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The Witten–Reshetikhin–Turaev invariant for links in finite
order mapping tori I

Jørgen Ellegaard Andersen∗ † Benjamin Himpel∗ Søren Fuglede Jørgensen∗ ‡

Johan Martens∗ † Brendan McLellan∗

September 8, 2016

Abstract

We state Asymptotic Expansion and Growth Rate conjectures for the Witten–Reshetikhin–
Turaev invariants of arbitrary framed links in 3-manifolds, and we prove these conjectures for the
natural links in mapping tori of finite-order automorphismsof marked surfaces. Our approach is
based upon geometric quantisation of the moduli space of parabolic bundles on the surface, which
we show coincides with the construction of the Witten–Reshetikhin–Turaev invariants using con-
formal field theory, as was recently completed by Andersen and Ueno.

1 Introduction

In this paper we study the asymptotic expansion of the Witten–Reshetikhin–Turaev (WRT) invariants of
certain 3-manifolds with links, building on the work [4, 5], which also used the geometric construction
of the WRT-TQFT via the geometric quantisation of moduli spaces of flat connections on surfaces as
first considered by Axelrod–Della Pietra–Witten [14], Hitchin [44] and further explored by the first
named author to prove asymptotic faithfulness [3]. For references concerning the study of the large
level asymptotics of the WRT quantum invariants of closed 3-manifolds see the references in [4]. Let
us here first present a generalisation of the Asymptotic Expansion Conjecture to pairs consisting of a
general closed oriented 3-manifold together with an embedded oriented framed link, labelled by level
dependent labels.

The Asymptotic Expansion and Growth Rate Conjectures

The quantum invariants and their associated Topological Quantum Field Theories were proposed in
Witten’s seminal paper [79] on quantum Chern–Simons theory with a general compact simple simply-
connected Lie groupK, and subsequently constructed by Reshetikhin and Turaev [64, 65, 77] for K =
SU(2) and then forK = SU(N) by Wenzl and Turaev in [76, 75]. These TQFTs were also constructed
from skein theory by Blanchet, Habegger, Masbaum and Vogel in [24, 25] for K = SU(2) and for

∗Supported in part by the Danish National Research Foundation grant DNRF95 (Centre for Quantum Geometry of Moduli
Spaces – QGM).

†Supported in part by the European Science Foundation Network ‘Interactions of Low-Dimensional Topology and Geom-
etry with Mathematical Physics’ (ITGP).

‡Supported in part by the Swedish Research Council Grant 621–2011–3629.
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K = SU(N) in [26]. We will denote these TQFTs forK = SU(N) by Z(k)
N . The WRT-TQFT associated

to a general simple simply-connected Lie groupK will be denoted byZ(k)
K , e.g.Z(k)

N = Z(k)
SU(N).

The label set of the WRT-TQFTZ(k)
K theory is given as

(1.1) Λ
(k)
K = { λ ∈ P+ |0 ≤ 〈θ, λ〉 ≤ k },

whereP+ is the set of dominant integral weights ofk, the Lie algebra ofK. Here〈 , 〉 is the normalized
Cartan–Killing form defined to be a constant multiple of the Cartan–Killing form such that〈θ, θ〉 = 2,
for the longest rootθ of k. We will use〈 , 〉 at various places throughout the text to identify weights
and coweights.

Let X be an oriented closed 3-manifold and letL be a framed link contained inX. For notational
purposes pick an ordering of the components ofL = L1 ∪ . . . ∪ Ln. Let λ

(k)
= (λ(k)

1 , . . . , λ
(k)
n ), be a

labelling of the components ofL which isk-dependent (possibly only fork forming a sub-sequence of
N). In fact, throughout this paper we will restrict to the simple exampleλ(k)

i = λi s for k-independent

λi ∈ Λ
(k0)
N , with k = sk0 for some fixedk0. After identifying theλi with elements in the Cartan algebra

of su(N) using〈 , 〉 we denote the conjugacy class in SU(N) containingeλi asci .
We conjecture that the asymptotic expansion of the Witten–Reshetikhin–Turaev invariant of (X, L,

λ
(k)

) associated with the quantum groupUq(g) at the root of unityq = e2πi/k̃, k̃ = k + h∨, k being the
level, h∨ the dual Coxeter number, andg the Lie algebra of the complex reductive groupKC has the
following form.

Conjecture 1.1 (Asymptotic Expansion Conjecture for triples (X, L, c)). There exist functions ofc =
(c1, . . . , cn) (depending on X, L), dj,r (c) ∈ Q and bj,r (c) ∈ C for r = 1, . . . u j(c), j = 1, . . . ,m(c), and

ap
j,r (c) ∈ C for j = 1, . . . , v(c), p = 1, 2, . . ., such that the asymptotic expansion of Z(k)

K (X, L, λ
(k)

) in the
limit k → ∞ is given by

Z(k)
K (X, L, λ

(k)
) ∼

v(c)∑

j=1

e2πik̃qj

uj (c)∑

r=1

k̃dj,r (c)b j,r (c)

1+
∞∑

p=1

ap
j,r (c)k̃−p/2

 ,

where q1, . . . , qv(c) are the finitely many different values of the Chern–Simons functional on the space of
flat K-connections on X\ L with meridional holonomy around Li contained in ci , i = 1, . . . , n.

Here∼meansasymptotic expansionin the Poincaré sense, which means the following: let

d(c) = max
j,r
{d j,r (c)}.

Then for any non-negative integerP, there is aCP ∈ R such that
∣∣∣∣∣∣∣∣
Z(k)

K (X, L, λ
(k)

) −
v(c)∑

j=1

e2πik̃qj

uj (c)∑

r=1

k̃dj,r (c)b j,r (c)

1+
P∑

p=1

ap
j,r (c)k̃−p/2



∣∣∣∣∣∣∣∣
≤ CPk̃d(c)−P−1

for all levels k that occur. Of course such a condition only puts limits on thelarge k behaviour of

Z(k)
K (X, L, λ

(k)
).

Note that a priori, the Chern–Simons functional of a manifold with boundary defines a section
over the relevant moduli space of flat connections on the boundary. However, by specifying holonomy
conditions on the boundary as in Conjecture1.1, the framing structure of the link allows us to make
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sense of the Chern–Simons functional as real valued modulo integers. This is discussed in more detail
in AppendixA.

Let us introduce
d j(c) = max

r
d j,r (c).

For a flatK-connectionA on the 3-manifoldX \ L with holonomy aroundLi given by ci , i =
1, . . . n, denote byhi

A the dimension of thei-th A-twisted cohomology groups ofX \ L with Lie algebra
coefficients. In analogy with the growth rate conjecture stated in[4] we offer the following conjecture
for a topological formula ford j(c).

Conjecture 1.2(The Growth Rate Conjecture). LetM
qj

X,L,c
be the union of components of the moduli

space of flat K-connections on X\ L, with holonomy around Li given by ci , i = 1, . . . n, and which have
Chern–Simons value qj . Then

d j(c) =
1
2

max
∇∈M

qj
X,L,c

(
h1
∇,par− h0

∇

)
,

wheremaxhere means the maximum value h1
∇,par − h0

∇
attains on a non-empty Zariski open subset of

M
qj

X,L,c
on which h1

∇,par− h0
∇

is constant.

Here h0
∇

is the dimension of the 0-th cohomology with twisted coefficients for the local system
induced by the flat connection∇ on the adjoint bundle, and, following [20], we defineh1

∇,par to be the
dimension of the image of the 1-st cohomology with twisted coefficients and compact support of this
local system in the usual 1-st cohomology with twisted coefficients.

Links in mapping tori

We will in this paper prove these conjectures forZ(k)
N in the situation where the 3-manifoldX admits the

structure of a finite order mapping torus over a closed oriented surfaceΣ of genus≥ 2, and the oriented
framed linkL is induced from marked points on the surface in the followingway. Let f : Σ → Σ be a
diffeomorphism ofΣ. The mapping torusX = Σ f is defined as

(1.2) X = (Σ × I )/[(x, 1) ∼ ( f (x), 0)]

with the orientation onX given by the product orientation, and with the standard orientation on the unit
interval I = [0, 1]. We consider special linksL that wrap the natural fibre direction inX. Let P ⊂ Σ
denote a finitef -invariant subset ofΣ, i.e. f (P) = P. Then,

(1.3) L = (P × I )/[(x, 1) ∼ ( f (x), 0)].

Given a labellingλ of L we get induced a labelling of the pointsP onΣ.
The two dimensional part of the WRT-TQFT we are considering is a modular functor. For the

axioms of modular functor see e.g. [77], [78], [7, 8, 9]. A modular functor is a functor from the
category of labelled marked surfaces to the category of finite dimensional vector spaces.

