Making the SDGs useful: a Herculean task

Citation for published version:

Digital Object Identifier (DOI):
10.1016/S0140-6736(16)31635-X

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published in:
The Lancet

Publisher Rights Statement:
Copyright © The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND license.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Making the SDGs useful: a Herculean task

The Sustainable Development Goals (SDGs) have been called “senseless, dreamy, garbled”, given that they include 17 goals, 169 targets, and 230 indicators, in contrast to the Millennium Development Goals (MDGs) that focused on eight goals, 18 targets, and 48 indicators. Among the earliest sceptics of the SDGs was the Bill & Melinda Gates Foundation, which argued that any new goals should be specific, measurable, attainable, relevant, time bound, and easy to communicate.2 The Institute for Health Metrics and Evaluation has taken on the unenviable task of assessing whether the SDGs are indeed measurable and attainable in 188 countries by drawing on their Global Burden of Disease (GBD) database.3 Has the leading institute in this area been able to achieve their goal of helping to make the SDGs relevant and useful?

The simple answer is yes. The GBD 2015 SDG Collaborators have created a health-related SDG index, which is a function of the GBD measures of 33 of 46 health-related SDG indicators. The index is measurable and clearly helps to communicate countries’ progress, with Iceland ranking the highest (85·5 [95% uncertainty level 84·2–86·5] on a scale of 0–100) and Central African Republic the lowest (20·4 [15·4–24·9]).

The complicated answer to whether the SDG index is relevant and useful depends on whom in global health we are talking about. Is it useful for major donors who fund international cooperation? Yes. Donors—particularly the USA, the UK, and the Gates Foundation—are increasingly insisting that any money invested in health must directly demonstrate progress.4 This stance is particularly relevant to their contributions to international institutions such as the Global Fund to Fight HIV/AIDS, Tuberculosis and Malaria, and GAVI, The Vaccine Alliance, which need to show results to attract further replenishment in funding. Similarly to how global estimates of mortality, morbidity, and risk factors help to raise the attention and priority given to various health conditions, the SDG index is a powerful tool to communicate to the public the merits of investing in health by showing gains evidenced by one (at face value) simple number.5

Is the SDG index useful for poor communities worldwide? The experience of Go4Health, a consortium funded by the European Union seventh framework programme, suggests no, or even that global priorities risk over-riding local concerns and priorities. The consortium undertook community consultations with marginalised groups about the MDGs and the post-2015 agenda in Uganda, Bangladesh, Australia, and Guatemala.8 Notably, community priorities differed from global blueprints such as the MDGs; for example, members of one community argued that dental care should be a top three health priority. The common thread was that the communities consulted wanted to determine their own health priorities based on their values and needs, and rejected the notion that
global metrics, especially those based on estimated models, should govern what health services they could access. This view raises a larger question of why heavily modelled numbers exported from Seattle or Washington, DC, USA, are taken as the benchmark for what poor people require, over their own voices, and whether global health has moved to such abstraction that statistical models, imputations, and programming no longer resonate with the reality of people’s lives.9

Is the SDG index useful for academics and global health technical experts? Yes. The GBD 2015 SDG Collaborators provide a starting point for what can be done using current GBD data to assess whether the world is achieving the SDGs and suggest future collaboration to identify strategies for capturing further data (eg, for the 13 indicators not included in the analysis because they are not presently measured). The larger debate is whether we should keep any measure of improved health incredibly simple, or make it so complex that the modelling behind the index is not understood by anyone but the most technical scientists. For example, Francis Omaswa has proposed the use of maternal mortality as a measure of the strength of health systems and Laurie Garrett has proposed life expectancy as a measure of the strength of public health services, while I have proposed child malnutrition as a measure of the impact of social determinants of health and level of health inequality.9

The SDGs, and the assessment of their progress in health, are incredibly complex even for the most astute development and health experts. But whether we like it or not, the SDGs have been agreed on. The best we can do is to acknowledge (as the GBD 2015 SDG Collaborators do in their conclusion) that they are mostly vague, largely immeasurable, somewhat attainable, and definitely relevant, and then put together the smartest minds and resources to communicate their importance through one index.

Once again, the Institute for Health Metrics and Evaluation should be applauded for leading the way in figuring out how to make the impossible possible.

Devi Sridhar
University of Edinburgh Medical School, Teviot Place, Doorway 1, Edinburgh EH8 9AG, UK
devi.sridhar@ed.ac.uk

I declare no competing interests.

Copyright © The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY-NC-ND license.


