Study of the $B_c^+ \rightarrow J/\psi D_s^+$ and $B_c^+ \rightarrow J/\psi D_s^{*+}$ decays with the ATLAS detector
Study of the $B_c^+ \rightarrow J/\psi D_s^+$ and $B_c^+ \rightarrow J/\psi D_s^{*-}$ decays with the ATLAS detector

ATLAS Collaboration*
CERN, 1211 Geneva 23, Switzerland

Received: 27 July 2015 / Accepted: 19 October 2015 / Published online: 5 January 2016
© CERN for the benefit of the ATLAS collaboration 2015. This article is published with open access at Springerlink.com

Abstract The decays $B_c^+ \rightarrow J/\psi D_s^+$ and $B_c^+ \rightarrow J/\psi D_s^{*-}$ are studied with the ATLAS detector at the LHC using a dataset corresponding to integrated luminosities of 4.9 and 20.6 fb$^{-1}$ of pp collisions collected at centre-of-mass energies $\sqrt{s} = 7$ TeV and 8 TeV, respectively. Signal candidates are identified through $J/\psi \rightarrow \mu^+\mu^-$ and $D_s^{(*)+} \rightarrow \phi\pi^+ (\gamma/\rho^0)$ decays. With a two-dimensional likelihood fit involving the B_c^+ reconstructed invariant mass and an angle between the μ^+ and D_s^+ candidate momenta in the muon pair rest frame, the yields of $B_c^+ \rightarrow J/\psi D_s^+$ and $B_c^+ \rightarrow J/\psi D_s^{*+}$, and the transverse polarisation fraction in $B_c^+ \rightarrow J/\psi D_s^{*-}$ decay are measured. The transverse polarisation fraction is determined to be $\Gamma_{\pm\pm}(B_c^+ \rightarrow J/\psi D_s^{(*)+})/\Gamma(B_c^+ \rightarrow J/\psi D_s^+) = 0.38 \pm 0.23 \pm 0.07$, and the derived ratio of the branching fractions of the two modes is $\mathcal{B}(B_c^+ \rightarrow J/\psi D_s^+)/\mathcal{B}(B_c^+ \rightarrow J/\psi D_s^{*+}) = 2.8^{+1.2}_{-0.8} \pm 0.3$, where the first error is statistical and the second is systematic. Finally, a sample of $B_c^+ \rightarrow J/\psi \pi^+$ decays is used to derive the ratios of branching fractions $\mathcal{B}(B_c^+ \rightarrow J/\psi D_s^+)/\mathcal{B}(B_c^+ \rightarrow J/\psi \pi^+) = 3.8 \pm 1.1 \pm 0.4 \pm 0.2$ and $\mathcal{B}(B_c^+ \rightarrow J/\psi D_s^{*+})/\mathcal{B}(B_c^+ \rightarrow J/\psi \pi^+) = 10.4 \pm 3.1 \pm 1.5 \pm 0.6$, where the third error corresponds to the uncertainty of the branching fraction of $D_s^{*-} \rightarrow \phi(K^+K^-)\pi^+$ decay. The available theoretical predictions are generally consistent with the measurement.

1 Introduction

The B_c^+ meson is the only known weakly decaying particle consisting of two heavy quarks. The ground bc state was first observed by CDF [1] via its semileptonic decay $B_c^+ \rightarrow J/\psi \ell^+\nu_\ell$. An excited bc state has been observed recently by ATLAS [2] using the B_c^+ decay mode $B_c^+ \rightarrow J/\psi \pi^+$. The presence of two heavy quarks, each of which can decay weakly, affects theoretical calculations of the decay properties of the B_c^+ meson. In the case of $\bar{b} \rightarrow c\bar{c}\bar{s}$ processes, decays to charm hadron and a D_s^+ or a D_s^{*-} meson are predicted to occur via colour-suppressed and colour-favoured spectator diagrams as well as via the weak annihilation diagram (see Fig. 1). The latter, in contrast to decays of other B mesons, is not Cabibbo-suppressed and can contribute significantly to the decay amplitudes. The decay properties are addressed in various theoretical calculations [3–9] and can also be compared to the analogous properties in the lighter B meson systems such as $B^0_{s\pi}$ decays of $D^{(*)+}$ or $B^+ \rightarrow D^{(*)+}$ $D_s^{(*)+}$ or $B^+ \rightarrow D_s^{(*)+}$ $D_s^{(*)+}$. The decays $B_c^+ \rightarrow J/\psi D_s^{*+}$ and $B_c^+ \rightarrow J/\psi D_s^{*-}$, which have been observed recently by the LHCb experiment [10], provide a means to test these theoretical predictions.

This paper presents a measurement of the branching fractions of $B_c^+ \rightarrow J/\psi D_s^+$ and $B_c^+ \rightarrow J/\psi D_s^{*-}$ decays, normalised to that of $B_c^+ \rightarrow J/\psi \pi^+$ decay, and polarisation in $B_c^+ \rightarrow J/\psi D_s^{*-}$ decay performed with the ATLAS detector [11]. The $D_s^{(*)}$ meson is reconstructed via the $D_s^+ \rightarrow \phi \pi^+$ decay with the ϕ meson decaying into a pair of charged kaons. The D_s^{*+} meson decays into a D_s^+ meson and a soft photon or γ/ρ^0. Detecting such soft neutral particles is very challenging, thus no attempt to reconstruct them is made in the analysis. The J/ψ meson is reconstructed via its decay into a muon pair.

The measurement presented in this paper allows an independent verification of the results of Ref. [10] with comparable statistical and systematic uncertainties. The following ratios are measured: $\mathcal{R}_{D_s^{*+}/\pi^+} = \mathcal{B}(D_s^{*+} \rightarrow J/\psi D_s^+)/\mathcal{B}(D_s^+ \rightarrow J/\psi \pi^+)$, $\mathcal{R}_{D_s^{*+}/\pi^+}$ = $\mathcal{B}(D_s^{*+} \rightarrow J/\psi D_s^+)$/$\mathcal{B}(D_s^+ \rightarrow J/\psi \pi^+)$, and $\mathcal{R}_{D_s^{*+}/D_s^+}$ = $\mathcal{B}(D_s^{*+} \rightarrow J/\psi D_s^+)$/$\mathcal{B}(D_s^+ \rightarrow J/\psi D_s^+)$, where $\mathcal{B}(D_s^{*+} \rightarrow X)$ denotes the branching fraction of $D_s^{*+} \rightarrow X$ decay. The decay $B_c^+ \rightarrow J/\psi D_s^{*+}$ is a transition of a pseudoscalar meson into a pair of vector states and is thus described by the three helicity amplitudes, A_{++}, A_{--}, and A_{00}, where the subscripts correspond to the helicities of J/ψ and D_s^{*+} mesons. The contribution of the A_{++} and A_{--} amplitudes, referred to as the $A_{\pm\pm}$ component, corresponds to the J/ψ and D_s^{*+} transverse polarisation. The fraction of transverse polarisation,
The ATLAS detector, trigger selection and Monte Carlo samples

ATLAS is a general-purpose detector consisting of several subsystems including the inner detector (ID), calorimeters and the muon spectrometer (MS). Muon reconstruction makes use of both the ID and the MS. The ID comprises three types of detectors: a silicon pixel detector, a silicon microstrip semiconductor tracker (SCT) and a transition radiation tracker. The ID provides a pseudorapidity coverage up to \(|\eta| = 2.5 \). Muons pass through the calorimeters and reach the MS if their transverse momentum, \(p_T \), is above approximately 3 GeV.\(^3\) Muon candidates are formed either from a stand-alone MS track matched to an ID track or, in case the MS stand-alone track is not reconstructed, from an ID track extrapolated to the MS and matched to track segments in the MS. Candidates of the latter type are referred to as segment-tagged muons while the former are called combined muons. Muon track parameters are taken from the ID measurement alone in this analysis, since the precision of the measured track parameters for muons in the \(p_T \) range of interest is dominated by the ID track reconstruction.