A marked surface is the following datum:Σ = (Σ,P,V,W), whereΣ is a closed oriented surface,
P = {p1, . . . , pn} is a set of points onΣ, V is a set of ‘projective’ tangent vectors at the marked points
(i.e. non-zero elements ofTpiΣ/R+) andW is a Lagrangian subspace of the first real cohomology ofΣ.
A labelling of Σ is a mapλ : P → Λ : pi 7→ λi , whereΛ is a finite label set specific to the modular
functor in question. From now on we will assume thatf is an automorphism of the labelled marked
surface (Σ, λ).

3



Note that the link inside the mapping torus of an automorphism of a marked surface naturally
inherits a framing. From the general axioms for a TQFT we have

(1.4) Z(k)
K (Σ f , L, λ) = tr

(
Z(k)

K ( f ) : Zk
K(Σ, λ)→ Z(k)

K (Σ, λ)
)
.

We shall in this paper use the gauge theory construction of the vector spaceZ(k)
K (Σ, λ) that the WRT-

TQFTZ(k)
K associates to a labelled marked surface (Σ, λ). Let us from now on in this paper specialise to

the caseK = SU(N). This allows us to use the work of Andersen and Ueno [7, 8, 9, 6] as follows: if
V
†

N,k is the vacua modular functor constructed in [7], then the main result of [9] states

Theorem 1.3(Andersen & Ueno). For anyΛ(k)
N = Λ

(k)
SU(N)-labelled marked surface(Σ, λ), there is a

natural isomorphism
IN,k : Z(k)

N (Σ, λ)→ V†N,k(Σ, λ)

which is an isomorphism of modular functors.

By Definition 11.3 in [7], V†N,k(Σ, λ) is the space of covariantly constant sections of a bundle

equipped with a flat connection over the Teichmüller spaceT
Σ

of the marked surfaceΣ (see [7, §3]
for a discussion ofT

Σ
). Further, by Remark 11.4 of [7], we have for any pointσ in T

Σ
(giving rise to

the Riemann surfaceΣσ) that

V
†

N,k(Σ, λ) � (V†ab)
− 1

2ζ(Σσ) ⊗V†
N,k,λ

(Σσ,P).

Hereζ is thecentral chargeof the Wess–Zumino–Novikov–Witten (WZNW) conformal field theory,
i.e.

ζ =
kdim(K)
k+ h∨

,

(V†ab)
− 1

2ζ(Σσ) is the fibre overσ of a certain line bundle overT
Σ

(depending onW), defined in Theorem

11.3 of [7], andV†
N,k,λ

(Σσ,P) is the space of vacua or conformal blocks for the WZNW model for the

curveΣσ (see Section4).
From now on we will assume thatf is of finite orderm. Then there existsσ ∈ T

Σ
which is a fixed

point for f . Let us also denote byf the element (f , 0) in the extended mapping class group ofΣ. Then
by Remark 11.4 in [7] we have that

tr(Z(k)
N ( f )) = tr

(
f ∗ : (V†ab)

− 1
2ζ(Σσ)→ (V†ab)

− 1
2ζ(Σσ)

)
(1.5)

· tr
(
V
†

N,k,λ
( f ) : V†

N,k,λ
(Σσ,P)→ V†

N,k,λ
(Σσ,P)

)
.

Let use the notation

(1.6) Det(f )−
1
2ζ = tr( f ∗ : (V†ab)

− 1
2ζ(Σσ)→ (V†ab)

− 1
2ζ(Σσ)).

The factor Det(f )−
1
2ζ was computed explicitly in [4, Theorem 5.3] in terms of the Seifert invariants of

X. We shall denote for short

tr
(
V
†

N,k,λ
( f )

)
= tr

(
V
†

N,k,λ
( f ) : V†

N,k,λ
(Σσ,P)→ V†

N,k,λ
(Σσ,P)

)
.

4



In order to compute this trace, we will need an alternate description of the vector spaceV†
N,k,λ

(Σσ,P)

and the actionV†
N,k,λ

( f ) of f on it. Indeed, one can consider the algebraic stackMΣσ,P,Pi of (quasi-)

parabolic bundles onΣσ (i.e. algebraicKC = G-bundles onΣσ with a reduction of structure group to
the parabolic subgroupsPi at the marked points), and through a presentation of this stack involving
the loop group ofG, one can identify the spaces of conformal blocks with spacesof sections of line
bundlesL(k,λ) on this stack, as was shown in [59, 52]. Moreover, each of these line bundles determines
a stability condition on the stack, and the substack it selects has a so-calledgood moduli space, which
is a variety, a coarse moduli space for the moduli problem, polarised by that line bundle. In turn these
moduli spaces of (semi-)stable parabolic bundles can be identified with gauge-theoretic moduli spaces
of flat connections on the punctured surfaceΣ \ P with prescribed holonomy around the punctures.

We shall denote these moduli spaces asMΣσ,P,α, orMα for short; hereα is λ
k0

. From the gauge the-
ory side they come equipped with a natural symplectic structure, and one can construct apre-quantum
line bundleLk

CS for them, from (classical) Chern–Simons theory. In a suitable sense this can be identi-
fied with the polarising line bundle from the algebro-geometric perspective, which we shall denote by
Lk

pd:

Theorem. We have
Lk

CS � L
k
pd.

Finally all of this combines under some minor conditions (see Sections3 and4) to give

Theorem. There is a natural isomorphism, canonical up to scalars,

V
†

N,k,λ
(Σσ) � H0(Mα,L

k
CS).

In Sections3 and4 we will construct an explicit action off on both of the line bundles occurring,
covering its action onMα and establish that this isomorphism is equivariant. From this we get that

(1.7) tr
(
V
†

N,k,λ
( f )

)
= tr

(
f ∗ : H0(Mα,L

k
CS)→ H0(Mα,L

k
CS)

)
.

LetMΣ f ,L,α be the moduli space of flat connections onΣ f \ L whose holonomy aroundLi lies in the
conjugacy class containingeαi . We have the following main theorem of this paper.

Theorem 1.4. For λ = (λ1, . . . , λn) with all λi ∈ Λ
(k)
N , there exist unique polynomials Pγ of degree dγ,

such that
Z(k)

N (Σ f , L, λ) = Det(f )−
1
2ζ

∑

γ

e2πikqγkdγPγ(1/k).

Here the sum is over all componentsγ ofM f
α
, the f -fixed point locus ofMα. The number qγ is the

value the Chern–Simons functional takes on any element ofMΣ f ,L,α restricting to the corresponding
component ofMα. If the componentγ is contained in the smooth locus of the moduli spaceMα then

Pγ(k) = exp (kΩ |Mγ

α
) ∪ ch(λγ

−1Mα)−1 ∪ Td(TMγ

α
) ∩ [Mγ

α
],

whereΩ is the Kähler form onMα, and λγ
−1Mα is a certain element in the K-theory ofMα. In

particular in the cases whereMα is smooth we get a complete formula for the asymptotic expansion
of Z(k)

N (Σ f , L, λ), where each coefficient of a power of k is expressed as a cohomology pairing on the
moduli spaceMα.
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We will see in Section5.1 below that indeed the value the Chern–Simons functional takes on a
connection inMΣ f ,L,α depends only onγ. The theorem is proved in a way similar to the proof of the
main theorem of [4], namely by applying the Baum–Fulton–MacPherson–Quart localisation theorem
to compute (1.7) as a sum of contributions from each component of the fixed variety. This is then
combined with an identification of the traces on the fibres of the line bundleLk

CS over each of these
components. It is exactly here that the use of the bundleLk

CS coming from Chern–Simons theory comes
in, as this part of the contribution can be expressed as the integral of the classical Chern–Simons form
over the mapping torus. See Section5 for the details. Our main theorem has the immediate following
corollary:

Corollary 1.5. The Asymptotic Expansion Conjecture holds for the pairs(X = Σ f , L) obtained from
finite order mapping tori and for any k= sk0-dependent labelling (s∈ N)

λ
(k)
= kλ,

whereλ = (λ1, . . . , λn) and allλi ∈ Λ
(k0)
N for some fixed k0 ∈ N.

By further analysing dimensions of parabolic twisted cohomology groups (see Section5.3), we get
the following theorem. LetMγ

Σ f ,L,α
be the union of components ofMΣ f ,L,α whose connections restrict

to lie in theγ-component ofM f
α
.

Theorem 1.6. If a given connected componentγ contains smooth points fromMᾱ, then

dγ =
1
2

max
∇∈M

γ

Σ f ,L,α

(
h1
∇,par− h0

∇

)
,

wheremaxhere means the maximum value h1
∇. par− h0

∇
attains on a non-empty Zariski open subset of

M
γ

Σ f ,L,c
on which h1

∇,par− h0
∇

is constant. In particular, the Growth Rate Conjecture holds for pairs of

manifolds and links(X = Σ f , L) which are obtained as finite order mapping tori, when all connected
componentsγ contain smooth points.

