Favourable long-term outcome of granulomatous colitis involving two Escherichia coli strains with multiple antimicrobial resistances in a French bulldog in Germany

Citation for published version:
Mueller, M, Dahlem, D, Henrich, M, Neiger, R & Schmitz, S 2016, 'Favourable long-term outcome of granulomatous colitis involving two Escherichia coli strains with multiple antimicrobial resistances in a French bulldog in Germany', Veterinary Record Case Reports, vol. 4, e000296.
https://doi.org/10.1136/vetreccr-2016-000296

Digital Object Identifier (DOI):
10.1136/vetreccr-2016-000296

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Veterinary Record Case Reports

Publisher Rights Statement:
Copyright 2016 British Veterinary Association. All rights reserved. For permission to reuse any of this content visit http://group.bmj.com/group/rights-licensing/permissions.
This is the final peer-reviewed manuscript as accepted for publication The BMJ submission template was used by the authors.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Submission template for full cases

All case reports MUST be submitted online using this Word template. Please refer to the Hints and Tips template so you know what to include in each section
 o http://mc.manuscriptcentral.com/vetreccr
 o You will be asked for more detailed information on submission where you can also upload images, multimedia files, etc
 o Further details are available in the Instructions for authors

For studies using client-owned animals the article must demonstrate a high standard (best practice) of veterinary care and have informed client consent

You, your practice or institution must be a subscriber to Veterinary Record Case Reports in order to submit. Subscribers can submit as many cases as they like, access all the published material, and re-use any published material for personal use and teaching without further permission.
 o For more information on rates and how to purchase your subscription visit
 http://vetrecordcasereports.bmj.com/site/about/Subslanding.xhtml
 o Contact your librarian, head of department or practice owner to see if your institution already has a subscription

<table>
<thead>
<tr>
<th>TITLE OF CASE Do not include “a case report”</th>
</tr>
</thead>
<tbody>
<tr>
<td>Favourable long-term outcome of granulomatous colitis involving two Escherichia coli strains with multiple antimicrobial resistances in a French bulldog in Germany</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>SUMMARY Up to 150 words summarising the case presentation and outcome (this will be freely available online)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 2-year-old female French bulldog was presented for chronic large bowel diarrhoea. The dog had been suspected to have granulomatous colitis, but no improvement was noted with enrofloxacin treatment. Diagnosis was confirmed by histology and fluorescent in situ hybridization. Isolated Escherichia coli (E.coli) strains showed multiple resistances to antimicrobials, including enrofloxacin. Treatment with potentiated amoxicillin and cefovecin resulted in complete resolution of clinical signs within 2 weeks and treatment was continued for a total of 8 weeks. The dog had no signs of large bowel diarrhoea and gained 2 kg of body weight within 10 months. This is the first case report of a French bulldog with granulomatous colitis with a favourable long-term outcome despite colonisation with multi-resistant adherent-invasive E.</td>
</tr>
</tbody>
</table>
coli. This case highlights the importance of antimicrobial sensitivity testing from colonic mucosal biopsy samples in canine granulomatous colitis. It should raise awareness of this disease in continental Europe.

BACKGROUND *Why you think this case is important – why did you write it up?*

Canine granulomatous colitis (GC), previously also known as histiocytic ulcerative colitis, is characterised by chronic large intestinal diarrhoea, severe tenesmus, haematochezia, pain, and weight loss. The disease has predominantly been reported in boxer dogs < 4 years of age (Churcher and Watson 1997, Craven and others 2011). It was long suspected to have an infectious cause, as it resembled Whipple’s disease in humans (Van Kruiningen and others 1965, Afshar and others 2010) especially as clinical remission in response to antibiotic therapy was documented (Hostutler and others 2004). Later investigations showed that both dysregulation of local immune responses (likely genetic in origin) and bacterial agents were involved in the development of canine GC (Simpson and others 2006). *Escherichia coli* (*E.*coli) strains which resemble adherent invasive *E. coli* (AIEC) detected in a subset of humans with Crohn’s (Darfeuille-Michaud, Arlette Boudeau et al. 2004) disease have been documented in mucosal biopsies from dogs with GC (Simpson et al. 2006). Initially, dogs with GC responded well to treatment with enrofloxacin, but antimicrobial resistance is increasingly reported. Treatment failure is becoming more common; and antimicrobial resistance is associated with poor outcome (Craven and others 2010).

