Test Structures for the Wafer Mapping and Correlation of the Properties of Electroplated Ferromagnetic Alloy Films

Citation for published version:

Digital Object Identifier (DOI):
10.1109/TSM.2016.2583068

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
IEEE Transactions on Semiconductor Manufacturing

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Test Structures for the Wafer Mapping and Correlation of the Properties of Electroplated Ferromagnetic Alloy Films

Evgeny Sirotkin, Stewart Smith, Senior Member, IEEE, Ross Walker, Jonathan G. Terry, Senior Member, IEEE, and Anthony J. Walton, Senior Member, IEEE

Abstract—This paper presents a method of electrically determining the permeability of patterned, electroplated ferromagnetic alloys and brings together the simultaneous wafer mapping of relative permeability, electrical resistivity and magnetic strain of these electrodeposited films, as well as the layer thickness and alloy composition. The wafer mapping of all these properties is implemented using a set of simple, automated electrical and optical techniques that facilitate the quantification of the spatial correlation between different parameters. This enables the uniformity of conductive ferromagnetic films to be analysed and supports the optimization of the physical properties of these materials as well as the processes used to deposit them.

Index Terms—Wafer mapping, electroplated ferro-magnetic films, integrated magnetic technologies, automated test development, characterisation.

I. INTRODUCTION

Electroplating is considered today as perhaps the most effective manufacturing process for the production of ferromagnetic thin films with thicknesses ranging from hundreds of nanometres up to tens of micrometres. Ferromagnetic films are essential elements in a number of different applications involving heterogeneous integration. For example, integrated passive magnetic components including inductors and transformers are key to the development of on-chip smart power systems such as DC-DC converters [1]–[3]. There are many applications for magnetic materials in the field of micro-electromechanical systems (MEMS) [4], [5] including magnetically actuated switches and relays [6], [7], energy harvesting systems [8] and magnetic field sensors like fluxgates [9]. The basic physical properties of importance for these device applications include the magnetic permeability, electrical resistivity and mechanical residual strain. As far as the authors are aware, the use of test structures capable of the routine, wafer-level measurement of permeability using standard electrical probing has not been previously reported and hence, the spatial variability of permeability has not been wafer mapped. The ability to perform this measurement with relatively simple electrical measurements provides the opportunity to provide fast feedback on the magnetic performance of electrodeposited materials, which is an essential capability required for process control and verification.

In this work, automated wafer mapping measurements [10]–[16], are reported and used to identify the spatial correlation between high frequency permeability, electrical resistivity, and mechanical residual strain as well as the chemical composition of a nickel-iron alloy film electroplated on the surface of 75 mm diameter silicon wafers. It has been previously reported [17] that NiFe films with Ni$_{29}$Fe$_{21}$ produce the optimum permeability values, and alloys around this value are commonly referred to as “Permalloy”. The ability to extract the permeability of deposited layers on wafer will facilitate the development of magnetic MEMS based technologies.

To make it feasible to routinely determine all the parameters of interest, automated wafer scale measurement and analysis is required in order to:

1) Characterise the spatial distribution of key material parameters across the wafer.

2) Determine the optimal compromise between magnetic, electrical and mechanical properties required for a particular device application.

For example, in the case of micro-inductors, which have been the driver for much of this work, the permeability, resistivity, alloy composition and stress parameters associated with ferromagnetic alloys will define the inductance, resistive core loss and mechanical reliability. This work presents an on-chip test structure based measurement of permeability together with the application of a set of other test structures to allow semi-automated measurement and cross wafer mapping of these and other parameters.

This paper is an extension of [15] presented at the International Conference on Microelectronic Test Structures, and updates and expands a number of elements in the original paper. It presents more comprehensive results along with a more detailed explanation of the on-chip electrical measurements and associated permeability extraction method. Selected wafer maps and scatter plots of the important parameters are presented to illustrate the correlations between magnetic alloy composition and physical parameters such as resistivity, permeability and mechanical strain.
II. TEST STRUCTURE DESIGN AND FABRICATION

The test chip shown in Fig. 1 was designed to allow a range of physical parameters to be characterised. The design includes MEMS-based strain structures (in the centre) [13], high frequency permeability test structures (top row and second bottom row) and Greek cross electrical test structures (bottom row) [18] which enable a mix of optical (stress) and electrical (DC and RF) measurements on a single wafer. The micro-rotating strain measurement structures have a designed pointer and rotation arm width of 8 µm and three different expansion arm separations of 6, 8 and 10 µm. The designed width of the serpentine resistor sections of the high frequency permeability test structures is 30 µm and there are two different lengths depending on how many "turns" there are in the serpentine. The Greek cross structures are either 8 µm or 30 µm wide.