Outline and further comments

The rest of this paper is organised as follows: in Section2 we give a quick introduction to the moduli
spacesMα of parabolic bundles or flat connections on punctured surfaces, to set up notations. We
also give a proof of the simply-connectedness ofMα. Section3 is entirely devoted to theChern–
Simons line bundleonMα – this line bundle arises from classical Chern–Simons theory and is gauge-
theoretic/ symplectic in origin, giving a pre-quantum line bundleLk

CS for the canonical symplectic
form onMα. We study how diffeomorphisms act on this line bundle, and in fact we do a littlemore:
we construct a lift of the action of the relevant mapping class group to the total space of this bundle.
In Section4 we switch to an algebro-geometric or representation-theoretic picture, and discuss the
parabolic determinant bundleonMα, whose sections give rise to the spaces of conformal blocks.
Again we exhibit the lift for the action of a (complex) automorphism of the Riemann surface to the total
space of this bundle, and using known results on Quillen metrics we show that the Chern–Simons and
parabolic determinant line bundles are indeed equivariantly isomorphic. In the final Section5 we put
the strategy of [4] to work to establish the Asymptotic Expansion Conjecture for links in finite-order
mapping tori by using the Lefschetz–Riemann–Roch theorem of Baum, Fulton and Quart on the moduli
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spacesMα. We conclude with a discussion of parabolic group cohomology that establishes the Growth
Rate Conjecture in our situation.

We should mention at this point a certain restriction we haveto impose: as we are relying heavily
on the paper [33] for the construction ofLk

CS, we are forced to restrict ourselves to the situation where
theαi , or equivalently theλi , areregular, that is to say, they are contained in the interior of the Weyl
chamber (this is equivalent to working withfull flags in the picture of parabolic bundles). Though
the statements of their results are no doubt true in greater generality, Daskalopoulos and Wentworth
need to impose this restriction for technical reasons on a number of occasions. We will therefore also
impose this restriction from Section3.2.2through Section3.3.2, as well as anywhere later on where
Lk

CS occurs.
We would like to remark that we completely link the gauge-theoretic definition of the quantum

invariants with the construction of the modular functor using conformal blocks. Through the work
of Andersen and Ueno [8, 7, 9] the latter is known to be equivalent to the original constructions of
Reshetikhin–Turaev.

As a quick look at the bibliography will betray we are drawingupon a rather large body of literature
to establish our results, and necessarily this paper involves various perspectives and different technical
tools (from Sobolev spaces to algebraic stacks and Kac–Moody Lie algebras). In particular we are
crucially using the papers [59], [33], [52], [20] and [21] together with [7, 8, 9, 6]. To the extent possible
we have tried to use notations in line with those authors, andin general we have tried to strike a balance
between giving complete references to the literature, and avoiding an overload of translations between
notational conventions in our exposition.

An obvious further question following on our results is to determine the coefficients in the Asymp-
totic Expansion Conjecture , and to give a topological interpretation of them, as was done in the case of
mapping tori without links in [5]. We intend to take this up in future work.

Acknowledgements

The authors wish to thank Indranil Biswas, Christoph Sorger, Michael Thaddeus, and in particular
Richard Wentworth for helpful conversations.

2 Moduli spaces of parabolic bundles and flat connections

Let Σσ be a compact Riemann surface of genusg ≥ 2, andP = {p1, . . . , pn} a collection of distinct
marked points onΣσ. Below we shall denote withΣ the smooth surface underlyingΣσ, and withΣo the
punctured surfaceΣ \ P. A quasi-parabolicstructure on a holomorphic vector bundleE → Σ of rank
N is a choice of a filtration of its fibres over each of the points inP:

E|pi = Ei,1 ! Ei,2 ! . . . ! Ei,r i ! Ei,r i+1 = {0}.

Its multiplicities aremi, j = dim(Ei, j/Ei, j+1). If all multiplicities are 1 for a giveni, or equivalently
r i = N, then the flag atpi is said to befull; in general the tuple (mi,1, . . . ,mi,r i ) is said to be theflag type
at pi . Alternatively, this data determines a reduction of structure group for the frame bundle ofE to
the corresponding parabolic subgroups of GL(N,C) at the marked points (below we shall freely switch
between the equivalent vector bundle and principal bundle pictures).

A parabolic bundle is further equipped withparabolic weightsα = (α1, . . . , αn) for all flags, i.e. a
choice of real numbers,

(2.1) αi = (αi,1, . . . , αi,r i ) with 0 ≤ αi,1 < αi,2 < . . . < αi,r i < 1.

7



Note that often in the literature the inequalities between theαi, j for various j are asked to be strict (as
above), but later on it will be convenient for us to relax thiscondition. One can think of each of the
parabolic weightsαi (with each of theαi, j occurring with multiplicitymi, j) as living in the Weyl alcove
in the Cartan algebra of SU(N).

Theparabolic degreeof E is pdeg(E) = deg(E) +
∑

i, j αi, jmi, j, and itsslopeis

µ(E) =
pdeg(E)
rk(E)

.

Any sub-bundleF of E inherits a canonical structure of parabolic bundle itself (the same is true for
quotient bundles). We can therefore defineE to be (semi-)stable if, for every sub-bundleF, we have
that

µ(F) <
(=)
µ(E).

For purely numeric reasons, the set of parabolic weights fora given flag-type for which strictly
semi-stable bundles can exist consists of a union of hyperplanes in the space of all weights (and indeed,
for those weights strictly semi-stable bundles do exist). We shall refer to weights in the complement
of these hyperplanes asgeneric. Given any rank, degree, flag type and choice of weights, there exists
a coarse moduli spaceNΣσ,P,α, or Nα for short, of (S-equivalence classes of) semi-stable parabolic
bundles [57].

By taking the determinant, one obtains a morphism fromNα to the Picard group ofΣ. The moduli
space of semi-stable parabolic bundles with trivial determinantMΣσ,P,α, orMα for short, is the fibre of
the trivial line bundle under this morphism (we shall focus onMα in the sequel). BothNα andMα are
normal projective varieties. Their singular locus consists exactly of the semi-stable bundles (with the
exception of the fixed-determinant non-parabolic rank 2 case in genus 2).

We note that when considering bundles with trivial determinant (or, equivalently, SL(N,C) principal
bundles), conventions in the literature vary about the weights. One can ask for theαi, j to satisfy the same
inequality above plus the condition that

∑
i αi, jmi, j ∈ Z or, corresponding to a standard representation

for the Weyl alcove of SL(N,C), for αi,1 < αi,2 < . . . < αi,r i with αi,r i − αi,1 < 1 and
∑

j αi, jmi, j = 0.
We shall use the latter convention, in particular this implies that the parabolic degree of our bundles
vanishes.

There exists a homeomorphism (which is a diffeomorphism on the smooth locus) betweenMα and
the moduli space of those representations ofπ1(Σo) into SU(N) where the loop around each of thepi

gets mapped to the conjugacy class of the exponential of the parabolic weights [57]. Indeed,π1(Σo)
admits a presentation

(2.2) π1(Σo) =

〈
A1, . . . ,Ag, B1, . . . , Bg, a1, . . . , an

∣∣∣∣∣∣∣∣

g∏

i=1

[Ai , Bi]
n∏

j=1

a j = 1

〉
.

If we fix the conjugacy classesc1, . . . , cn ∈ K = SU(N), each containingeαi respectively (where we
abuse notation and letαi be the diagonal matrix with entriesiαi, j , each occurring with multiplicitymi, j),
then we have topologically

(2.3) Mα �
{
ρ ∈ Hom(π1(Σo),K)

∣∣∣ ρ(ai ) ∈ ci , i = 1, . . . , n
} /

K,

where K acts by simultaneous conjugation, using the presentation of π1(Σo) given above. For our
purposes it is most useful to consider the differential geometric version of this, due to Biquard [19],
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Poritz [60] and Daskalopoulos–Wentworth [33], generalising the work of Donaldson [37] in the non-
parabolic case. From this point of view there is a diffeomorphism betweenMα and the moduli space
of flat SU(N)-connections whose holonomy around the marked points liesin the conjugacy class of the
exponential of the relevant weights (remark that the flatness is a consequence of the vanishing of the
parabolic degree; more generally one would have central curvature determined by the parabolic degree).
As we shall need the construction in our discussion of the Chern–Simons bundle, we shall review it in
Section3, following [33]. To minimise notation we shall denote both the moduli spaceof parabolic
bundles and the moduli space of flat connections byMα, as it will always be clear from the context
which perspective we take.