Since the first reports in boxer dogs, several single case reports and small case series of GC have also been described in other breeds, mainly French bulldogs (Stokes and others 2001, Tanaka and others 2003, Manchester and others 2013), but also in a Mastiff, Alaskan Malamute, Doberman Pinscher, English bulldogs and two Beagle dogs (Stokes and others 2001, Hostutler and others 2004, Carvallo and others 2014). Overall, the disease has predominantly been described in the USA, with single cases in Japan, Australia, Brazil and Europe (Van der Gaag and others 1978; Churcher & Watson 1997, Tanaka and others 2003, German and others 2006, Krafft and others
Here we report the first case of GC in a French bulldog from Germany with a favourable long-term outcome despite multidrug antimicrobial resistance of the isolated *E. coli* strains.

CASE PRESENTATION Presenting features, clinical and environmental history

A 2-year-old entire female French bulldog was referred to the Small Animal Clinic for investigations into large bowel diarrhoea of 18 months duration. The diarrhoea had progressed from soft to watery stools with an increased defecation frequency to daily haematochezia with severe tenesmus and dyschezia. Additionally, weight loss of approximately 1.5 kg (14% of the dog’s total body weight) and inappetence were noted for 4 weeks prior to presentation. Previous treatments included feeding of a hydrolysed protein diet (z/d, Hill’s), and the administration of fenbendazol (Panacur; MSD; 50 mg/kg once daily for 3 days) and enrofloxacin (Baytril; Bayer, 10 mg/kg every 24 hours for 6 weeks). When no improvement was noted, metronidazol (Clont; INFECTOPHARM; 10 mg/kg every 24 hours for 14 days) had been prescribed, which also did not resolve or improve clinical signs.

INVESTIGATIONS If relevant

On physical examination the dog presented with a body condition score of 4/9 (11.8 kg), was moderately subdued but responsive with no abnormalities of cardiovascular parameters and a normal rectal body temperature. Digital rectal manipulation elicited moderate pain and a slightly irregular mucosal surface was palpated. The canine chronic enteropathy clinical activity index (CCECAI) indicated severe disease (17 points; with > 12 considered severe) (Jergens 2004). Faecal examination (sedimentation/ flotation and Giardia antigen ELISA) had been performed
several times prior to referral and consistently yielded negative results; thus it was not repeated.

Complete blood count (ADVIA 2120 automated haematology analyser, Siemens Healthcare Diagnostic, Eschborn, Germany) revealed moderate leucocytosis (17.8 10^9 /L; reference interval [RI] 5.5-13.7 10^9 /L) with mild mature neutrophilia (13.5 10^9 /L; RI 2.8-8.7 10^9 /L) and mild monocytosis (2.1 10^9 /L; RI 0.1-0.8 10^9 /L), which was interpreted as a stress leucogramm. Serum biochemistry showed mild hypoalbuminaemia (28.6 g/l; RI 29.6-37.0 g/l) as the only abnormality. Serum cobalamin concentration was determined to assess possible malabsorption/small intestinal involvement, especially as weight loss was part of the dog’s problems, and was 399 pg/ml (RI 300-800 pg/ml). Serum trypsin-like immunoreactivity was not determined and no ACTH-stimulation test was performed, as both exocrine pancreatic insufficiency and hypoadrenocorticism were considered extremely unlikely causes of the dog’s clinical signs.