The ATLAS trigger system consists of a hardware-based Level-1 trigger and a two-stage high level trigger (HLT). At Level-1, the muon trigger uses dedicated MS chambers to search for patterns of hits satisfying different \(p_T \) thresholds. The region-of-interest around these hit patterns then serves as a seed for the HLT muon reconstruction, in which dedicated algorithms are used to incorporate information from both the MS and the ID, achieving a position and momentum resolution close to that provided by the offline muon reconstruction. Muons are efficiently triggered in the pseudorapidity range \(|\eta| < 2.4 \).

Triggers based on single-muon, dimuon, and three-muon signatures are used to select \(J/\psi \rightarrow \mu^+\mu^- \) decays for the analysis. The third muon can be produced in the \(B_c^+ \) signal events in semileptonic decays of the two other heavy-flavour hadrons. The majority of events are collected by dimuon triggers requiring a vertex of two oppositely charged muons with an invariant mass between 2.5 and 4.3 GeV. During the data taking, the \(p_T \) threshold for muons in these triggers was either 4 or 6 GeV. Single-muon triggers additionally increase the acceptance for asymmetric \(J/\psi \) decays where one muon has a \(p_T \) threshold for at least one \(B_c^+ \) decay mode.

Monte Carlo (MC) simulation is used for the event selection criteria optimisation and the calculation of the acceptance for the considered \(B_c^+ \) decay modes. The MC samples of the \(B_c^+ \) decays were generated with \textsc{Pythia} 6.4 [12] along with a dedicated extension for the \(B_c^+ \) production based on calculations from Refs. [13–16]. The decays of \(B_c^+ \) are then simulated with \textsc{EvtGen} [17]. The generated events were passed through a full simulation of the detector using the ATLAS simulation framework [18] based on \textsc{Geant} 4 [19,20] and processed with the same reconstruction algorithms as were used for the data.

\(^2\) ATLAS uses a right-handed coordinate system with its origin at the nominal interaction point (IP) in the centre of the detector and the \(z \)-axis along the beam pipe. The \(x \)-axis points from the IP to the centre of the LHC ring, and the \(y \)-axis points upward. Cylindrical coordinates \((r, \phi)\) are used in the transverse plane, \(\phi \) being the azimuthal angle around the beam pipe. The pseudorapidity is defined in terms of the polar angle \(\theta \) as \(\eta = -\ln \tan(\theta/2) \).

\(^3\) Using a system of units with \(c = 1 \) is implied throughout the paper.
3 Reconstruction and event selection

The \(J/\psi \) candidates are reconstructed from pairs of oppositely charged muons. At least one of the two muons is required to be a combined muon. Each pair is fitted to a common vertex \([21]\). The quality of the vertex fit must satisfy \(\chi^2/\text{ndf} < 15 \), where the ndf stands for the number of degrees of freedom. The candidates in the invariant mass window \(2800 \text{MeV} < m(\mu^+\mu^-) < 3400 \text{MeV} \) are retained.

For the \(D_s^+ \rightarrow \phi(K^+K^-)\pi^+ \) reconstruction, tracks of particles with opposite charges are assigned kaon mass hypotheses and combined in pairs to form \(\phi \) candidates. An additional track is assigned a pion mass and combined with the \(\phi \) candidate to form a \(D_s^+ \) candidate. To ensure good momentum resolution, all three tracks are required to have at least two hits in the silicon pixel detector and at least six hits in the SCT. Only three-track combinations successfully fitted to a common vertex with \(\chi^2/\text{ndf} < 8 \) are kept. The \(\phi \) candidate invariant mass, \(m(K^+K^-) \), and the \(D_s^+ \) candidate invariant mass, \(m(K^+K^-\pi^+) \), are calculated using the track momenta refitted to the common vertex. Only candidates with \(m(K^+K^-) \) within \(\pm 7 \text{MeV} \) around the \(\phi \) mass, \(m_{\phi} = 1019.461 \text{MeV} \) \([22]\), and with \(1930 \text{MeV} < m(K^+K^-\pi^+) < 2010 \text{MeV} \) are retained.

The \(B_c^+ \rightarrow J/\psi D_s^+ \) candidates are built by combining the five tracks of the \(J/\psi \) and \(D_s^+ \) candidates. The \(J/\psi \) meson decays instantly at the same point as the \(D_s^+ \) does (secondary vertex) while the \(D_s^+ \) lives long enough to form a displaced tertiary vertex. Therefore the five-track combinations are refitted assuming this cascade topology \([21]\). The invariant mass of the muon pair is constrained to the \(J/\psi \) mass, \(m_{J/\psi} = 3096.916 \text{MeV} \) \([22]\). The three \(D_s^+ \) daughter tracks are constrained to a tertiary vertex and their invariant mass is fixed to the mass of \(D_s^+ \), \(m_{D_s^+} = 1968.30 \text{MeV} \) \([22]\). The combined momentum of the refitted \(D_s^+ \) decay tracks is constrained to point to the dimuon vertex. The quality of the cascade fit must satisfy \(\chi^2/\text{ndf} < 3 \).

The \(B_c^+ \) meson is reconstructed within the kinematic range \(p_T(B_c^+) > 15 \text{GeV} \) and \(|\eta(B_c^+)| < 2.0 \), where the detector acceptance is high and depends weakly on \(p_T(B_c^+) \) and \(\eta(B_c^+) \).

The refitted tracks of the \(D_s^+ \) daughter hadrons are required to have \(|\eta| < 2.5 \) and \(p_T > 1 \text{GeV} \), while the muons must have \(|\eta| < 2.3 \) and \(p_T > 3 \text{GeV} \). To further discriminate the sample of \(D_s^+ \) candidates from a large combinatorial background, the following requirements are applied:

- \(\cos \theta^*(\pi) < 0.8 \), where \(\theta^*(\pi) \) is the angle between the pion momentum in the \(K^+K^-\pi^+ \) rest frame and the \(K^+K^-\pi^+ \) combined momentum in the laboratory frame;
- \(|\cos^2 \theta'(K)| > 0.15 \), where \(\theta'(K) \) is the angle between one of the kaons and the pion in the \(K^+K^- \) rest frame.

The decay of the pseudoscalar \(D_s^+ \) meson to the \(\phi \) (vector) plus \(\pi \) (pseudoscalar) final state results in an alignment of the spin of the \(\phi \) meson perpendicularly to the direction of motion of the \(\phi \) relative to \(D_s^+ \). Consequently, the distribution of \(\cos \theta^*(K) \) follows a \(\cos^2 \theta'(K) \) shape, implying a uniform distribution for \(\cos^3 \theta'(K) \). In contrast, the \(\cos \theta'(K) \) distribution of the combinatorial background is uniform and its \(\cos^3 \theta'(K) \) distribution peaks at zero. The cut suppresses the background significantly while reducing the signal by 15%.

The \(B_c^+ \) candidate is required to point back to a primary vertex such that \(d_{0}^{PV}(B_c^+) < 0.1 \text{mm} \) and \(z_{0}^{PV}(B_c^+) \sin(\theta(B_c^+)) < 0.5 \text{mm} \), where \(d_{0}^{PV} \) and \(z_{0}^{PV} \) are respectively the transverse and longitudinal impact parameters with respect to the primary vertex. All primary vertices in the event are considered. If there is more than one primary vertex satisfying these requirements (~0.5% events both in data and MC simulation), the one with the largest sum of squared transverse momenta of the tracks originating from it is chosen.