The moduli spaceNα (and hence by restriction alsoMα) admits a natural symplectic form on its
smooth locus (independent of the complex structure ofΣ), that combines with the complex structure to
give a Kähler structure. In the closed case this was first described by Atiyah–Bott [11] and Goldman
[43]. In the non-closed case we are considering here, it was discussed by Biswas and Guruprasad in
[20]. It is perhaps easiest described in terms of moduli of connections, from the principal point of view.
Let K be a compact Lie group (this shall be SU(N) for us) withk its Lie algebra. Then the (real) tangent
space to a smooth point [∇] ofMα can be described as the image of

H1
c(Σo, kad)→ H1(Σo, kad),

whereH1
c stands for first cohomology with compact support, and we consider the adjoint bundlekad

with the induced flat connection given by∇. Using the Killing form onk, we put

(2.4) Ω(A, B) =
∫

Σo
tr(A∧ B).

In Section5.3below we shall also need another incarnation of the tangent space, in line with the view
onMα as a character variety (2.3), given by [20]. Indeed, if [ρ] is an equivalence class of (irreducible)
representations, we have

T[ρ]Mα � H1
par(π1(Σo), kAdρ),

where the right hand side is the first parabolic group cohomology (see Section5.3 below for further
details and references).

Finally, we shall need to know the fundamental group ofMα.

Theorem 2.1. For Σ andP as above, bothMα and its smooth locus are simply-connected for any
choice of weightsα.

This line of proof was essentially already suggested in [66, page 173], see also [33, §4]. Note that
this property also follows from the rationality of these moduli spaces [28], since smooth projective
rationally connected varieties are simply-connected [35, Cor. 4.18], and rational varieties are rationally
connected. In order not to impose the (minor) conditions of [28], or genericity of weights, we have
provided the direct proof below.

Proof. We will find it useful here to allow the inequalities in (2.1) to be weak. If any of theαi, j

coincide for consecutivej, it is clear that the stability of any parabolic bundle is equal to that of the
underlying coarser parabolic bundle, where the relevant part of the flag is forgotten. In particular, for
suchα, the moduli space is a bundle of flag varieties over the corresponding moduli space of coarser
flag type. In particular, when one sets all weights equal to one, one just obtains a flag variety bundle
over the moduli spaceM of non-parabolic SL(N,C)-bundles. It was shown by Daskalopoulos and
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Uhlenbeck [34, Theorem 3.2] by analytic methods that the smooth part of thenon-parabolic moduli
space is simply-connected. Since flag manifolds are also simply-connected, we therefore have from the
homotopy long exact sequence for fibre bundles that this smooth part of the moduli space of weight
zero is simply-connected.

It is a well-known fact, essentially a consequence of Zariski’s main theorem (see e.g. [31, Thm.
12.1.5] or [41, page 33]), that the fundamental group of an open subvarietyof a normal variety sur-
jects onto the fundamental group of the whole variety. We therefore have that both the moduli space
for weights zero, as well as all moduli spaces for weights in the interior of a nearby chamber, are all
simply-connected (since the bundles that are stable for zero weights remain so for weights in an adja-
cent chamber). Moving the weights around in general leads tothe well-known variation of GIT pictures
(see e.g. [36], [71, §7] or [27]). In particular, all moduli spaces are birational, and since the fundamen-
tal group is a birational invariant for smooth projective varieties, we obtain the result for all generic
weights. By using the fact that the singular locus for weights on a wall is of high enough codimension,
and by applying the above fact of fundamental groups for normal varieties when hitting a wall, we
finally obtain it for both the stable (i.e. non-singular) locus as well as the whole moduli space, for any
choice of weights. �

Remark that this proof does not hold for genus 1, since there in the moduli space of non-parabolic
bundles all points are strictly semi-stable (see [74] for a rendition of Atiyah’s classical results [10] in
this language), and as a consequence one cannot use the same start of the birational argument.

3 The Chern–Simons line bundle

As mentioned in the introduction we need to consider two linebundles onMα, one of a symplec-
tic / gauge-theoretic nature (the Chern–Simons line bundle), one of an algebro-geometric nature (the
parabolic determinant bundle). In this section we discuss the former. Our prime focus is on describing
the lift of the action of the mapping class group to this bundle.

3.1 Review for closed surfaces

To set the tone we begin by reviewing the construction of the lift of the mapping class group action on
the Chern–Simons line bundle in the case of a closed surfaceΣ. In Section3.2we will then construct an
analogous lift for the case of a punctured Riemann surfaceΣo = Σ \ P. LetΣ denote a closed Riemann
surface of genusg > 0. Let P be a smooth principalK-bundle overΣ, for K a compact, semi-simple
and simply-connected Lie group – without a loss of generality we can and will assume this to be trivial
P � Σ × K. Let f : Σ→ Σ be an orientation-preserving diffeomorphism ofΣ.

We are now interested inLk
CS, i.e. the Chern–Simons line bundle at levelk ∈ Z over the moduli

space of flat connectionsM described in [63] for K = SU(2) or [39] in the general case, and used
in [4], for example. It can be constructed as follows: letAP denote the space of connections onP
– using our trivialisation ofP we can identifyAP with the space of sections of the adjoint bundle
of P, by expressing any∇ = ∇A asd + A (in Section3.2 we will use Sobolev completions, which
strictly speaking ought to be done here as well). The moduli spaceM can be constructed as an (infinite
dimensional) symplectic reduction ofAP by the gauge groupG ≃ C∞(Σ,K); here the moment map is
given by the curvature of a connection, hence the level set that one takes the quotient of consists of the
flat connections. One can now lift the action ofG to the trivial bundleAP × C as follows: define the
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cocycleΘk : A × G → C by

(3.1) Θk(∇A, g) := exp
(
2πik(CS(̃Ag̃) − CS(̃A))

)
,

whereÃ andg̃ are any extensions ofA andg (which always exist in our setup) to an arbitrary compact
3-manifoldY with boundaryΣ and CS is the Chern–Simons action as usual, i.e.

CS(A) =
1

8π2

∫

Y
tr

(
A∧ dA+

2
3

A∧ A∧ A

)
.

The action ofG onA× C is given by

(∇A, z) · g := (∇g
A,Θ

k(∇A, g) · z),

where∇g
A := d + Adg−1 A + g∗ω denotes the usual gauge group action withω ∈ Ω1(G, g) the Maurer–

Cartan form. SinceΘk satisfies the cocycle condition

Θk(∇A, g)Θk(∇g
A, h) = Θk(∇A, gh),

andG preserves flat connections, we obtain the induced Chern–Simons line bundleLk
CS overM.

For future purposes it is useful to observe thatΘk can equivalently be constructed without requiring
the existence of a bounding 3-manifold forΣ. Since every gauge transformation is homotopic to the
identity, we may extendg onΣ to g̃ on the cylinder [0, 1]×Σ using such a homotopy, so that ˜g0 = g and
g̃1 = e. Forπ : [0, 1] × Σ→ Σ the natural projection map, extend∇A onΣ to ∇̃A = π

∗∇A = d + π∗A on

[0, 1] × Σ. Then∇̃A
g̃

is an extension of∇g
A to [0, 1] × Σ. Choosing the standard orientation on [0, 1] we

define

(3.2) Θk(∇A, g) = exp
(
−2πik CS[0,1]×Σ(Ã

g̃)
)
,

and one can easily show that equations (3.1) and (3.2) agree. The expression forΘ given in (3.2)
generalises more readily to the case of a surface with punctures since it does not require the existence
of a bounding 3-manifold to be well defined.

A crucial aspect of the line bundleLk
CS is that it is a pre-quantum line bundle onM, i.e. it naturally

comes with a connection whose curvature is the Atiyah–Bott–Goldman symplectic form.
Let Diff+(Σ) denote the group of orientation preserving diffeomorphisms ofΣ. Then Diff+(Σ) natu-

rally acts onAP andG by pullback and we would like to show this action may be liftedto an action on
Lk

CS. First, define an action of Diff+(Σ) onAP × C by

(3.3) f ∗(∇A, z) := ( f ∗∇A, z).

This trivially defines a lifted action onAP × C. Furthermore, one can show that this lift is compatible
with the gauge group action. Indeed, we have

Lemma 3.1. The two lifts described above combine to a lift of the action of Aut(P) = G ⋊Ψ Diff+(Σ)
onAP toAP × C.

Here the semi-direct product is made with respect to the morphism Ψ : Diff+(Σ) → Aut(G) :
Ψ( f )(g) = g ◦ f . Strictly speaking we have defined a left action of Diff+(Σ), and we use a right action
of G, so we switch to a right action of Diff+(Σ) to obtain a right action of the semi-direct product. The
proof of this lemma is identical to the proof given in Lemma3.7for the case with punctures. Since this
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action preserves flatness, we get an induced action of Diff+(Σ) = Aut(P)/G onLk
CS over the moduli

spaceM.
Let Diff0(Σ) < Diff+(Σ) denote the subgroup of diffeomorphisms isotopic to the identity. It is

straightforward to see that Diff0(Σ) acts trivially onM – perhaps the easiest way to see this is through
the identification of the moduli space as the representationspace Hom(π1(Σ),K)/K, and to then ob-
serve that since maps homotopic to the identity induce the identity map on the fundamental group, the
Diff0(Σ)-action is trivial.