On abdominal ultrasonography, moderate mesenteric lymphadenopathy without change in echotexture or structure of the lymph nodes, and severe transmural thickening of the colon were detected (Figure 1). These changes were considered consistent with an infiltrative process of the colonic wall. Inflammation seemed more likely due to the early onset and long duration of clinical signs, even though neoplasia (especially alimentary lymphoma) could not be ruled out at this stage. After a 48-h fast and three warm-water enemas, proctoscopy/colonoscopy was performed under general anaesthesia using a flexible endoscope (9 mm Diameter; PENTAX EG2730K, Germany). Macroscopically, the colonic mucosa appeared moderately hyperaemic and oedematous, with a severely irregular and rigid surface, making air insufflation during endoscopy and appropriate visualisation extremely difficult. Visualisation of the ileocaecal valve or intubation of the ileum was not possible. Eight colonic mucosal pinch biopsies were obtained for histopathology. Two additional biopsies were immediately transferred to 2 ml Eppendorf tubes
containing fresh sterile LB broth (Sigma-Aldrich Chemie GmbH, Munich, Germany) for bacterial culture. Colonoscopy was followed by a survey gastroduodenoscopy to ensure no gross lesions were missed in the accessible part of the upper gastrointestinal tract. Ten pinch biopsies each were obtained from the duodenum and from the stomach, respectively, for histopathological examination.

Histopathological assessment of gastric and duodenal mucosal biopsies revealed no architectural changes but mildly increased numbers of lymphocyte and plasma cell counts within the lamina propria (according to Day and others 2008). Colonic mucosa samples demonstrated a large number of macrophages with granular cytoplasm as well as lesser numbers of neutrophils, lymphocytes, plasma cells and eosinophils within the lamina propria. The majority of colonic crypts were effaced and obscured by the infiltration. The remaining crypts were mildly dilated; the overlying epithelium was extensively ulcerated with accumulation of neutrophils, lymphocytes and plasma cells, and the formation of granulation tissue. (Figure 2). Periodic acid-Schiff (PAS) staining of colonic biopsies confirmed the presence of PAS-positive macrophages within the mucosa and hence led to the tentative diagnosis of GC (Figure 3).

For fluorescence in-situ hybridization (FISH), formalin-fixed and paraffin-embedded colonic biopsy samples were mounted on coated glass slides and sent to a laboratory specialized in the identification of bacteria within formalin fixed tissues in dogs (Kenneth Simpson Laboratory, Cornell University, Ithaca, NY) (Simpson and others 2006). Using eubacterial hybridisation probes, invasive bacteria could be identified within the inflamed mucosa.

Bacterial culture of colonic biopsies yielded two different *E. coli* strains (*E. coli* 1 and *E. coli* 2) by their macroscopic appearance and antimicrobial resistance pattern. The combination of FISH and culture results confirmed the diagnosis of GC (Figure 4).

Both *E. coli* strains were resistant to most tested antimicrobials (Table 1). In vitro sensitivity towards potentiated amoxicillin, gentamicin, amikacin, and polymyxine B for strain 1, and to
cephalexin, cefovecin, gentamicin, amikacin, and polymyxine B for strain 2 was identified. Based on this antimicrobial resistance pattern, these strains were classified as suspicious for an extended spectrum B-lactamase (ESBL) resistance profile.