The transverse decay length \(L_{xy}(B_c^+) \) is required to satisfy \(L_{xy}(B_c^+) > 0.1 \text{mm} \). The transverse decay length of the \(D_s^+ \) measured from the \(B_c^+ \) vertex must be \(L_{xy}(D_s^+) > 0.15 \text{mm} \). In order to remove fake candidates, both \(L_{xy}(B_c^+) \) and \(L_{xy}(D_s^+) \) are required not to exceed 10 mm.

Taking into account the characteristic hard fragmentation of b-quarks, a requirement \(p_T(B_c^+)/\sum p_T(\text{trk}) > 0.1 \) is applied, where the sum in the denominator is taken over all tracks originating from the primary vertex (tracks of the \(B_c^+ \) candidate are included in the sum if they are associated with the primary vertex). The requirement reduces a sizeable fraction of combinatorial background while having almost no effect on the signal.

The following angular selection requirements are introduced to further suppress the combinatorial background:

- \(\cos \theta^*(D_s^+) > -0.8 \), where \(\theta^*(D_s^+) \) is the angle between the \(D_s^+ \) candidate momentum in the rest frame of the \(B_c^+ \) candidate, and the \(B_c^+ \) candidate line of flight in the laboratory frame. The distribution of \(\cos \theta^*(D_s^+) \) is uniform for the decays of pseudoscalar \(B_c^+ \) meson before any kinematic selection while it tends to increase for negative values of \(\cos \theta^*(D_s^+) \) for the background.
- \(\cos \theta^*(\pi) > -0.8 \), where \(\theta^*(\pi) \) is the angle between the \(J/\psi \) candidate momentum and the pion momentum in the \(K^+K^-\pi^+ \) rest frame. Its distribution is nearly uniform for the signal processes but peaks towards \(-1\) for the background.

\(L_{xy}(B_c^+) \) is the transverse decay length of a particle as defined as the transverse distance between the production (primary) vertex and the particle decay (secondary) vertex projected along its transverse momentum.
Distributions of these two variables after applying all other selection requirements described in this section are shown in Fig. 2. They are shown for the simulated signal samples, as well as for sidebands of the mass spectrum in data, defined as the regions 5640 MeV < m(J/ψ D_s^+) < 5900 MeV (left sideband) and 6360 MeV < m(J/ψ D_s^+) < 6760 MeV (right sideband). A dip in the cos θ(π) distribution for the B_s^+ → J/ψ D_s^+ signal is caused by rejection of B_s^0 → J/ψ φ candidates discussed below.

Various possible contributions of partially reconstructed B → J/ψ X decays were studied. The only significant one was found from the B_s^0 → J/ψ φ decay process. This contribution arises when the combination of the tracks from a true B_s^0 → J/ψ(μ^+μ^-)φ(K^+K^-) decay with a fifth random track results in a fake B_s^+ → J/ψ(μ^+μ^-)D_s^+(K^+K^-π^+) candidate. For each reconstructed B_s^+ candidate, an additional vertex fit is performed. The two muon tracks and the two kaon tracks are fitted to a common vertex, where the kaon tracks are assumed to be from φ → K^+K^- and the muon pair is constrained to have the nominal J/ψ mass. The mass of the B_s^0 candidate, m(μ^+μ^-K^+K^-), is then calculated from the refitted track parameters. Candidates with 5340 MeV < m(μ^+μ^-K^+K^-) < 5400 MeV are rejected. This requirement suppresses the bulk of the B_s^0 events while rejecting only ~4% of the signal.

After applying the selection requirements described above, 1547 J/ψ D_s^+ candidates are selected in the mass range 5640–6760 MeV.

4 B_s^+ → J/ψ D_s^{(*)+} candidate fit

The mass distribution of the selected B_s^+ → J/ψ D_s^{(*)+} candidates is shown in Fig. 3. The peak near the B_s^+ mass, m_{B_s^+} = 6275.6 MeV [22], is attributed to the signal of A±± (blue dashed line) components of B_s^+ → J/ψ D_s^{(*)+} signal. The distributions are obtained after applying all selection criteria except the ones on the plotted variable. The MC distributions are normalised to data.
articles. The mass of the \(B_c^+\) candidate is required to be 5900 MeV < \(m(\psi D_s^+)\) < 6400 MeV while the mass windows for the corresponding intermediate resonances are widened to the plotting ranges. The \(J/\psi\) and \(D_s^+\) mass distributions are fitted with a sum of an exponential function describing the background and a modified Gaussian function [23,24] describing the corresponding signal peak. The modified Gaussian function is defined as

\[
\text{Gauss}^{\text{mod}} \sim \exp \left(-\frac{(x - m_c)^2}{2\sigma_c^2} \right), \tag{1}
\]

where \(x = |m_0 - m_c|/\sigma\) with the mean mass \(m_0\) and width \(\sigma\) being free parameters. The fitted masses of \(J/\psi\) (3095.1 ± 2.4 MeV) and \(D_s\) (1699.0 ± 4.1 MeV) agree with their nominal masses, the widths are consistent with those in the simulated samples, and the signal yields are found to be \(N_{J/\psi} = 568 ± 28\) and \(N_{D_s^+} = 175 ± 36\).

The information about the helicity in \(B_c^+ \rightarrow J/\psi D_s^+\) decay is encoded both in the mass distribution of the \(J/\psi D_s^+\) system and in the distribution of the helicity angle, \(\theta^c(\mu^+)\), which is defined in the rest frame of the muon pair as the angle between the \(\mu^+\) and the \(D_s^+\) candidate momenta. Thus, a two-dimensional extended unbinned maximum-likelihood fit of the \(m(J/\psi D_s^+)\) and |\(\cos \theta^c(\mu^+)\)| distributions is performed. The \(A_{++}\) and \(A_{--}\) helicity amplitude contributions are described by the same mass and angular shapes because of the parity symmetry of the \(J/\psi\) and \(D_s^+\) decays. This is confirmed by the MC simulation. Thus these components are treated together as the \(A_{\pm \pm}\) component, while the shape of the \(A_{00}\) component is different and is therefore treated separately. A simultaneous fit to the mass and angular distributions significantly improves the sensitivity to the contributions of the helicity amplitudes in \(B_c^+ \rightarrow J/\psi D_s^+\) decay with respect to a one-dimensional mass fit.

Four two-dimensional probability density functions (PDFs) are defined to describe the \(B_c^+ \rightarrow J/\psi D_s^+\) signal, the \(A_{\pm \pm}\) and \(A_{00}\) components of the \(B_c^+ \rightarrow J/\psi D_s^+\) signal, and the background. The signal PDFs are factorised into mass and angular components. The effect of correlations between their mass and angular shapes is found to be small and is accounted for as a systematic uncertainty.

The mass distribution of the \(B_c^+ \rightarrow J/\psi D_s^+\) signal is described by a modified Gaussian function. For the \(B_c^+ \rightarrow J/\psi D_s^+\) signal components, the mass shape templates obtained from the simulation with the kernel estimation technique [25] are used. The branching fractions of \(D_s^+ \rightarrow D_s^+\pi^0\) and \(D_s^+ \rightarrow D_s^+\gamma\) decays for the simulation are set to the world average values [22]. The position of the templates along the mass axis is varied in the fit simultaneously with the position of the \(B_c^+ \rightarrow J/\psi D_s^+\) signal peak. The background mass shape is described with a two-parameter exponential function, \(\exp[-a \cdot m(J/\psi D_s^+) + b \cdot m(J/\psi D_s^+)\gamma]\).