To see that the action of the mapping class group lifts to an action on the Chern–Simons line bundle,
suppose thatf ∈ Diff0(Σ), let [A] ∈ M be given, and letg be a gauge transformation withf ∗A = Ag.
We then claim thatΘk(A, g) = 1.

Any isotopy from f to the identity diffeomorphism defines a suitable extension of∇A and∇g
A to

[0, 1]×Σ. Moreover, using the isotopy, now considered as a diffeomorphism of [0, 1]×Σ, this extension
is a pullback of a product connection on [0, 1] ×Σ, and since the Chern–Simons functional of a product
connection vanishes, the claim follows by diffeomorphism invariance of the Chern–Simons functional.

As in [4, §7], given a fixed point [∇A] ∈ M, so that [f ∗∇A] = [∇A], then sinceP is isomorphic
to f ∗P, there exists an isomorphismψ from P to f ∗P such thatψ f ∗∇A = ∇A. Composingψ with the
natural bundle map fromf ∗P to P covering f , we get a liftϕ : P→ P covering f . Let∇Aϕ denote the
connection induced by∇A on the mapping torusPϕ = [0, 1] ×ϕ P.

Lemma 3.2. [4, Lemma 7.2], [39, Thm. 2.19] We have

tr
(
f ∗ : Lk

CS

∣∣∣∣
[∇A]
→ Lk

CS

∣∣∣∣
[∇A]

)
= exp

(
2πik CS(Pϕ,Aϕ)

)
.

The proof of this is identical to the proof of Lemma3.9given in the sequel.

3.2 Punctured surfaces

3.2.1 Introduction

In this section we give a construction of theChern–Simons line bundleover the moduli space of flat
connections with prescribed holonomy around the punctures. This line bundle has been discussed
in many places in the literature (e.g. [63, 48, 49, 33, 40, 58, 30]), but apparently never quite in the
generality or the setting we need. All the basic ideas are well-known however. Remark that the line
bundle we construct differs somewhat from the one considered by Freed in [39]. In general Freed
lays out the classical Chern–Simons field theory in great detail, hence motivating the appearance of the
Chern–Simons line bundle. However, for surfaces with boundary he chooses to use a slight modification
of the Chern–Simons action, so as to obtain a line bundle thatdescends to all moduli spaces of flat
connections with prescribed holonomy, without an integrality condition on the latter. As mentioned by
Freed, by just using the Chern–Simons action instead one would obtain the line bundle as in [33]; this
is the approach we shall follow. Unlike the description in [58, 30], we work with punctured surfaces,
rather than surfaces with boundary, though the end results should be equivalent.

The analytic construction of the moduli spaces was done by Biquard [19], Poritz [60] and Das-
kalopoulos–Wentworth [33, 32]. All of them useweightedSobolev spaces, the use of which in a
gauge-theoretic context was pioneered by Taubes [69]. As only Daskalopoulos–Wentworth discuss the
line bundle we are interested in, we shall follow their approach. Strictly speaking, the exposition in
[33] was only for the case of once-punctured Riemann surfaces (but arbitrary rank), and in [32] these
authors discuss the case for arbitrary finite punctures, butonly for the case of SU(2). The general case
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is a superposition of these two though, and we summarise it here just for the sake of completeness (see
also [56, §3] for some of the analytic background). Remark that unlike in Section3.1we now specialise
to the caseK = SU(N).

The construction of theChern–Simons line bundleLk
CS can be found in [33] in the case whereP

consists of a single point. Note that the construction ofMα andLk
CS by [33] happens in two steps: in

the first step one takes the quotient of the space of all connections by the group of gauge transformations
that vanish at the marked points, and in the second step one further quotients out by a finite-dimensional
compact Lie group. The construction of the line bundle also follows this two step procedure. The first
step follows closely the case for a surface without punctures, as outlined above, using a certain cocycle
to define the line bundle. This part of the construction always goes through. In the second step one
needs however a certain integrality condition on the parabolic weights times the levelk to hold for the
line bundle to fully descend toMα.

3.2.2 Construction of the moduli space

Let (Di , zi) be (disjoint) local coordinates around eachpi ∈ P, so thatzi are local isomorphisms onto
the open unit disk inC with zi(pi) = 0. Settingwi = − logzi , thenwi mapsDi \ {pi} to the semi-infinite
cylinder

C = {(τ, θ) | τ ≥ 0, θ ∈ [0, 2π]} / [(τ, θ) ∼ (τ, θ + 2π)] .

Let (τi , θi) denote the corresponding coordinates onDi \ {pi}. Also fix a metrich onΣo compatible with
the complex structure onΣ such that it restricts to the standard flat metric on the semi-infinite cylinder,
h
∣∣∣
Di\{pi }

= dτ2
i + dθ2

i . Note that a priori thezi are just smooth functions, but if a complex structure is
chosen to obtain a Riemann surfaceΣσ, we will assume thezi to be holomorphic.

We suppose we have chosen weights for each of thepi as in (2.1) – recall from the introduction that
we will now assume these to be regular. Recall that we think ofthese as living in the Weyl alcove of
SU(N), and we denote the corresponding diagonal matrix insu(N) also asαi .

We shall need the centraliser ofeαi in SU(N), denoted byLc
i , as well as the Lie algebra of its

normaliser in GL(N,C), which we shall denote aslCi (note that in [33] the former are denoted as Pa).
Let P be the trivial principalK = SU(N)-bundle overΣo; further letE be the vector bundle associ-

ated toP and the defining representation of SU(N), gP the adjoint bundle ofP, andglE = E ⊗ E∗ – all
of these are smooth complex hermitian bundles, and we can think of gP as a sub-bundle ofglE. We fix
a base connection∇0 on P that takes the formd + αidθi on Di \ {pi} (such a∇0 always exists), and by
abuse of notation denote the induced linear connections onE, gP andglE by ∇0 as well.

For a given Hermitian vector bundleF over Σo equipped with a hermitian connection∇0 (e.g.
E ⊗ T∗Σo, where we combine the base connection onE with the Chern connection onT∗Σo), we will
need to consider theweightedSobolev spaces of sections ofF. For anyδ ∈ R, recall that this is the
completion of the space of (compactly supported) smooth sections ofT∗Σo ⊗ E in the norm

||σ||
p
l,δ =

(∫

Σ

eτδ
(
|∇

(l)
0 σ|

p + · · · + |∇0σ|
p + |σ|p

)) 1
p

.

Hereτ : Σo → R is the smooth function coinciding withτi on eachDi \ {pi}, and zero outside of the
Di . We remark that the weightsδ used for the Sobolev spaces and the parabolic weightsαi are different
notions.

We define a space of connections modelled on these Banach spaces by

(3.4) Aδ = ∇0 + L2
1,δ(T

∗Σo ⊗ gP),
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and we will denote byAδ,F the subspace of flat irreducible connections inAδ. Note that these spaces
do not change if we replace∇0 by another connection which coincides with∇0 on theDi . From the
complex structure ofΣ the vector spaceL2

1,δ(T
∗Σo⊗gP) moreover inherits a canonical complex structure

(cfr. [11, §5] and for further discussion see also [2]).
Next we turn our attention to the group of gauge transformations. Define

D =
{
ϕ ∈ L2

2,loc.(gl(gP))
∣∣∣ ||∇0ϕ||

2
1,δ < ∞

}
.

Here, as usual,L2
2,loc. refers to those sections whose product with the characteristic function 1K , for any

compactK ⊂ Σo, is in L2
2.

We furthermore have a natural map,

σ : D→
∏

i

lCi : ϕ 7→ (σ1(ϕ), . . . , σn(ϕ)).

Here we identifylCi with the space of parallel sections (with respect to∇0) of gl(gP) restricted to a circle
aroundpi in Di , and we putσi(ϕ)(θ) = limτ→∞ ϕ(w−1

i (τ, θ)) (see [33, §3.1] or [56, §2] for more details).
We can now define the Banach Lie groups

Gδ =
{
ϕ ∈ D

∣∣∣ ϕϕ∗ = ϕ∗ϕ = I , detϕ = 1
}
,

G0,δ =
{
ϕ ∈ Gδ

∣∣∣ σ(ϕ) = I
}
,

and we have a short exact sequence

(3.5) 1−→ G0,δ −→ Gδ −→
∏

i

Lc
i −→ 1.

We are thinking here of eachLc
i as sitting insidelCi . The sequence (3.5) in fact splits (at least when we

are using regularαi so that allLc
i are equal to the maximal torus in SU(N), see [32, p. 26]), so we have

Gδ = G0,δ ⋊
(∏

i Lc
i

)
. The spaces we are interested in are

Fδ = Aδ,F/G0,δ, Mδ = Aδ,F/Gδ,

and we have of course
Mδ = Fδ/

∏

i

Lc
i .