<table>
<thead>
<tr>
<th>Antibiotics</th>
<th>E. coli 1</th>
<th>E. coli 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penicillin</td>
<td>r</td>
<td>r</td>
</tr>
<tr>
<td>Doxycycline</td>
<td>r</td>
<td>r</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>r</td>
<td>r</td>
</tr>
<tr>
<td>Cefalexin</td>
<td>r</td>
<td>s</td>
</tr>
<tr>
<td>Oxacillin</td>
<td>r</td>
<td>r</td>
</tr>
<tr>
<td>Chloramphenicol</td>
<td>r</td>
<td>s</td>
</tr>
<tr>
<td>Amoxicillin/clavulanic acid</td>
<td>s</td>
<td>r</td>
</tr>
<tr>
<td>Enrofloxacin</td>
<td>r</td>
<td>r</td>
</tr>
<tr>
<td>Gentamicin</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>Marbofloxacin</td>
<td>r</td>
<td>r</td>
</tr>
<tr>
<td>Lincomycin</td>
<td>r</td>
<td>r</td>
</tr>
<tr>
<td>Clindamycin</td>
<td>r</td>
<td>r</td>
</tr>
<tr>
<td>Sulfamethoxazole/Trimethoprim</td>
<td>r</td>
<td>r</td>
</tr>
<tr>
<td>Fusidic acid</td>
<td>r</td>
<td>r</td>
</tr>
<tr>
<td>Polymyxin B</td>
<td>s</td>
<td>s</td>
</tr>
<tr>
<td>Cefovecin</td>
<td>r</td>
<td>s</td>
</tr>
<tr>
<td>Pradofloxacin</td>
<td>r</td>
<td>r</td>
</tr>
<tr>
<td>Rifampicin</td>
<td>r</td>
<td>r</td>
</tr>
<tr>
<td>Amikacin</td>
<td>s</td>
<td>s</td>
</tr>
</tbody>
</table>

s: sensible; r: resistant

DIFFERENTIAL DIAGNOSIS If relevant
TREATMENT
If relevant

After obtaining the bacteriological sensitivity test results, the dog was treated with amoxicillin/clavulanic acid at a dose of 20 mg/kg orally three times daily (Kesium, Albrecht, Germany) for 8 weeks, in combination with cefovecin at a dose of 8 mg/kg subcutaneously every 10 days (Convenia, Pfizer, Germany) for 7 injections. This combination was chosen to cover both *E. coli* strains identified and was based on feasibility of application, owner compliance, cost and low risk of adverse effects compared to other antimicrobials like gentamicin, polymyxin B and amikacin.

OUTCOME AND FOLLOW-UP

Two weeks after starting therapy clinical signs improved and stools were soft with no haematochezia or tenesmus. Physical examination at the referring veterinary surgeon was unremarkable. One week later the dog had gained 900 grams of body weight. CCECAI demonstrated striking clinical improvement (0 points = no evidence of disease). The dog continued to be clinically unremarkable and gained a total of 2 kg within 60 days after start of antimicrobial therapy. Treatment was continued for a total of 8 weeks, and then, as the dog was still doing well, discontinued. At the time of writing this manuscript (12 months after discharge), the dog has not shown any signs indicative of a relapse and is still without any medication.

DISCUSSION
Include a very brief review of similar published cases

Granulomatous colitis has previously been reported in 9 French bulldogs (Van der Gaag and others 1978, Tanaka and others 2003, Krafft and others 2010, Manchester and others 2013). Initial reports documented satisfactory clinical responses and an overall good outcome in both Boxers and French bulldogs with GC when treated with enrofloxacin (Hostutler and others 2004, Simpson and others 2006; Mansfield and others 2009; Manchester and others 2013). However, one study found that over 50% of boxer dogs with GC harbour mucosal AIEC resistant to one or more non-fluoroquinolone antimicrobials and 43% harbour fluoroquinolone-resistant *E. coli* (Craven and others 2010). Antimicrobial resistance to enrofloxacin carried an extremely poor prognosis, with euthanasia of all enrofloxacin non-responders (Craven and others 2010).

To the authors’ knowledge, the present case report is not only the first of a French bulldog
suffering from GC in Germany, but also the first documenting multidrug antimicrobial resistance – including resistance to enrofloxacin – in this breed. Unfortunately, no details about the dog’s pedigree or reports about the health status of littermates were available at the time.

