Evidence of Fanning in the Ophiuchus Stream

Citation for published version:

Digital Object Identifier (DOI):
10.3847/2041-8205/816/1/L4

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Astrophysical Journal Letters

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
EVIDENCE OF FANNING IN THE OPHIUCHUS STREAM

Published 2015 December 28 • © 2016. The American Astronomical Society. All rights reserved.
The Astrophysical Journal Letters, Volume 816, Number 1

179 Total downloads
Cited by 1 articles

Export citation and abstract

BibTeX RIS

Hide share options
E-mail Facebook Twitter Google+ CiteULike Mendeley

Hide article information

Author e-mails
bsesar@mpia.de

Author affiliations
1 Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg, Germany
2 Department of Astronomy, Columbia University, 550 West 120th Street, New York, NY 10027, USA
3 Division of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125, USA
Abstract

The Ophiuchus stellar stream presents a dynamical puzzle: its old stellar populations (~12 Gyr) cannot be reconciled with (1) its orbit in a simple model for the Milky Way potential and (2) its short angular extent, both of which imply that the observed stream formed within the last < 1 Gyr. Recent theoretical work has shown that streams on chaotic orbits may abruptly fan out near their apparent ends; stars in these fans are dispersed in both position and velocity and may be difficult to associate with the stream. Here we present the first evidence of such stream-fanning in the Ophiuchus stream, traced by four blue horizontal branch stars beyond the apparent end of the stream. These stars stand out from the background by their high velocities ($v_{\text{los}} > 230 \text{ km s}^{-1}$) against ~40 other stars: their velocities are comparable to those of the stream, but would be exceptional if they were unrelated halo stars. Their positions and velocities are, however, inconsistent with simple extrapolation of the observed cold, high-
density portion of the stream. These observations suggest that stream-fanning may be a real, observable effect and, therefore, that Ophiuchus may be on a chaotic orbit. They also show that the Ophiuchus stream is more extended and hence dynamically older than previously thought, easing the stellar population versus dynamical age tension.

Related links

Usage and citation metrics

Access this article
Login options

Individual login

or

Institutional login via Athens/Shibboleth

The computer you are using is not registered by an institution with a subscription to this article. Please log in below. Find out more about journal subscriptions at your site.

Purchase this article online

Buy this article

By purchasing this article, you are accepting IOP's Terms and Conditions for Document Delivery. If you would like to buy this article, but not online, please contact custserv@iop.org.

Make a recommendation

Recommend this journal

To gain access to this content, please complete the Recommendation Form and we will follow up with your librarian or Institution on your behalf.

Subscribe to this journal

Corporate researchers and Institutional subscribers

Related content

THE NATURE AND ORBIT OF THE OPHIUCHUS STREAM

GLOBULAR CLUSTER STREAMS AS GALACTIC HIGH-PRECISION SCALES—THE POSTER

CHILD PALOMAR 5
LINE-OF-SIGHT VELOCITY AND METALLICITY MEASUREMENTS OF THE PALOMAR 5 TIDAL STREAM

MILKY WAY MASS AND POTENTIAL RECOVERY USING TIDAL STREAMS IN A REALISTIC HALO

WHAT A TANGLED WEB WE WEAVE: HERMUS AS THE NORTHERN EXTENSION OF THE PHOENIX STREAM