One of the reasons for setting up the weighted Sobolev spaces(as opposed to just working with the
Fréchet spaces of smooth sections) is access to index theorems. In particular we have the following, an
application of an Atiyah–Patodi–Singer index theorem [13]. Let

δ∇ = (∇, e−τδ∇∗eτδ) : L2
1,δ(T

∗(Σ) ⊗ gP)→ L2
1,δ

(
Λ2T∗Σo ⊗ gP

)
⊕ L2

1,δ(gP).

Here∇∗ is the L2 adjoint of ∇. Then, for a small positive range ofδ, this operatorδ∇ is bounded
Fredholm, of index 2(g− 1)(N2 − 1)+

∑
i dim

(
SU(N)/Lc

i

)
[33, Prop. 3.5]. Henceforth, we shall always

assumeδ to be in this range.
As a consequence, Daskalopoulos and Wentworth prove the following:

Theorem 3.3([33, Theorems 3.7 and 3.13]). The spacesFδ andMδ are smooth manifolds of dimen-
sions(2(g− 1)+ n)(N2 − 1) and2(g− 1)(N2 − 1)+

∑
i dim(SU(N)/Lc

i ) respectively. Moreover there is
a diffeomorphism betweenMδ and the stable locus ofMα. Finally a complex structure onΣ naturally
puts the structure of an almost complex manifold onMδ that makes the diffeomorphism biholomorphic.

In [33] only irreducible connections are discussed, but it is well-known that if one also includes
reducible flat connections, one obtains a homeomorphism with all ofMα, see e.g. [60, Theorem 6.4].
The image ofGδ-orbits of reducible flat connections is exactly the semi-stable locus inMα.
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3.2.3 Construction ofLk
CS

Now we define a cocycle that will be the analogue of (3.2). It will be convenient to define this cocycle
in terms of the Chern–Simons action on the cylinder [0, 1] × Σo. Let

G̃0,δ := {g̃ : [0, 1] × Σo→ G | g̃(t, ·) ∈ G0,δ, ∀ t ∈ [0, 1], and is continuous and piecewise smooth int}.

Since every gauge transformation inG0,δ is smoothly homotopic to the identity ([33, Prop. 3.3]), we
may extendg ∈ G0,δ onΣo to g̃ ∈ G̃0,δ so thatg̃0 := g̃(0, ·) = g andg̃1 := g̃(1, ·) = e. Similarly, using
the natural projection mapπ : [0, 1]× Σo→ Σo, ∇A = ∇0+A onΣo extends tõ∇A = π

∗∇A = d+ Ã+A0,

whereÃ+A0 = π
∗(A+A0). Then∇̃A

g̃
∈ Ãδ is an extension of∇g

A to [0, 1] × Σo, and we define

(3.6) Θk(∇A, g) := exp
(
−2πik CS[0,1]×Σo(Ã+A0

g̃
)
)
.

Recall that Daskalopoulos and Wentworth in [33, Eq. 5.1] define a cocycle

Θ̃k : L2
1,δ(T

∗Σo ⊗ gP) × G0,δ → U(1),

Θ̃k(∇A, g) := exp

(
ik
4π

∫

Σo
tr(Adg−1(A+A0) ∧ g−1dg) −

ik
12π

∫

[0,1]×Σo
tr

(
g̃−1d̃g̃

)3
)
,

and use this to define the Chern–Simons line bundleLk
CS overMδ (hered̃ = d+ d

dt). Note that we have
used Ad-invariance of tr to write [33, Eq. 5.1] in a slightly different form than it originally appeared.
The two cocycles are equal:

Lemma 3.4. Θ̃k(∇A, g) = Θk(∇A, g).

Proof. We have the formula

8π2 CS[0,1]×Σo

(
Ã+A0

g̃
)
=

∫

[0,1]×Σo
tr

(
Ã+A0

g̃
∧ F

∇̃A
g̃ −

1
6

Ã+A0
g̃
∧ [Ã+A0

g̃
∧ Ã+A0

g̃
]

)
.

Now, the usual gauge change formula for the curvature is

F
∇̃A

g̃ = Adg̃−1 F
∇̃A
.

and by definition

Ã+A0
g̃
= Adg̃−1 Ã+A0 + g̃∗ω,

whereω is the Maurer–Cartan form onG. SinceÃ+A0 = π
∗(A+A0), some of the forms involving only

Ã+A0 on [0, 1] × Σo vanish and we have

tr
(
Ã+A0

g̃
∧ F

∇̃A
g̃

)
= tr

(
g̃∗ω ∧ Adg̃−1 dÃ+A0 +

1
2

g̃∗ω ∧ Adg̃−1[Ã+A0 ∧ Ã+A0]

)
.

Also, one computes

1
6

tr
(
Ã+A0

g̃
∧ [Ã+A0

g̃
∧ Ã+A0

g̃
]
)
=

1
2

tr
(
g̃∗ω ∧ Adg̃−1[Ã+A0 ∧ Ã+A0]

)
+

1
2

tr
(
Adg̃−1 Ã+A0 ∧ [g̃∗ω ∧ g̃∗ω]

)
+

1
6

tr
(
g̃∗ω ∧ [g̃∗ω ∧ g̃∗ω]

)
.
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We have

8π2 CS[0,1]×Σo(Ã+A0
g̃
) =

∫

[0,1]×Σo
tr

(
g̃∗ω ∧ Adg̃−1 d

(
Ã+A0

)
−

1
2

Adg̃−1 Ã+A0 ∧ [g̃∗ω ∧ g̃∗ω] −
1
6

g̃∗ω ∧ [g̃∗ω ∧ g̃∗ω]

)
,

and one can show that

(3.7) Adg̃−1 d
(
Ã+A0

)
= d

(
Adg̃−1 Ã+A0

)
+ [g̃∗ω ∧ Adg̃−1 Ã+A0].

Using (3.7),
∫

[0,1]×Σo
tr

(
g̃∗ω ∧ Adg̃−1 d

(
Ã+A0

))

=

∫

[0,1]×Σo
tr

(
g̃∗ω ∧

[
d
(
Adg̃−1 Ã+A0

)
+ [g̃∗ω ∧ Adg̃−1 Ã+A0]

])

=

∫

[0,1]×Σo
tr

(
g̃∗ω ∧ d

(
Adg̃−1 Ã+A0

)
+ Adg̃−1 Ã+A0 ∧ [g̃∗ω ∧ g̃∗ω]

)

=

∫

[0,1]×Σo
tr

(
Adg̃−1 Ã+A0 ∧ dg̃∗ω + d

(
Adg̃−1 Ã+A0 ∧ g̃∗ω

)
+ Adg̃−1 Ã+A0 ∧ [g̃∗ω ∧ g̃∗ω]

)
.

Thus

8π2 CS[0,1]×Σo(Ã+A0
g̃
) =

∫

[0,1]×Σo
tr

(
d
(
Adg̃−1 Ã+A0 ∧ g̃∗ω

)
−

1
6

g̃∗ω ∧ [g̃∗ω ∧ g̃∗ω]

)
,

since the Maurer-Cartan equation says

dg̃∗ω +
1
2

[g̃∗ω ∧ g̃∗ω] = 0.

Since Stokes’ theorem holds whenA ∈ L2
1,δ(T

∗Σo ⊗ gP), the Lemma is proven after writing ˜g∗ω =

g̃−1d̃g̃. �

Given Lemma3.4, one has again thatΘk is independent of the choice of the path inG0,δ ([33,
Lemma 5.2]). The action ofG0,δ onAδ × C is given by

(3.8) (∇A, z) · g := (∇g
A,Θ

k(∇A, g) · z),

and we have the following

Lemma 3.5. Θk satisfies the cocycle condition

Θk(∇A, g)Θk(∇g
A, h) = Θk(∇A, gh).

This corresponds to [33, Lemma 5.3]; as no proof is given there we include one here forcomplete-
ness, using our construction ofΘk.
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Proof. Let
h̃1 : [0, 1] × Σo→ G,

be an extension ofh from Σo to [0, 1] × Σo such that

h̃1(0, ·) = h(·), and, h̃1(1, ·) = e(·),

wheree : Σo→ G is the identity gauge transformation. Let

g̃1 : [0, 1] × Σo→ G,

be an extension ofg from Σo to [0, 1] × Σo such that

g̃1(0, ·) = g(·), and, g̃1(1, ·) = e(·).

Define an extensioñh0 : [0, 1] × Σo→ G of h by:

h̃0(t, ·) :=


h̃1(2t, ·), t ≤ 1/2,

π∗e(2t − 1, ·), t ≥ 1/2,

so that,
h̃0(0, ·) = h(·), and, h̃0(1, ·) = e(·).