Prior empirical treatment with enrofloxacin has been reported as possible risk factor for acquiring resistant AIEC (Craven and others 2010). In most of the cases GC dogs tend to respond quickly (within a few weeks), hence a lack of clinical improvement to empiric fluoroquinolone therapy strongly suggests antimicrobial resistance. In these cases, (repeat) histopathology and culture from a mucosal biopsy are strongly recommended. As the dog presented here had been treated with enrofloxacin, it cannot be ruled out that this has contributed to the infiltration with multidrug-resistant E. coli. Even though the course of treatment seemed adequate in both dosage and duration (Manchester and others 2013), making it less likely to induce resistance, previous treatment history was not completely available. Hence it cannot be excluded that prior treatments with enrofloxacin have occurred, especially as fluoroquinolones are used at an increasing frequency in veterinary medicine (Freeling and Gask 1998). A further potential explanation for the resistance of both E. coli strains to fluoroquinolones is the inadvertent consumption of antimicrobials from the food supply for humans and animals. In fact, fluoroquinolones have been heavily used in agriculture and aquaculture for many years (Spellberg and Doi 2015). The dramatic increase in fluoroquinolone resistance has been associated with the emergence of a specific E. coli clone (ST 131-H30) in human medicine (Colpan and others 2013). The relevance of this clone or its occurrence in companion animals is unclear; in the present case, no phylogenetic characterisation of the isolated E. coli strains was attempted.

The choice of antimicrobials in the presented case has to be assessed critically. The use of one antimicrobial covering both E. coli isolates would have been ideal. Based on sensitivity testing, gentamicin, amikacin and polymyxin B were possible candidates. Aminoglycosides were not considered a good choice, as they are not able to effectively penetrate mammalian cells and are thus often ineffective in the treatment of facultative intracellular pathogens (Schwab and Mandell...
Revised June 2013

This is emphasized by the fact that dogs with enrofloxacin-resistant GC have not improved with aminoglycoside treatment in previous reports, even though in vitro efficacy was demonstrated (Craven and others 2010). Additionally, aminoglycosides can only be administered parenterally, restricting their use to hospitalised patients; and they have potentially serious side effects such as nephro-, oto- and neurotoxicity (Plumb 2011). Polymyxin B was not an option for the dog presented here, because it is not licensed for systemic use in companion animals in Germany and can be nephro- and neurotoxic. Chloramphenicol, which penetrates effectively into most tissues and has successfully been used in dogs with GC (Van Kruiningen and others 1965) was not the first choice of antimicrobial either, as both E. coli isolates showed in vitro resistance. The same was applicable to rifampin, tetracycline, trimethoprim/sulphonamide and pradofloxacin, the antimicrobials with best efficacy for intracellular killing (Subramanian and others 2008). Further antimicrobials like imipenem or meropenem were not tested in the sensitivity panel. Germany does not have strict antimicrobial guidelines, as for example some Scandinavian countries, where certain drugs are simply not available for use in animals. However, at our hospital it is generally considered good practice to avoid drugs that are used as last-resort antimicrobials in human medicine. Hence, it was eventually decided to combine two beta-lactam antimicrobials (a penicillin-derivative and a cephalosporin), as these were the only antimicrobials available for oral and subcutaneous treatment with demonstrated in vitro efficacy. Initial recommended Cefalexin, for oral treatment, was replaced (from the referring surgeon) by cefovecin because of owner compliance. There was no evidence from the susceptibility testing that combining these with an antimicrobial of another class would be beneficial, even though synergistic effects of antimicrobial combination therapies have been reported in dogs with GC as well as in humans with Crohn’s disease (Subramanian and others 2008, Craven and others 2011). Both cephalosporins and amoxicillin/ clavulanic acid are effective against infections caused by E. coli and have few side effects (Plumb 2011). However, amoxicillin is also expected to have poor intracellular efficacy and neither of the antimicrobials chosen have been shown to accumulate within cells (Carryn and others 2003). We would therefore like to make a point that it
should not be seen as acceptable practice to combine these antibiotics empirically. Careful consideration of antimicrobial choices is mandatory for these cases, especially if treatment failure occurs.

Fortunately, this combination led to rapid (within 2 weeks) and long-standing clinical improvement in the presented case.