To describe the |\(\cos \theta^c(\mu^+)\)| shapes, templates from the kernel estimation are used. The templates for the signal angular PDFs are extracted from the simulated samples. Although their shapes are calculable analytically, the templates allow the fit to account for detector effects. The background angular description is based on the |\(\cos \theta^c(\mu^+)\)| shape of the candidates in the sidebands of \(J/\psi D_s^+\) mass spectra. Two templates are produced from the angular distributions of the candidates in the left and right mass sidebands as defined in Sect. 3. The angular PDF for the background is defined as a conditional PDF of |\(\cos \theta^c(\mu^+)\)| given the per-candidate \(m(J/\psi D_s^+)\). For the candidates in the lower half of the left sideband (5640–5770 MeV), the template from the left sideband is used. Similarly, the template from the right sideband is used for the upper half of the right sideband (6560–6760 MeV). For the candidates in the middle part of the mass spectrum (5770–
The projection of the likelihood fit on the variable $|\cos \theta(\mu^+)|$, where the helicity angle $\theta(\mu^+)$ is the angle between the μ^+ and D_{s}^{*+} candidate momenta in the rest frame of the muon pair from J/ψ decay, for the full selected $J/\psi D_{s}^{*+}$ candidate dataset and a subset of the candidates in a mass range $5950 \text{ MeV} < m(J/\psi D_{s}^{*+}) < 6250 \text{ MeV}$ corresponding to the observed signal of $B_c^+ \rightarrow J/\psi D_{s}^{*+}$ decay. The red solid line represents the full fit projection. The contribution of the $B_c^+ \rightarrow J/\psi D_{s}^{*+}$ decay is shown with the magenta long-dashed line (it is not drawn in b because this contribution vanishes in that mass range); the brown dash-dot and green dotted lines show the $B_c^+ \rightarrow J/\psi D_{s}^{*+}$ Λ_0 and $\Lambda_{\pm\pm}$ component contributions, respectively; the blue dashed line shows the background model.
is required to be $L_{xy}(B_{c}^{+}) > 0.2$ mm, and not to exceed 10 mm.

To further suppress combinatorial background, the following selection is applied:

- $\cos \theta^*(\pi) > -0.8$, where $\theta^*(\pi)$ is the angle between the pion momentum in the $\mu^+\mu^-\pi^+$ rest frame and the B_{c}^{+} candidate line of flight in laboratory frame. This angular variable behaviour for the signal and the background is the same as that of $\cos \theta^*(D_{s}^{+})$ used for $J/\psi D_{s}^{+}$ candidates selection.
- $|\cos \theta'(\mu^+)| < 0.8$, where $\theta'(\mu^+)$ is the angle between the μ^+ and π^+ momenta in the muon pair rest frame. The signal distribution follows a $\sin^2 \theta'(\mu^+)$ shape, while the background is flat.

After applying the above-mentioned requirements, 38542 $J/\psi \pi^+$ candidates are selected in the mass range 5640–6760 MeV. Figure 6 shows the mass distribution of the selected candidates. An extended unbinned maximum-likelihood fit of the mass spectrum is performed to evaluate the $B_{c}^{+} \rightarrow J/\psi \pi^+$ signal yield. The signal contribution is described with the modified Gaussian function while an exponential function is used for the background. The B_{c}^{+} mass, $m_{B_{c}^{+}} \rightarrow J/\psi \pi^+$, the width of the modified Gaussian function, $\sigma_{B_{c}^{+}} \rightarrow J/\psi \pi^+$, the yields of the signal, $N_{B_{c}^{+}} \rightarrow J/\psi \pi^+$, and the background, and the slope of the exponential background are free parameters of the fit. The fit results are summarised in Table 2, and the fit projection is also shown in Fig. 6. The extracted B_{c}^{+} mass value is consistent with the world average [22], and the signal peak width agrees with the simulation (37.4 MeV).

![Fig. 6](image-url)

Table 2 Signal parameters of the $J/\psi \pi^+$ mass distribution obtained with the unbinned extended maximum-likelihood fit. Only statistical uncertainties are shown. No acceptance corrections are applied to the signal yields.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$m_{B_{c}^{+}} \rightarrow J/\psi \pi^+$ (MeV)</td>
<td>6279.9 ± 3.9</td>
</tr>
<tr>
<td>$\sigma_{B_{c}^{+}} \rightarrow J/\psi \pi^+$ (MeV)</td>
<td>33.9 ± 4.2</td>
</tr>
<tr>
<td>$N_{B_{c}^{+}} \rightarrow J/\psi \pi^+$</td>
<td>1140 ± 120</td>
</tr>
</tbody>
</table>

6 Branching fractions and polarisation measurement

The ratios of the branching fractions $\mathcal{R}_{D_{s}^{+} \rightarrow D_{s}^{+}}$ and $\mathcal{R}_{D_{s}^{+} \rightarrow J/\psi \pi^+}$ are calculated as

$$\mathcal{R}_{D_{s}^{+} \rightarrow D_{s}^{+}} = \frac{\mathcal{B}_{D_{s}^{+} \rightarrow D_{s}^{+}}}{\mathcal{B}_{D_{s}^{+} \rightarrow J/\psi \pi^+}} = \frac{1}{\mathcal{B}_{D_{s}^{+} \rightarrow J/\psi \pi^+}} \times \frac{\mathcal{A}_{D_{s}^{+} \rightarrow D_{s}^{+}}}{\mathcal{A}_{D_{s}^{+} \rightarrow J/\psi \pi^+}},$$

(2)

where $\mathcal{A}_{B_{c}^{+}} \rightarrow X$ and $N_{B_{c}^{+}} \rightarrow X$ are the total acceptance and the yield of the corresponding mode. For $B_{c}^{+} \rightarrow J/\psi \pi^+$, the CLEO measurement [26] of the partial $D_{s}^{+} \rightarrow K^+K^-\pi^+$ branching fractions, with a kaon-pair mass within various intervals around the nominal ϕ meson mass, is used. An interpolation between the partial branching fractions, measured for ±5 and ±10 MeV intervals, using a relativistic Breit–Wigner shape of the resonance yields the value (1.85 ± 0.11)% for the ±7 MeV interval which is used in the analysis. The effect of admixture of other D_{s}^{+} decay modes with $(K^+K^-\pi^+)$ final state which are not present in the MC simulation is studied separately and accounted for as a systematic uncertainty.

The acceptance for the $B_{c}^{+} \rightarrow J/\psi D_{s}^{\pm}$ decay mode is different for the $A_{\pm\pm}$ and A_{00} components, thus the full acceptance for the mode is

$$\mathcal{A}_{B_{c}^{+} \rightarrow J/\psi D_{s}^{+}} = \left(\frac{f_{\pm\pm}}{\mathcal{A}_{B_{c}^{+} \rightarrow J/\psi D_{s}^{+}, A_{\pm\pm}}} + \frac{1 - f_{\pm\pm}}{\mathcal{A}_{B_{c}^{+} \rightarrow J/\psi D_{s}^{+}, A_{00}}} \right)^{-1},$$

(3)

where the subscripts indicate the helicity state and $f_{\pm\pm}$ is the value extracted from the fit (Table 1). The acceptances are determined from the simulation and shown in Table 3.

The ratio $\mathcal{R}_{D_{s}^{+} \rightarrow J/\psi \pi^+}$ is calculated as

$$\mathcal{R}_{D_{s}^{+} \rightarrow J/\psi \pi^+} = \frac{\mathcal{B}_{D_{s}^{+} \rightarrow J/\psi \pi^+}}{\mathcal{B}_{D_{s}^{+} \rightarrow J/\psi \pi^+}} = \frac{N_{B_{c}^{+} \rightarrow J/\psi \pi^+}}{N_{B_{c}^{+} \rightarrow J/\psi \pi^+}} \times \frac{\mathcal{A}_{B_{c}^{+} \rightarrow J/\psi \pi^+}}{\mathcal{A}_{B_{c}^{+} \rightarrow J/\psi \pi^+}},$$

(4)
Table 3 The acceptance $A_{B^+_c \rightarrow X}$ for all decay modes studied. Only uncertainties due to MC statistics are shown.