The fabrication of the nickel-iron alloy test structures uses bottom up electroplating through a thick photoresist mould patterned using UV lithography on a Karl Süss MA-8 mask aligner. All samples were fabricated on 75 mm (3") silicon wafers insulated with PECVD silicon oxide, this was used in preference to thermal SiO₂ to allow better results when releasing the MEMS test structures. A 150 nm nickel seed layer has been used to enable plating of the NiFe structures. The nickel seed is preferred to the more typical copper seed layer as the latter would demonstrate a significantly higher conductivity [3] which would greatly affect the results of the skin depth measurements and the extracted data. Further details of the fabrication process can be found in [15], including the HF dry vapour etch process used to release the suspended MEMS structure by removing the sacrificial oxide layer under the pointer and expansion arms. Fig. 2 shows examples of strain structures before and after release. The anticlockwise rotation of the pointer arm in this case shows that there was tensile intrinsic stress in the film before release causing the expansion arms to contract. The level of rotation gives a quantifiable value of the strain (expansion/contraction) of the thin film and this information, together with Young’s modulus measured on the structure’s anchor points using a nanoindenter, can be used to extract the stress for each location and wafer map it as detailed in [16].

III. MEASUREMENTS

Automated test routines for measuring the test structures have been implemented using NI LabVIEW programming with a Karl Süss PA200 semi-automated wafer prober with a digital camera for DC and optical measurements, and a Cascade Summit 12000 probe station for RF measurements. DC resistance measurements are performed using a combination of a HP4142 DC Modular Source/Monitor and an Agilent 3458A Digital Multimeter, while RF (permeability) measurements are made using an Agilent E4991A Impedance/Material Analyzer (1 MHz–3 GHz). The optical measurements of MEMS strain test structures are analysed using custom image processing software [11]. The resulting wafer maps of the extracted physical properties were processed and generated using custom Matlab modules.

The sheet resistance of the NiFe film is measured using the Greek cross structures using a standard test method [10], [18] with a force current of 10 mA. The DC resistances of the 8 and 9 turn serpentine NiFe resistors (see Fig. 3) are measured using a Kelvin connection where the outer pads are used to force a current of 10 mA and the inner pads are used to sense the resulting voltage. In each measurement the current is passed in both the forward and reverse direction, and the calculated resistance values are averaged.
The high frequency permeability measurements made using the serpentine structures are based on skin depth analysis extracted from RF resistance measured using an impedance meter with an applied AC excitation amplitude of 100 mV and no DC component. The advantages of this approach are that it measures the magnetic properties in the skin depth and enables the magnetic uniformity over wafer to be determined by spatially extracting the permeability at the frequency of interest. It uses an RF electrical measurement without the requirement for an external electromagnet to produce a magnetic field. This makes it possible to perform measurements using standard, RF electrical characterisation equipment. The DC resistance (R_{DC}), the designed width (w) and the measured thickness (t) of the resistor were used to determine DC resistivity (ρ).

$$\rho = \frac{R_{DC}wt}{l} \quad (1)$$

The effective length of the serpentine track (l), was determined based upon a standard method used to calculate the designed resistance of a track given the sheet resistance R_s of the layer, where the resistance of each corner square is $0.56R_s$ [19]. The effective length of the track is simply the number of squares multiplied by the track width (w). The RF resistance (i.e., the real part of the characteristic impedance) at a given frequency (R_{RF}), along with the effective length (l) was used to determine the skin-depth cross-sectional area (A_δ) of the conducting track.

$$A_\delta = \frac{\rho l}{R_{RF}} \quad (2)$$

The skin depth (δ) can then be determined from A_δ and the geometry of the resistor. This calculation uses a simplified model for the skin depth area as illustrated in Fig. 4 and expressed mathematically as:

$$A_\delta = 2w\delta + 2t\delta - 4\delta^2 \quad (3)$$

This geometric approximation of skin depth area has been well documented [20]. Clearly, more complex analytical models [21] could be adapted to calculate the skin depth in the permalloy test structure. Equation (4) relates the effective resistance at high frequency (R_{RF}) to the material conductivity (σ); the distribution of the electric field acting through the conductor (E_z) across the rectangular cross section and the cross-sectional width (w) and thickness (t). However, it should be noted that the accuracy of the geometric approximation of skin effect, used in this paper, improves as frequency is increased [22].