Some ethical concerns have to be addressed when the decision to treat infections with multidrug-resistant bacteria – especially with ESBL profiles – is made in companion animals. In human medicine, ESBL- type bacteria are responsible for a wide range of hospital acquired infections and have been reported to be associated with a higher incidence of death (Lautenbach and others 2005). Treating multidrug-resistant infections in animals could result in increasing antibiotic-resistance and transfer of multidrug-resistance to humans. As dogs often live close to humans, their role as potential carriers of multidrug-resistant bacteria has to be assessed critically (Schaufler and others 2015). There are no firm antibiotic guidelines for these circumstances, hence the decision to treat should be made on an individual case-by-case basis, and the potential risks discussed with the owner.

Unfortunately, no follow-up biopsies for histolopathology and culture were available for the dog presented here, which would be the only way to ultimately prove disease remission and the successful elimination of AIEC. However, incomplete remission with partial resolution of AIEC colonisation seems unlikely as the dog is doing well (no clinical signs) 10 months after the cessation of antibiotic treatment.

In summary, this case report shows that GC is an important differential diagnosis in French bulldogs with signs of severe colitis, even though it has so far not been reported frequently in Europe. It outlines the importance of antimicrobial susceptibility testing from colonic mucosal biopsies in these dogs. Susceptibility testing should ideally be performed before administration of antimicrobials and is indispensable in dogs with enrofloxacin-resistant GC. Clinical remission of GC is possible, even in dogs with multi-resistant AIEC, hence prognosis may be favourable.

LEARNING POINTS/TAKE HOME MESSAGES 3 to 5 bullet points – this is a required
• Enrofloxacin resistance is becoming more common in dogs with GC.
• Antimicrobial susceptibility testing from colonic mucosal biopsies represents a useful investigation in dogs.
• Prognosis can be favourable in dogs with GC and enrofloxacin resistance.

REFERENCES

FIGURE/VIDEO CAPTIONS figures should NOT be embedded in this document

Figure 1 Ultrasoundographic picture of the longitudinal axis of the descending colon wall shows irregular diffuse transmural thickening, with a wall thickness of 3.5mm.

Figure 2. Histology of the colonic mucosa of a 2-year-old French bulldog presented for haematochezia. Haematoxylin-eosin (H&E) stained section showing infiltration of the lamina propria with large numbers of macrophages (*). Crypts (arrowheads) are reduced in number and separated by the infiltrating cells. Bar = 100 μm.

Figure 3. Higher magnification of figure 2. Figure 3A. Macrophages (arrowheads) with abundant foamy cytoplasm. H&E-stain, Bar = 50 μm. Figure 3B. Periodic acid-Schiff staining highlights the presence of intracytoplasmic PAS-positive material.

Figure 4. Fluorescence in-situ hybridization (FISH) of colonic tissue. 5Cy3-EUB-338 (red) and 56-FAM-Non-EUB-338 (green) labelled probes reveal the presence of multifocal clusters of invasive bacteria (red), which are frequently within cells. DAPI (4,6-diamidino-2-phenylindole) stained nuclei are blue.

OWNER’S PERSPECTIVE Optional

Copyright Statement
I, [Reto Neiger], The Corresponding Author, has the right to assign on behalf of all authors and does assign on behalf of all authors, a full assignment of all intellectual property rights for all content within the submitted case report (other than as agreed with the BMJ Publishing Group Ltd and the British Veterinary Association) (“BMJ” and “BVA”) in any media known now or created in the future, and permits this case report (if accepted) to be published on Veterinary Record Case Reports and to be fully exploited within the remit of the assignment as set out in the assignment which has been read http://journals.bmj.com/site/misc/vetreccrcopyright.pdf

Date:
18_01_2016

Clinic for Small Animals, Department of Veterinary Clinical Sciences, Justus Liebig University, Giessen, Germany

Authors:
1. Maximiliane Müller
2. Dorothee Dahlem
3. Manfred Henrich
4. Reto Neiger
5. Silke Schmitz

PLEASE SAVE YOUR TEMPLATE WITH THE FOLLOWING FORMAT:

Corresponding author’s last name and date of submission, eg,

Smith_June_2013.doc