<table>
<thead>
<tr>
<th>Mode</th>
<th>$A_{B^+_c \rightarrow X}$ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B^+_c \rightarrow J/\psi \pi^+$</td>
<td>4.106 ± 0.056</td>
</tr>
<tr>
<td>$B^+_c \rightarrow J/\psi D_s^{(*)+}$</td>
<td>1.849 ± 0.034</td>
</tr>
<tr>
<td>$B^+c \rightarrow J/\psi D_s^{(*)+}, A{00}$</td>
<td>1.829 ± 0.053</td>
</tr>
<tr>
<td>$B^+c \rightarrow J/\psi D_s^{(*)+}, A{\pm\pm}$</td>
<td>1.712 ± 0.035</td>
</tr>
</tbody>
</table>

where the ratio of the yields $N_{B^+_c \rightarrow J/\psi D_s^{(*)+}} / N_{B^+_c \rightarrow J/\psi D^+_s}$ and its uncertainty is extracted from the fit as a parameter in order to account for correlations between the yields.

The fraction of the $A_{\pm\pm}$ component contribution in $B^+_c \rightarrow J/\psi D_s^{(*)+}$ decay is calculated from the $f_{\pm\pm}$ value quoted in Table 1 by applying a correction to account for the different acceptances for the two component contributions:

$$\Gamma_{\pm\pm} / \Gamma = f_{\pm\pm} \times \frac{A_{B^+_c \rightarrow J/\psi D_s^{(*)+}}}{A_{B^+_c \rightarrow J/\psi D^+_s}, A_{\pm\pm}}. \quad (5)$$

7 Systematic uncertainties

The systematic uncertainties of the measured values are determined by varying the analysis procedure and repeating all calculations. Although some sources can have rather large effects on the individual decay rate measurements, they largely cancel in the ratios of the branching fractions due to correlation between the effects on the different decay modes. The following groups of systematic uncertainties are considered.

The first group of sources of systematic uncertainty relates to possible differences between the data and simulation affecting the acceptances for the decay modes. Thus, an effect of the B^+_c production model is evaluated by varying the simulated p_T and $|\eta|$ spectra while preserving agreement with the data distributions obtained using the abundant $B^+_c \rightarrow J/\psi \pi^+$ channel. These variations have very similar effects on the acceptances for the different decay modes, thus giving rather moderate estimates of the uncertainties, not exceeding 3% in total, on the ratios of branching fractions. The effect of presence of other $D_s^{(*)}$ decay modes with ($K^+K^\mp\pi^\mp$) final state on the calculated acceptances is studied with a separate MC simulation. Its conservative estimate yields 0.4% which is assigned as $\mathcal{R}_{D_s^{(*)}/\pi^+}$ and $\mathcal{R}_{D_s^{(*)}/\pi^+}$ uncertainties. An uncertainty on the tracking efficiency is dominated by the uncertainty of the detector material description in the MC simulation. Samples generated with distorted geometries and with increased material are used to estimate the effect on track reconstruction efficiencies. When propagated to the ratios of branching fractions, these estimates give 0.5% uncertainty for $\mathcal{R}_{D_s^{(*)}/\pi^+}$ and $\mathcal{R}_{D_s^{(*)}/\pi^+}$ due to the two extra tracks in $B^+_c \rightarrow J/\psi D^{(*)+}_s$ modes. Limited knowledge of the B^+_c and $D_s^{(*)}$ lifetimes leads to an additional systematic uncertainty. The simulated proper decay times are varied within one standard deviation from the world average values [22] resulting in uncertainties of ~1% assigned to $\mathcal{R}_{D_s^{(*)}/\pi^+}$ and $\mathcal{R}_{D_s^{(*)}/\pi^+}$ due to the B^+_c lifetime, and 0.3% due to the $D_s^{(*)}$ lifetime. Removing the requirement on $p_T(B^+_c) / \sum p_T(\text{trk})$ is found to produce no noticeable effect on the measured values.

The next group of uncertainties originates from the signal extraction procedure. These uncertainties are evaluated separately for $J/\psi D_s^{(*)}$ and $J/\psi \pi^+$ candidate fits. For the former, the following variations of the fit model are applied and the difference is treated as a systematic uncertainty:

- different background mass shape parametrisations (three-parameter exponential, second- and third-order polynomials), different fitted mass range (reduced by up to 40 MeV from each side independently);
- a double Gaussian or double-sided Crystal Ball function [27–29] for $B^+_c \rightarrow J/\psi D_s^{(*)}$ signal mass templates, which is controlled by a parameter of the kernel estimation procedure [25];
- similar variation of the smoothness of the $B^+_c \rightarrow J/\psi D_s^{(*)}$ signal angular templates;
- variation of the smoothness of the sideband templates used for the background angular PDF construction; different ranges of the sidebands; different sideband interpolation procedure;
- modelling of the correlation between the mass and angular parts of the signal PDFs. This correlation takes place only at the detector level and manifests itself in degradation of the mass resolution for higher values of $|\cos \theta'(\mu^+) |$. A dedicated fit model accounting for this effect is used for the data fit. The impact on the result is found to be negligible compared to the total uncertainty.

The first two items give the dominant contributions to the uncertainties of the ratios of branching fractions while the transverse polarisation fraction measurement is mostly affected by the background angular modelling variations. For the normalisation channel fit model, the similar variations of the background and signal mass shape parametrisation are applied. The deviations produced by the variations of the fits reach values as high as 10–15% thus making them the dominant sources of systematic uncertainty.

The branching fractions of $D_s^{(*)}$ [22] are varied in simulation within their uncertainties to estimate their effect on the measured quantities. Very small uncertainties are obtained...
for the $R_{D_s^{+}/\pi^+}$ and $R_{D_s^{+}/D_s^{+}}$, while for $\Gamma_{\pm\pm}/\Gamma$, the estimate is $\sim 1\%$.

The statistical uncertainties on the acceptance values due to the MC sample sizes are also treated as a separate source of systematic uncertainty and estimated to be 2–3%.

In order to check for a possible bias from using three-muon triggers, vetoing the D_s^{+} meson daughter tracks identified as muons is tested and found not to affect the measurement.

Finally, since $B_{D_s^{+} \to \phi(K^{+}K^{-})\pi^{+}}$ enters Eq. (2), its uncertainty, evaluated from Ref. [26] as 5.9%, is propagated to the final values of the relative branching fractions.

The systematic uncertainties on the measured quantities are summarised in Table 4.