Also, define an extension ˜g0 : [0, 1] × Σo→ G of g by:

g̃0(t, ·) :=


π∗g(2t, ·), t ≤ 1/2,

g̃1(2t − 1, ·), t ≥ 1/2,

so that
g̃0(0, ·) = g(·), and, g̃0(1, ·) = e(·).

By construction we have

Θk(∇A, gh) = exp
[
−2πik CS[0,1]×Σo

(
Ã+A0

g̃h
)]

= exp
[
−2πik CS[0,1]×Σo

(
Ã+A0

g̃0h̃0
)]
, sinceΘk is independent of extension,

= exp
[
−2πik

(
CS[0, 12 ]×Σo

(
Ã+A0

g̃0h̃0
)
+ CS[ 1

2 ,1]×Σo

(
Ã+A0

g̃0h̃0
))]

= exp
[
−2πik

(
CS[0,1]×Σo

((
π∗ (A+A0)

g)h̃1

)
+ CS[0,1]×Σo

(
Ã+A0

g̃1
))]

, by definition ofh̃0, g̃0,

= exp
[
−2πik

(
CS[0,1]×Σo

((
π∗ (A+A0)

g)h̃1

)
+ CS[0,1]×Σo

(
Ã+A0

g̃1
))]

= Θk
(
∇

g
A, h

)
· Θk (∇A, g) , by definition ofΘk.

�

SinceΘ satisfies the cocycle condition andG0,δ preserves flat connections, we obtain the induced
Chern–Simons line bundle overFδ. This line bundle will not always descend toMδ however – the
weights from (2.1) need to satisfy an integrality condition for that. The fullresult is:
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Theorem 3.6(Cfr. [33, Theorems 5.8 and 6.1]). Suppose that, for k∈ N, k times the parabolic weights
αi from (2.1) are in the co-character lattice of Lci for each marked point pi ∈ P, and that k

∑
i αi is in

the co-root lattice ofSU(N). Then the k-th power of the line bundle onFδ constructed above descends
toMδ. It comes naturally equipped with a connection, whose curvature is k

2πi times the symplectic form
Ω from (2.4).

Once again, strictly speaking this is only discussed in [33] only for the locus ofMα consisting of
irreducible connections. It however carries over to the whole ofMα: as discussed in [39, page 268],
one needs to be concerned only about the connected components of the stabilisers of flat connections
acting trivially, and by [4, Proposition 6.8], in the case ofK = SU(N), this reduces to checking that the
centre of SU(N) acts trivially, which is indeed covered by [33].

By abuse of notation we shall refer to these line bundles as theChern–Simons line bundles, denoted
by Lk

CS. Recall that the (complex) codimension of the strictly semi-stable locus is at least two (except
if g = 2, r = 2), hence by Hartogs’ theorem this line bundle extends canonically to all ofMα. In
fact, there is no obstruction to carrying the construction of [33] of the line bundleLk

CS through also for
reducible connections, which would constructLk

CS directly for all ofMα.

3.3 Lift of the mapping class group action

In this section we will discuss how any suitable diffeomorphism ofΣo gives an action onMα that lifts
to the line bundleLk

CS. In fact we will do a little more, and show that this action factors through the
mapping class group. The diffeomorphisms, and isotopies, in question are supposed to preserve some
first order information at the marked points, and there are a number of ways to encode this. One could
allow diffeomorphisms that only permute points inP that carry the same label, and as before preserves
some projective tangent vector there. We will however choose a different description, dictated by our
construction ofMα using weighted Sobolev spaces as outlined above. In particular, we will only allow
those diffeomorphisms that preserve the chosen local coordinates around marked points (only permuting
those with equal weights), and all isotopies have to do the same. It is a straightforward exercise that
the mapping class group so obtained is isomorphic to the one where only projective tangent vectors are
asked to be preserved.

3.3.1 Diffeomorphisms

Let Diff+(Σ, z, α) denote the orientation-preserving diffeomorphisms ofΣ preserving each subset ofP
whose points carry the same weights, as well as their neighbourhoodsDi and local coordinateszi we
have chosen, i.e.zj ◦ f = zi if f (pi ) = p j . Our goal is to show that an analogue of Lemma (3.2) holds
for the punctured surfaceΣo when f ∈ Diff+(Σ, z, α). First remark that Diff+(Σ, z, α) acts by pullback
onAδ, as by construction the weights used in the Sobolev norms arepreserved. We lift this action to
the trivial line bundleAδ × C by

(3.9) f ∗(∇A, z) := ( f ∗∇A, z),

for f ∈ Diff+(Σ, z, α). As in the case without punctures, we can define a morphismΨ : Diff+(Σ, z, α)→
Aut(G0,δ) byΨ( f )(g) := g ◦ f , and we have again

Lemma 3.7. The lifts (3.8) and (3.9) combine to an action ofG0,δ ⋊Ψ Diff+(Σ, z, α) onAδ × C.

As with Lemma3.1we have switched again to a right action of Diff+(Σ, z, α) to obtain a right action
of the semi-direct product.
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Proof. This statement reduces to showing that

(3.10) f ∗ ((∇A, z) · g) =
(
f ∗(∇A, z)

)
· (g ◦ f ),

for f ∈ Diff+(Σ, z, α), g ∈ G0,δ. To see this, first observe that

(3.11) (f ∗∇A)g◦ f = f ∗(∇g
A),

which is easy to show directly. Then compute

(
f ∗(∇A, z)

)
· (g ◦ f ) =

(
( f ∗∇A)g◦ f ,Θk( f ∗∇A, g ◦ f ) · z

)

=
(
f ∗(∇g

A),Θk( f ∗∇A, g ◦ f ) · z
)
, by (3.11),

= f ∗
(
∇

g
A,Θ

k( f ∗∇A, g ◦ f ) · z
)
.

Hence to establish (3.10) it suffices to show that

(3.12) Θk( f ∗∇A, g ◦ f ) = Θk(∇A, g).

The verification of (3.12) boils down to basic diffeomorphism invariance of integration on manifolds.
Indeed, by definition

Θk( f ∗∇A, g ◦ f ) = exp
(
−2πik CS[0,1]×Σo

(
π∗

(
f ∗(A+A0)

))̃g◦ f
)
,

and if we putF = id× f we can write this as

Θk( f ∗∇A, g ◦ f ) = exp
(
−2πik CS[0,1]×Σo

(
F∗

(
Ã+A0

))g̃◦F
)

= exp
(
−2πik CS[0,1]×Σo

(
F∗

(
Ã+A0

g̃
)))

.

By diffeomorphism invariance of integration on manifolds,

CS[0,1]×Σo

(
F∗

(
Ã+A0

g̃
))
= CS[0,1]×Σo

(
Ã+A0

g̃
)
,

and therefore (3.12) follows. �

Lemma3.7 implies that the action of Diff+(Σ, z, α) onAδ × C descends to an action on the Chern–
Simons line bundle overFδ. As explained in [33, §4.2 and§5.2], there are some rationality conditions
on the weights to further descend the line bundle toMδ, but when it comes to lifting the action of
Diff+(Σ, z, α) these pose no further problem, as the action of Diff+(Σ, z, α) commutes with the action
of

∏
i Lc

i . Hence we obtain as desired a lift of the action of Diff+(Σ, z, α) to Lk
CS, whenever the latter

exists.
Finally, once again as in [4, §7] we have the following basic observation:

Lemma 3.8. Let∇A be a connection with prescribed holonomy such that[∇A] ∈ M f
α
. We can then find

a lift f̃ of f to P such that∇A is invariant underf̃ .

Remark however that whilef m = id, the same need not be the case forf̃ .

19



Proof. Let f ′ : f ∗(P)→ P be the natural bundle isomorphism coveringf . Then, since [A] ∈ M f
α
, there

exists a bundle isomorphismψ from P to f ∗P (covering the identity onΣo) such thatψ(∇A) = f ∗(∇A).
The composition off ′ with ψ gives us the desired̃f . �

Given such a∇A and f̃ , we can create a connection∇Aϕ on the mapping torusQϕ = [0, 1] ×ϕ Q
thought of as a bundle overΣo

f =. We have the following:

Lemma 3.9.

(3.13) tr
(
f ∗ : Lk

CS

∣∣∣∣
[∇A]
→ Lk

CS

∣∣∣∣
[∇A]

)
= exp

(
2πik CSΣo

f
(Qϕ,∇Aϕ)

)
.

Proof. Without a loss of generality, we can assume that∇A takes the standard formd+αidθi on Di [33,
Lemma 2.7]. Given that [f ∗∇A] = [∇A] with f ∈ Diff+(Σ, z, α), there existsg ∈ G0,δ such that

f ∗∇A = ∇
g
A.