$$R_{RF} = \frac{\int_0^t \int_{-w/2}^{w/2} |E_z(x, y)|^2 \, dx \, dy}{\int_0^t \int_{-w/2}^{w/2} \sigma \int_0^t \int_{-w/2}^{w/2} E_z(x, y) \, dx \, dy} \quad (4)$$

Solving (3) for δ using the standard quadratic solution gives:

$$\delta = \frac{(2w + 2t) - \sqrt{(-2w - 2t)^2 - 16A_\delta}}{8} \quad (5)$$

Note that the other root gives a non-physical result for δ which is greater than the measured thickness of the electroplated film, and can therefore be disregarded. Finally, the relative permeability (μ_r) can be calculated as follows:

$$\mu_r = \frac{2\rho}{\omega \mu_0 \delta^2} \quad (6)$$

where ω ($2\pi f$) is the angular frequency of the RF signal and μ_0 is the permeability of free space ($4\pi \times 10^{-7}$ H m$^{-1}$).

IV. RESULTS

Prior to RF measurements, hysteresis BH-loop measurements were performed on unpatterned, 5 µm thick Ni$_{75}$Fe$_{25}$ films using dedicated Shb Instruments equipment comprising of a 10 Hz oscillating electromagnet and pick-up coils. Fig. 5 presents a set of in-plane hysteresis loops from four separate measurements with the sample rotated by 90° between each. The results show a small coercive field (H_c) of 0.8-1.2 Oe (63.7-95.9 A m$^{-1}$), a low saturation field (H_s) around 9.0-10.0 Oe (716.2-795.8 A m$^{-1}$) and low remanent magnetization (<35-40 %). This demonstrates the very soft magnetic behaviour of these films, which is required for low-amplitude RF measurements with no bias. It can be hard to saturate or demagnetise hard magnetic materials. The measurement method used here assumes that the magnetisation within the material follows the magnetic field induced by the electrical current during RF probe measurements.

Fig. 6 shows measured values of resistance, and the extracted values of skin depth and permeability as a function of frequency for a range of NiFe compositions (Fe content 27-35 %). As expected the measured resistance increases with frequency, as the current flow becomes constrained within the skin depth which reduces in thickness as the frequency increases. Fig. 6(b) shows the skin depth as a function of
frequency calculated using (5) assuming the simple model described by (3). Clearly if the skin depth δ is greater than or equal to half the thickness of the film the model is invalid and in these cases the calculated value for has no physical meaning. For the measurements associated with Fig. 6 the film thickness of the NiFe alloy is between 15 μm and 19 μm and so we define the maximum valid skin depth δ to be 7 μm. This value of δ is exceeded for results below 10-15 MHz and this in turn identifies the frequency below which the assumptions in the model are no longer valid. Consequently for the results in Fig. 6(b) and (c) we assume that only calculations of skin depth and permeability for frequencies of 15 MHz and above are valid. Fig. 6(b) shows that as expected the skin depth extracted from the resistance measurements reduces as the frequency increases. The associated permeability extracted using the model in (6) is presented in Fig. (c). The results show the permeability decreases as the iron content is increased and that it slowly increases with frequencies above 20 MHz. From equation (5) it can be observed that the permeability depends on two variables: frequency ($\omega = 2\pi f$) and δ. When the frequency increases, the skin depth reduces as shown in Fig. (b). However, the skin depth is squared and therefore, is seen to have a stronger effect on the trend (i.e. the calculated permeability is increasing as the result of the reduction in the calculated skin depth). It should also be noted that apparent discontinuities visible in the graphs are due to range switching in the impedance analyser.

The uniformity of the composition and thickness of the electroplated NiFe was wafer mapped using a Thermo-Scientific X-Ray Fluorescence (XRF) tool, and these results are presented in Fig. 7 along with results of optical measurement of the pointer arm rotation from the MEMS test structures and the sheet resistance results from 8 μm and 30 μm wide Greek cross test structures. The alloy thickness across the wafer was also confirmed at certain points on the wafer using a DekTak surface profiler. The wafer maps of NiFe composition and thickness show different spatial variation patterns. The thickness shows a bull’s eye variation with the thinnest material in the centre of the wafer, while the compositional mapping indicates the lowest Fe content at the top right hand side of the wafer and the highest values at the bottom left hand side. The sheet resistance results suggest a combination of effects of composition and thickness so that the bull’s eye pattern is shifted towards the area of highest Fe content. The measured sheet resistance is higher for the narrower structures suggesting there is a pattern dependent effect on the effective thickness of the material. The 30 μm wide Greek cross structures are more representative of the dimensions of the serpentine resistor structures. The rotation angle indicates the level of strain in the released expansion arms in the structure. This is an indication of the level of intrinsic stress in the film before release. As has been previously reported the level of tensile stress in NiFe films is correlated with the %Fe content. Lower rotations, indicating less stress, are observed where the Fe content is
lower. This is a positive result as the target composition (Ni$_{79}$Fe$_{21}$) for optimum permeability is a lower Fe content than in the films measured here, as in [17].