8 Results

The following ratios of the branching fractions are measured:

$$R_{D_s^{+}/\pi^+} = \frac{B_{B_s^{+} \to J/\psi D_s^{+}}}{B_{B_s^{+} \to J/\psi \pi^+}} = 3.8 \pm 1.1 \text{(stat.)} \pm 0.4 \text{(syst.)} \pm 0.2 \text{(BF)},$$

(6)

$$R_{D_s^{+}/\pi^+} = \frac{B_{B_s^{+} \to J/\psi D_s^{+}}}{B_{B_s^{+} \to J/\psi \pi^+}} = 10.4 \pm 3.1 \text{(stat.)} \pm 1.5 \text{(syst.)} \pm 0.6 \text{(BF)},$$

(7)

$$R_{D_s^{+}/D_s^{+}} = \frac{B_{B_s^{+} \to J/\psi D_s^{+}}}{B_{B_s^{+} \to J/\psi D_s^{+}}} = 2.8^{+1.2}_{-0.9} \text{(stat.)} \pm 0.3 \text{(syst.)},$$

(8)

where the BF uncertainty corresponds to the knowledge of $B_{B_s^{+} \to \phi(K^{+}K^{-})\pi^{+}}$. The relative contribution of the $A_{\pm\pm}$ component in $B_{c}^{+} \to J/\psi D_s^{+}$ decay is measured to be $\Gamma_{\pm\pm}/\Gamma = 0.38 \pm 0.23 \text{(stat.)} \pm 0.07 \text{(syst.)}$ (9)

These results are compared with those of the LHCb measurement [10] and to the expectations from various theoretical calculations in Table 5 and Fig. 7. The measurement agrees with the LHCb result. All ratios are well described by the recent perturbative QCD predictions [8]. The expectations from models in Refs. [3–5,7] as well as the sum-rules prediction [4] for the ratio $R_{D_s^{+}/\pi^+}$ are consistent with the measurement. The QCD relativistic potential model predictions [3] are consistent with the measured $R_{D_s^{+}/\pi^+}$ ratio while the expectations from the sum rules [4] and models in Refs. [5–7] are somewhat smaller than the measured value. The predictions in Refs. [3–5,7] are also generally smaller than the measured ratio $R_{D_s^{+}/\pi^+}$; however, the discrepancies do not exceed two standard deviations when taking into account only the experimental uncertainty.

The measured fraction of the $A_{\pm\pm}$ component agrees well with the prediction of the relativistic independent quark model [9] and perturbative QCD [8].

9 Conclusion

A study of $B_{c}^{+} \to J/\psi D_s^{+}$ and $B_{c}^{+} \to J/\psi D_s^{+}$ decays has been performed. The ratios of the branching fractions $B_{B_s^{+} \to J/\psi D_s^{+}}/B_{B_s^{+} \to J/\psi \pi^+}$, $B_{B_s^{+} \to J/\psi D_s^{+}}/B_{B_s^{+} \to J/\psi \pi^+}$, $B_{B_s^{+} \to J/\psi D_s^{+}}/B_{B_s^{+} \to J/\psi \pi^+}$, and the transverse polarisation fraction of $B_{c}^{+} \to J/\psi D_s^{+}$ decay have been measured by the ATLAS experiment at the LHC using pp collision data corresponding to an integrated luminosity of 4.9 fb^{-1} at 7 TeV centre-of-mass energy and 20.6 fb^{-1} at 8 TeV. The polarisation is found to be well described by the available...
Page transverse quark momentum ω

edge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, without whom ATLAS could not be operated efficiently. We acknowledge of the LHC, as well as the support staff from our institutions and FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRK I, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and

Acknowledgments We thank CERN for the very successful operation of the LHC, as well as the support staff from our institutions without whom ATLAS could not be operated efficiently. We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; STSC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DLRF, DMSR and Lundbeck Foundation, Denmark; EPLANET, ERC and NSRF, European Union; IN2P3-CNRS, CEA-DSM/IRFU, France; GNSF, Georgia; BMBF, DFG, HGF, MPG and AvH Foundation, Germany; GSRT and NSRF, Greece; RGC, Hong Kong SAR, China; ISF, MINEVRA, GIF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; FOM and NWO, Netherlands; BRF and RCN, Norway; MNiSW and NCN, Poland; GRICES and PCT, Portugal; MNE/JPA, Romania; MES of Russia and NRK I, Russian Federation; JINR; MSTD, Serbia; MSSR, Slovakia; ARRS and MIZŠ, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SER, SNSF and Cantons of Bern and

Table 5 Comparison of the results of this measurement with those of LHCb [10] and theoretical predictions based on a QCD relativistic potential model [3], QCD sum rules [4], relativistic constituent quark model (RCQM) [5], BSW relativistic quark model (with fixed average transverse quark momentum $\omega = 0.40\text{GeV}$) [6], light-front quark model (LFQM) [7], perturbative QCD (pQCD) [8], and relativistic independent quark model (RIQM) [9]. The uncertainties of the theoretical predictions are shown if they are explicitly quoted in the corresponding papers. Statistical and systematic uncertainties added in quadrature are shown for the results of ATLAS and LHCb.

<table>
<thead>
<tr>
<th>$\mathcal{R}_{D^+_s}/\pi^+$</th>
<th>\mathcal{R}_{D^+/π^+}</th>
<th>$\mathcal{R}_{D^{h+/D^+_s}}$</th>
<th>Γ_{\pm}/Γ</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.8 ± 1.2</td>
<td>10.4 ± 3.5</td>
<td>2.8 ± 1.2</td>
<td>0.38 ± 0.24</td>
<td>ATLAS</td>
</tr>
<tr>
<td>2.90 ± 0.62</td>
<td>–</td>
<td>2.37 ± 0.57</td>
<td>0.52 ± 0.20</td>
<td>LHCb [10]</td>
</tr>
<tr>
<td>2.6</td>
<td>4.5</td>
<td>1.7</td>
<td>–</td>
<td>QCD potential model [3]</td>
</tr>
<tr>
<td>1.3</td>
<td>5.2</td>
<td>3.9</td>
<td>–</td>
<td>QCD sum rules [4]</td>
</tr>
<tr>
<td>2.0</td>
<td>5.7</td>
<td>2.9</td>
<td>–</td>
<td>RCQM [5]</td>
</tr>
<tr>
<td>2.2</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>BSW [6]</td>
</tr>
<tr>
<td>2.06 ± 0.86</td>
<td>–</td>
<td>3.01 ± 1.23</td>
<td>–</td>
<td>LFQM [7]</td>
</tr>
<tr>
<td>3.45 ± 0.49</td>
<td>–</td>
<td>2.54 ± 0.07</td>
<td>0.48 ± 0.04</td>
<td>pQCD [8]</td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>–</td>
<td>0.410</td>
<td>RIQM [9]</td>
</tr>
</tbody>
</table>

The measured ratios of the branching fraction are generally described by perturbative QCD, sum rules, and relativistic quark models. There is an indication of underestimation of the decay rates for the $B_s^+ \to J/\psi D^{(s+)}_s$ decays by some models, although the discrepancies do not exceed two standard deviations when taking into account only the experimental uncertainty. The measurement results agree with those published by the LHCb experiment.

Fig. 7 Comparison of the results of this measurement with those of LHCb [10] and theoretical predictions based on a QCD relativistic potential model [3], QCD sum rules [4], relativistic constituent quark model (RCQM) [5], BSW relativistic quark model (with fixed average transverse quark momentum $\omega = 0.40\text{GeV}$) [6], light-front quark model (LFQM) [7], perturbative QCD (pQCD) [8], and relativistic independent quark model (RIQM) [9]. The uncertainties of the theoretical predictions are shown if they are explicitly quoted in the corresponding papers. Statistical and systematic uncertainties added in quadrature are shown for the results of ATLAS and LHCb.

