp 43-46

[Webber, 1988] Bonnie Webber
Tense as discourse anaphor
Computational Linguistics, 14 61-73

A Computational Approach to Aspectual Composition
PhD dissertation, Philadelphia, University of Pennsylvania