Fig. 8 shows wafer maps of DC resistance and the derived resistivity for the 8-turn serpentine structures. Similar results from the 9-turn structures can be seen in [15]. Inspection of Fig. 7 and Fig. 8 indicates that the DC resistance wafer map is affected by both the film thickness and composition with the stronger correlation being with the thickness. The film resistivity, which is a material parameter independent of the film thickness, appears to be more strongly correlated with film composition. Fig. 9 shows wafer maps of RF resistance at three different frequencies, and these are also well correlated with thickness up to 100 MHz. Fig. 10 and Fig. 11 show wafer maps of skin depth and permeability respectively, at the same three frequencies. It is apparent that these magnetic properties are most strongly correlated with the %Fe content.

The wafer maps presented above clearly identify the variation of parameters across the wafers, and this can be used to identify the root causes (in this case the circulation of the electrolyte). Even with the spatial non-uniformity displayed in the wafer maps the data can be used to calculate the correlation coefficients between parameters as the measurement locations are known. Table I shows correlation coefficients between the NiFe thickness and the DC resistance, resistivity, and RF resistances. Table II shows correlation coefficients between the NiFe composition and the resistivity, skin depth, and permeability. The data used to prepare the wafer maps can also be presented as correlation scatter plots and Fig. 12 shows plots of relative permeability against %Fe content at 100MHz. It should be noted that such plots do not convey the spatial information of the wafer maps.

In summary it is not surprising these results confirm that the measured permeability depends upon the Ni-Fe ratio and not the layer thickness of the material. This is very important for the design of microinductors with a magnetic alloy core, as the permeability value directly influences the inductance.

V. DISCUSSION AND CONCLUSIONS

The ability to comprehensively and rapidly characterise patterned electroplated magnetic films such as NiFe is an essential requirement when integrating magnetic materials into miniaturised magnetic components and MEMS devices.
TABLE II
CORRELATION COEFFICIENTS WITH COMPOSITION (%Fe)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Correlation Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8-turn</td>
</tr>
<tr>
<td>Skin depth at 15 MHz</td>
<td>0.90</td>
</tr>
<tr>
<td>Skin depth at 20 MHz</td>
<td>0.92</td>
</tr>
<tr>
<td>Skin depth at 100 MHz</td>
<td>0.91</td>
</tr>
<tr>
<td>Permeability at 15 MHz</td>
<td>−0.78</td>
</tr>
<tr>
<td>Permeability at 20 MHz</td>
<td>−0.87</td>
</tr>
<tr>
<td>Permeability at 100 MHz</td>
<td>−0.92</td>
</tr>
</tbody>
</table>

(a) DC resistance

(b) Resistivity

Fig. 8. Wafer maps of DC resistance measurements and estimated resistivity for 8-turn serpines

Important measurement parameters for such materials includes the spatial characterisation of stress/strain [13], resistance [10], [18], alloy composition [14] and Young’s modulus [16] and on-chip measurements of these parameters for wafer mapping have all been previously reported in the literature. The missing element that has not been available as a simple on-chip measurement has been the ability to spatially determine the permeability of magnetic materials electroplated on silicon wafers. The determination of this important parameter has required unpatterned wafers to be diced to create the required samples which are then measured using equipment such as a BH-loop test system. Unfortunately, this procedure is both time-consuming and destructive, and does not support the rapid development of processes to integrate new alloys and evaluate new designs. This paper has addressed this limi-

REFERENCES

Fig. 9. Wafer maps of RF resistance measurements for 8-turn serpentines at three different frequencies

(a) RF Resistance 15 MHz
(b) RF Resistance 20 MHz
(c) RF Resistance 100 MHz

Fig. 10. Wafer maps of calculated skin depths for 8-turn serpentines at three different frequencies

(a) Skin depth 15 MHz
(b) Skin depth 20 MHz
(c) Skin depth 100 MHz

Fig. 11. Wafer maps of calculated permeability for 8-turn serpentines at three different frequencies

(a) Permeability 15 MHz
(b) Permeability 20 MHz
(c) Permeability 100 MHz (8 turn)

Fig. 12. Correlation scatter plot of relative permeability versus %ge Fe content measured at 100MHz for 8 turn serpentinaes.