\begin{table}
\centering
\begin{tabular}{|c|c|c|c|c|}
\hline
$\mathcal{R}_{D^+_s}/\pi^+$ & \mathcal{R}_{D^+/π^+} & $\mathcal{R}_{D^{h+/D^+_s}}$ & Γ_{\pm}/Γ & Ref. \\
\hline
3.8 ± 1.2 & 10.4 ± 3.5 & 2.8 ± 1.2 & 0.38 ± 0.24 & ATLAS \\
2.90 ± 0.62 & – & 2.37 ± 0.57 & 0.52 ± 0.20 & LHCb [10] \\
2.6 & 4.5 & 1.7 & – & QCD potential model [3] \\
1.3 & 5.2 & 3.9 & – & QCD sum rules [4] \\
2.0 & 5.7 & 2.9 & – & RCQM [5] \\
2.06 ± 0.86 & – & 3.01 ± 1.23 & – & LFQM [7] \\
3.45 ± 0.49 & – & 2.54 ± 0.07 & 0.48 ± 0.04 & pQCD [8] \\
– & – & – & 0.410 & RIQM [9] \\
\hline
\end{tabular}
\caption{Comparison of the results of this measurement with those of LHCb [10] and theoretical predictions based on a QCD relativistic potential model [3], QCD sum rules [4], relativistic constituent quark model (RCQM) [5], BSW relativistic quark model (with fixed average transverse quark momentum $\omega = 0.40\text{GeV}$) [6], light-front quark model (LFQM) [7], perturbative QCD (pQCD) [8], and relativistic independent quark model (RIQM) [9]. The uncertainties of the theoretical predictions are shown if they are explicitly quoted in the corresponding papers. Statistical and systematic uncertainties added in quadrature are shown for the results of ATLAS and LHCb.}
\end{table}

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure7.png}
\caption{Comparison of the results of this measurement with those of LHCb [10] and theoretical predictions based on a QCD relativistic potential model [3], QCD sum rules [4], relativistic constituent quark model (RCQM) [5], BSW relativistic quark model (with fixed average transverse quark momentum $\omega = 0.40\text{GeV}$) [6], light-front quark model (LFQM) [7], perturbative QCD (pQCD) [8], and relativistic independent quark model (RIQM) [9]. The uncertainties of the theoretical predictions are shown if they are explicitly quoted in the corresponding papers. Statistical and systematic uncertainties added in quadrature are shown for the results of ATLAS and LHCb.}
\end{figure}
Geneva, Switzerland; NSC, Taiwan; TAEK, Turkey; STFC, the Royal Society and Leverhulme Trust, United Kingdom; DOE and NSF, United States of America. The crucial computing support from all WLCG partners is acknowledged gratefully, in particular from CERN and the ATLAS Tier-1 facilities at TRIUMF (Canada), NDGF (Denmark, Norway, Sweden), CC-IN2P3 (France), KIT/GridKA (Germany), INFN-CNAF (Italy), NL-T1 (Netherlands), PIC (Spain), ASGC (Taiwan), RAL (UK) and BNL (USA) and in the Tier-2 facilities worldwide.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Funded by SCOAP3.

References

National Institute of Physics and Nuclear Engineering, Bucharest, Romania; (b) Physics Department, National Institute for Research and Development of Isotopic and Molecular Technologies, Cluj Napoca, Romania; (c) University Politehnica Bucharest, Bucharest, Romania; (d) West University in Timisoara, Timisoara, Romania

Departamento de Física, Universidad de Buenos Aires, Buenos Aires, Argentina

Cavendish Laboratory, University of Cambridge, Cambridge, UK

Department of Physics, Carleton University, Ottawa, ON, Canada

CERN, Geneva, Switzerland

Enrico Fermi Institute, University of Chicago, Chicago, IL, USA

Departamento de Física, Pontificia Universidad Católica de Chile, Santiago, Chile; (b) Departamento de Física, Universidad Técnica Federico Santa María, Valparaíso, Chile

Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, China; (b) Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui, China; (c) Department of Physics, Nanjing University, Nanjing, Jiangsu, China; (d) School of Physics, Shandong University, Shandong, China; (e) Shanghai Key Laboratory for Particle Physics and Cosmology, Department of Physics and Astronomy, Shanghai Jiao Tong University, Shanghai, China; (f) Physics Department, Tsinghua University, Beijing 100084, China

Laboratoire de Physique Corpusculaire, Clermont Université and Université Blaise Pascal and CNRS/IN2P3, Clermont-Ferrand, France

Nevis Laboratory, Columbia University, Irvington, NY, USA

Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark

INFN Gruppo Collegato di Cosenza, Laboratori Nazionali di Frascati, Frascati, Italy; (b) Dipartimento di Fisica, Università della Calabria, Rende, Italy

AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Kraków, Poland; (b) Marian Smoluchowski Institute of Physics, Jagiellonian University, Kraków, Poland

Institute of Nuclear Physics, Polish Academy of Sciences, Kraków, Poland

Physics Department, Southern Methodist University, Dallas, TX, USA

Physics Department, University of Texas at Dallas, Richardson, TX, USA

DESY, Hamburg and Zeuthen, Germany

Institut für Experimentelle Physik IV, Technische Universität Dortmund, Dortmund, Germany

Institut für Kern- und Teilchenphysik, Technische Universität Dresden, Dresden, Germany

Physics Department, Duke University, Durham, NC, USA

SUPA-School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK

INFN Laboratori Nazionali di Frascati, Frascati, Italy

Fakultät für Mathematik und Physik, Albert-Ludwigs-Universität, Freiburg, Germany

Section de Physique, Université de Genève, Geneva, Switzerland

INFN Sezione di Genova, Genoa, Italy; (b) Dipartimento di Fisica, Università di Genova, Genoa, Italy

E. Andronikashvili Institute of Physics, Iv. Javakhishvili Tbilisi State University, Tbilisi, Georgia; (b) High Energy Physics Institute, Tbilisi State University, Tbilisi, Georgia

II Physikalisches Institut, Justus-Liebig-Universität Giessen, Giessen, Germany

SUPA-School of Physics and Astronomy, University of Glasgow, Glasgow, UK

II Physikalisches Institut, Georg-August-Universität, Göttingen, Germany

Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS/IN2P3, Grenoble, France

Department of Physics, Hampton University, Hampton, VA, USA

Laboratory for Particle Physics and Cosmology, Harvard University, Cambridge, MA, USA

Kirchhoff-Institut für Physik, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany; (b) Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany; (c) ZITI Institut für technische Informatik, Ruprecht-Karls-Universität Heidelberg, Mannheim, Germany

Faculty of Applied Information Science, Hiroshima Institute of Technology, Hiroshima, Japan

Department of Applied Information Science, The Chinese University of Hong Kong, Shatin, NT, Hong Kong; (b) Department of Physics, The University of Hong Kong, Hong Kong, Hong Kong; (c) Department of Physics, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China

Department of Physics, Indiana University, Bloomington, IN, USA

Institut für Astro- und Teilchenphysik, Leopold-Franzens-Universität, Innsbruck, Austria

