Defective removal of ribonucleotides from DNA promotes systemic lupus erythematosus

Citation for published version:

Digital Object Identifier (DOI):
10.1186/1546-0096-13-S1-O86

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Pediatric Rheumatology

Publisher Rights Statement:
This article is published under license to BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Defective removal of ribonucleotides from DNA promotes systemic lupus erythematosus


From 8th International Congress of Familial Mediterranean Fever and Systemic Autoinflammatory Diseases Dresden, Germany, 30 September - 3 October 2015

Systemic lupus erythematosus (SLE) is a multifactorial autoimmune disease in which environmental exposures like virus infection and UV-irradiation trigger activation of the innate and adaptive immune system in genetically predisposed individuals. Heterozygous mutations of the 3’ repair exonuclease 1 (TREX1) are associated with SLE. Biallelic mutations in TREX1 and the three subunits of ribonuclease H2 (RNASEH2A-C) cause Aicardi-Goutières syndrome, an inflammatory encephalopathy with clinical overlap with SLE. We therefore investigated the role of RNase H2 in SLE pathogenesis. RNase H2 is responsible for the removal of misincorporated ribonucleotides from DNA and is indispensable for genome integrity. We demonstrated a genetic association for rare RNase H2 sequence variants with SLE. RNase H2-deficient fibroblasts of AGS and SLE patients accumulated ribonucleotides in genomic DNA resulting in chronic low-level DNA damage, constitutive p53 phosphorylation and senescence. Patient fibroblasts proliferated slower than fibroblasts from healthy individuals and showed impairment of cell cycle progression. In addition, patient fibroblasts exhibited constitutive up-regulation of interferon-stimulated genes and an enhanced type I interferon response to the nucleic acid poly(I:C) and UV-irradiation. UV-irradiation induced enhanced cyclobutane pyrimidine dimer formation in ribonucleotide-containing DNA. This suggests that innate immune activation may be caused by immune recognition of DNA metabioties of DNA damage repair and may also explain photosensitivity in SLE patients with RNase H2 mutation. In summary, our findings implicate RNase H2 in the pathogenesis of SLE, and suggest a role of DNA damage-associated pathways in the initiation of autoimmunity.

Authors’ details
1University Hospital Dresden, Department of Dermatology, Dresden, Germany. 2University Hospital Dresden, Department of Pediatrics, Dresden, Germany. 3MRC Institute of Genetics and Molecular Medicine, Medical Research Council Human Genetics Unit, Edinburgh, UK. 4Pfizer-Universidad de Granada-Junta de Andalucía (GENYO), Centro de Genomica e Investigacion Oncologica, Granada, Spain. 5Technical University Dresden, Center for Information Services and High Performance Computing, Dresden, Germany. 6Max Delbrück Centre for Molecular Medicine, Buch, Berlin, Germany. 7University of Freiburg, Epilepsy Center, Freiburg, Germany. 8King’s College London, Genetics & Molecular Medicine, London, UK. 9Imperial College London, Department of Life Sciences, London, UK. 10MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Genomics and Molecular Medicine, University of Edinburgh, Scotland, UK. 11Centre for Translational and Chemical Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK. 12Hannover Medical School, Hannover, Germany. 13University Medical Center, Clinical Research Unit for Rheumatology, Freiburg, Germany. 14University of Bonn, Institute of Human Genetics, Bonn, Germany. 15Life & Brain Center, Department of Genomics, Bonn, Germany. 16University Hospital Dresden, Rheumatology, Department of Internal Medicine III, Dresden, Germany. 17University of Münster, Department of Dermatology, Münster, Germany. 18Schwerpunktpraxis Rheumatologie, Dresden, Germany. 19Städtisches Klinikum Dresden-Friedrichstadt, Dresden, Germany. 20University of Hamburg, Department of Pediatrics, Hamburg, Germany. 21Newcastle University, Institute of Cellular Medicine, Newcastle-upon-Tyne, UK. 22Technical University Dresden, Center for Regenerative Therapies Dresden, Dresden, Germany. 23Technical University Dresden, Institute for Immunology, Dresden, Germany. 24Oklahoma Medical Research Foundation, Arthritis and Clinical Immunology Program, Oklahoma City, OK, USA.