University of Iowa, Iowa City, IA, USA
64 Department of Physics and Astronomy, Iowa State University, Ames, IA, USA
65 Joint Institute for Nuclear Research, JINR Dubna, Dubna, Russia
66 KEK, High Energy Accelerator Research Organization, Tsukuba, Japan
67 Graduate School of Science, Kobe University, Kobe, Japan
68 Faculty of Science, Kyoto University, Kyoto, Japan
69 Kyoto University of Education, Kyoto, Japan
70 Department of Physics, Kyushu University, Fukuoka, Japan
71 Instituto de Física La Plata, Universidad Nacional de La Plata and CONICET, La Plata, Argentina
72 Physics Department, Lancaster University, Lancaster, UK
73 (a)INFN Sezione di Lecce, Lecce, Italy; (b)Dipartimento di Matematica e Fisica, Università del Salento, Lecce, Italy
74 Oliver Lodge Laboratory, University of Liverpool, Liverpool, UK
75 Department of Physics, Jožef Stefan Institute and University of Ljubljana, Ljubljana, Slovenia
76 School of Physics and Astronomy, Queen Mary University of London, London, UK
77 Department of Physics, Royal Holloway University of London, Surrey, UK
78 Department of Physics and Astronomy, University College London, London, UK
79 Louisiana Tech University, Ruston, LA, USA
80 Laboratoire de Physique Nucléaire et de Hautes Energies, UPMC and Université Paris-Diderot and CNRS/IN2P3, Paris, France
81 Fysiska institutionen, Lunds universitet, Lund, Sweden
82 Departamento de Física Teorica C-15, Universidad Autonoma de Madrid, Madrid, Spain
83 Institut für Physik, Universität Mainz, Mainz, Germany
84 School of Physics and Astronomy, University of Manchester, Manchester, UK
85 CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
86 Department of Physics, University of Massachusetts, Amherst, MA, USA
87 Department of Physics, McGill University, Montreal, QC, Canada
88 School of Physics, University of Melbourne, Melbourne, VIC, Australia
89 Department of Physics, The University of Michigan, Ann Arbor, MI, USA
90 Department of Physics and Astronomy, Michigan State University, East Lansing, MI, USA
91 (a)INFN Sezione di Milano, Milan, Italy; (b)Dipartimento di Fisica, Università di Milano, Milan, Italy
92 B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
93 National Scientific and Educational Centre for Particle and High Energy Physics, Minsk, Republic of Belarus
94 Department of Physics, Massachusetts Institute of Technology, Cambridge, MA, USA
95 Group of Particle Physics, University of Montreal, Montreal, QC, Canada
96 P.N. Lebedev Institute of Physics, Academy of Sciences, Moscow, Russia
97 Institute for Theoretical and Experimental Physics (ITP), Moscow, Russia
98 National Research Nuclear University MEPhI, Moscow, Russia
99 D.V. Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
100 Fakultät für Physik, Ludwig-Maximilians-Universität München, Munich, Germany
101 Max-Planck-Institut für Physik (Werner-Heisenberg-Institut), Munich, Germany
102 Nagasaki Institute of Applied Science, Nagasaki, Japan
103 Graduate School of Science and Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Japan
104 (a)INFN Sezione di Napoli, Naples, Italy; (b)Dipartimento di Fisica, Università di Napoli, Naples, Italy
105 Department of Physics and Astronomy, University of New Mexico, Albuquerque, NM, USA
106 Institute for Mathematics, Astrophysics and Particle Physics, Radboud University Nijmegen/Nikhef, Nijmegen, The Netherlands
107 Nikhef National Institute for Subatomic Physics and University of Amsterdam, Amsterdam, The Netherlands
108 Department of Physics, Northern Illinois University, De Kalb, IL, USA
109 Budker Institute of Nuclear Physics, SB RAS, Novosibirsk, Russia
110 Department of Physics, New York University, New York, NY, USA
111 Ohio State University, Columbus, OH, USA
112 Faculty of Science, Okayama University, Okayama, Japan
113 Homer L. Dodge Department of Physics and Astronomy, University of Oklahoma, Norman, OK, USA
114 Department of Physics, Oklahoma State University, Stillwater, OK, USA
Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv, Israel
Department of Physics, Aristotle University of Thessaloniki, Thessaloniki, Greece
International Center for Elementary Particle Physics and Department of Physics, The University of Tokyo, Tokyo, Japan
Graduate School of Science and Technology, Tokyo Metropolitan University, Tokyo, Japan
Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
Department of Physics, University of Toronto, Toronto, ON, Canada
(a) TRIUMF, Vancouver, BC, Canada; (b) Department of Physics and Astronomy, York University, Toronto, ON, Canada
Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
Department of Physics and Astronomy, Tufts University, Medford, MA, USA
Centro de Investigaciones, Universidad Antonio Narino, Bogotá, Colombia
Department of Physics and Astronomy, University of California Irvine, Irvine, CA, USA
(a) INFN Gruppo Collegato di Udine, Sezione di Trieste, Udine, Italy; (b) ICTP, Trieste, Italy; (c) Dipartimento di Chimica Fisica e Ambiente, Università di Udine, Udine, Italy
Department of Physics, University of Illinois, Urbana, IL, USA
Department of Physics and Astronomy, University of Uppsala, Uppsala, Sweden
Instituto de Física Corpuscular (IFIC) and Departamento de Física Atómica, Molecular y Nuclear and Departamento de Ingeniería Electrónica and Instituto de Microelectrónica de Barcellona (IMB-CNM), University of Valencia and CSIC, Valencia, Spain
Department of Physics, University of British Columbia, Vancouver, BC, Canada
Department of Physics and Astronomy, University of Victoria, Victoria, BC, Canada
Department of Physics, University of Warwick, Coventry, UK
Waseda University, Tokyo, Japan
Department of Particle Physics, The Weizmann Institute of Science, Rehovot, Israel
Department of Physics, University of Wisconsin, Madison, WI, USA
Fakultät für Physik und Astronomie, Julius-Maximilians-Universität, Würzburg, Germany
Fachbereich C Physik, Bergische Universität Wuppertal, Wuppertal, Germany
Department of Physics, Yale University, New Haven, CT, USA
Yerevan Physics Institute, Yerevan, Armenia
Centre de Calcul de l’Institut National de Physique Nucléaire et de Physique des Particules (IN2P3), Villeurbanne, France

a Also at Department of Physics, King’s College London, London, UK
b Also at Institute of Physics, Azerbaijan Academy of Sciences, Baku, Azerbaijan
c Also at Novosibirsk State University, Novosibirsk, Russia
d Also at TRIUMF, Vancouver, BC, Canada
e Also at Department of Physics, California State University, Fresno, CA, USA
f Also at Department of Physics, University of Fribourg, Fribourg, Switzerland
g Also at Departamento de Física e Astronomía, Faculdade de Ciencias, Universidade do Porto, Porto, Portugal
h Also at Tomsk State University, Tomsk, Russia
i Also at CPPM, Aix-Marseille Université and CNRS/IN2P3, Marseille, France
j Also at Universita di Napoli Parthenope, Naples, Italy
k Also at Institute of Particle Physics (IPP), Waterloo, Canada
l Also at Particle Physics Department, Rutherford Appleton Laboratory, Didcot, UK
m Also at Department of Physics, St. Petersburg State Polytechnical University, St. Petersburg, Russia
n Also at Louisiana Tech University, Ruston, LA, USA
o Also at Institutu Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain
p Also at Department of Physics, National Tsing Hua University, Taiwan
q Also at Department of Physics, The University of Texas at Austin, Austin, TX, USA
r Also at Institute of Theoretical Physics, Ilia State University, Tbilisi, Georgia
s Also at CERN, Geneva, Switzerland
i Also at Georgian Technical University (GTU), Tbilisi, Georgia
u Also at Ochadai Academic Production, Ochanomizu University, Tokyo, Japan
v Also at Manhattan College, New York, NY, USA
w Also at Hellenic Open University, Patras, Greece
x Also at Institute of Physics, Academia Sinica, Taipei, Taiwan
y Also at LAL, Université Paris-Sud and CNRS/IN2P3, Orsay, France
z Also at Academia Sinica Grid Computing, Institute of Physics, Academia Sinica, Taipei, Taiwan
aa Also at School of Physics, Shandong University, Shandong, China
ab Also at Moscow Institute of Physics and Technology State University, Dolgoprudny, Russia
ac Also at Section de Physique, Université de Genève, Geneva, Switzerland
ad Also at International School for Advanced Studies (SISSA), Trieste, Italy
ae Also at Department of Physics and Astronomy, University of South Carolina, Columbia, SC, USA
af Also at School of Physics and Engineering, Sun Yat-sen University, Guangzhou, China
ag Also at Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
ah Also at National Research Nuclear University MEPhI, Moscow, Russia
ai Also at Department of Physics, Stanford University, Stanford, CA, USA
aj Also at Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics, Budapest, Hungary
ak Also at Department of Physics, The University of Michigan, Ann Arbor, MI, USA
al Also at Discipline of Physics, University of KwaZulu-Natal, Durban, South Africa
am Also at University of Malaya, Department of Physics, Kuala Lumpur, Malaysia

* Deceased