Then

f ∗[(∇A, z)] = [( f ∗∇A, z)]

= [(∇g
A, z)]

= [(∇A,Θ
k(∇A, g)−1 · z)],

where by definition

Θk(∇A, g) = exp
(
−2πik CS[0,1]×Σo

(
Ã+A0

g̃
))
,

and the connectioñ∇A
g̃

descends to the connectionAϕ on the bundleQϕ = [0, 1] ×ϕ Q over the open
mapping torusΣo

f := [0, 1] × f Σ
o. Thus

Θk(∇A, g) = exp
(
−2πik CSΣ f (Qϕ,∇Aϕ)

)
,

and indeed
tr

(
f ∗ : Lk

CS

∣∣∣∣
[∇A]
→ Lk

CS

∣∣∣∣
[∇A]

)
= exp

(
2πik CS(Qϕ,∇Aϕ)

)
.

�

3.3.2 Isotopy

Suppose now thatf is an element of Diff0(Σ, z, α), the subgroup of Diff+(Σ, z, α) consisting of diffeo-
morphisms isotopic to the identity within Diff+(Σ, z, α). Suppose we have a smooth isotopyft given,
with f0 = id, and f1 = f . It is standard that the action of anyft on∇A ∈ Aδ can be understood as a gauge
transformation. Indeed, we can just letgt(p) be the holonomy of∇A along the paths 7→ f(1−t)(1−s)(p).
Given that f ∈ Diff0(Σ, z, α) immediately implies thatgt ∈ G0,δ for all t. This shows that Diff0(Σ, z, α)
acts trivially onMα. Moreover we have that

Proposition 3.10. For ∇A and gt as above, we have thatΘk(∇A, g0) = 1.
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Proof. Let ∇̃A = π
∗∇A be as in (3.6). We consider the gauge transformation ˜g over the surface cylinder

induced bygt from above. We observe thatgt is constructed exactly such that∇A
gt has trivial holonomy

along the curvest 7→ ft(p), for t ∈ [0, 1] and anyp ∈ Σo, which also carries over tõ∇A
g̃

having trivial
holonomy along the curvest 7→ (t, ft(p)) in [0, 1] × Σo. Now we define the diffeomorphism

F : [0, 1] × Σo→ [0, 1] × Σo

by the formula
F(t, p) = (t, ft(p)).

We observe thatF∗∇̃A
g̃

is trivial along the linest 7→ (t, p) for all p ∈ Σo, sinceF maps these lines to the
curvest 7→ (t, ft(p)). This implies that

CS[0,1]×Σ0

(
F∗

(
Ã+A0

g̃
))
= 0.

We conclude that
CS[0,1]×Σ0

(
Ã+A0

g̃
)
= CS[0,1]×Σ0

(
F∗

(
Ã+A0

g̃
))
= 0.

�

Corollary 3.11. We have an induced action of the mapping class group

Diff+(Σ, z, α)
/

Diff0(Σ, z, α)

onMα with a lift toLk
CS.

Remark3.12. Note that for the action onMα andLk
CS, we could actually also allow the diffeomor-

phisms to ‘rotate’ the local coordinates around the marked points (i.e. such thatzj ◦ f = eϑi zi if
f (pi) = p j , for someϑi ∈ R, or more generally simply such that the functionτ is preserved). The
crucial thing to observe is that, though isotopies that may rotate thezi act trivially onMα, they do not
onLk

CS.
In the set up that we have used, where thezi are preserved by the diffeomorphismsf , this corre-

sponds to the fact that the Dehn twists around the marked points act trivially onMα. This was also
observed in [30] (in the context of surfaces with boundary), where the character with which the Dehn
twists act on the fibres ofLk

CS was also determined. Charles does not allow for boundary components
to be permuted but the result is otherwise the same. We have included in AppendixB the explicit
evaluation of this character in our setup.

4 Conformal blocks

In this Section we relate the space of holomorphic sections of the Chern–Simons line bundleLk
CS (for

a given choice of complex structureσ onΣ) constructed in Section3 to the space of conformal blocks
as defined in [73]. The idea that these spaces are linked goes back to Witten’sfirst paper [79]; our
aim is mainly to make this explicit and mathematically rigorous for the various precise definitions of
Chern–Simons bundle and space of conformal blocks we use. This allows us to link the sections of
the Chern–Simons bundle with the Reshetikhin–Turaev invariants [64, 65, 77], as the modular functor
that determines these can be described using conformal blocks [7]. Once again, essentially all of the
ingredients for this are in the literature, but we are unaware of any place where they are linked in
the way we need them. In Section4.1 below we outline the isomorphism, drawing on various known
descriptions and correspondences. In Section4.2we then discuss how the isomorphism can be shown
to be f -equivariant, which is crucial for our application.
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4.1 Conformal blocks and the stack of quasi-parabolic bundles

Given a Riemann surfaceΣσ and a divisor of marked pointsP as above, a parabolic subgroupPi of
SL(N,C) corresponding to a flag type for every pointpi of P (the Lc

i used in Section3 are compact
forms of the Levi factors of these), Tsuchiya, Ueno and Yamada in [73] construct a corresponding
space of conformal blocksV†

N,k,λ
(Σσ,P) with it for every levelk ∈ N andλ = (λ1, . . . , λn), where the

(integral) weightsλi lie in the Weyl alcove at levelk, and moreover in the wall of the Weyl chamber
corresponding toPi, for every point inP (we will review the construction below in Section4.2.1, see
also [53, 72] for coordinate-free constructions). In turn, this is linked to moduli of parabolic bundles
by Pauly [59] and Laszlo–Sorger [52]. In particular, these authors consider the stackMΣσ,P,Pi of quasi-
parabolic bundles. Its Picard group is given by

(4.1) Pic(MΣσ,P,Pi ) = Z ⊕
⊕

i

X(Pi),

where the latter terms are the character lattices of the parabolic groups, i.e. Hom(Pi ,Gm), which can be
identified with the Picard group of the flag varieties SL(N,C)/Pi . For the structure group SL(N,C), the
Z-summand is generated by thedeterminant of cohomology line bundle, or determinant line bundle for
short. It assigns to a familyF of quasi-parabolic bundles parametrized byS the line bundle whose fibre
overs∈ S is given byΛtop(H0(Σσ,F (s))∗) ⊗Λtop(H1(Σσ,F (s))) – when thinking in terms of principal
bundles, note that we use the standard representation of SL(N,C) to define this. The determinant line
bundle only depends on the underlying (non-parabolic) bundle, and not on the parabolic structure ofF .

Following [70] we say a line bundleL(k,λ) onMΣσ,P,Pi is semipositiveif in the above presentation

of the Picard group it is given by (k, λ), wherek ≥ 0 and theλi are dominant weights, necessarily in the
face of the Weyl chamber corresponding toPi , with 〈λi , θ〉 ≤ k. The line bundle ispositiveif all these
inequalities are strict, andλ is moreover regular. Given a positiveL(k,λ), the complement of the base

locus of all powers ofL(k,λ) is the semi-stable locus of the stack, denoted byM
L(k,λ)−ss

Σσ,P,Pi
. It consists of

those quasi-parabolic vector bundles that are semi-stablefor the weightsαi =
λi
k .

We now have the following result by Pauli and Sorger:

Theorem 4.1([59, Prop 6.5 and 6.6], [52, Thm 1.2]). Given a line bundleL(k,λ) onMΣσ,P,Pi as above,
there exists an isomorphism

H0(MΣσ,P,Pi ,L(k,λ)) � V
†

N,k,λ
(Σσ,P),

which is canonical once the local coordinates are chosen.

This theorem generalises earlier results of Beauville–Laszlo [18] and Kumar, Narasimhan and Ra-
manathan [51] to the parabolic case.

Moreover, for structure group SL(N,C), most of these line bundles descend to the moduli spaces
Mα (essentially due to a descent lemma of Kempf [38, Thm. 2.3], see also [1, Theorem 10.3] – in

the terminology of the latterMα is a good moduli spacefor the stackM
L(k,λ)−ss

Σσ,P,Pi
). One just needs to

verify that the stabilisers of (semi-)stable bundles act trivially on the fibre of the line bundle over the
corresponding closed point ofMΣσ,P,Pi , which for SL(N,C) reduces to verifying that the exponential
e
∑

i λi is trivial on the centre of SL(N,C). In this case we shall refer to the descent ofL(k,λ) toMα with

αi =
λi
k as the parabolic determinant bundle, following [21], and denote it asLk

pd. We have
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Theorem 4.2([70, Thm 9.6], [59, 5.2]). Whenever
∑

i λi lies in the root lattice ofSL(N,C), there exists
a canonical isomorphism (up to scalars)

H0(MΣσ,P,Pi ,L(k,λ)) � H0(Mα,L
k
pd),

whereαi =
λi
k . Moreover all higher cohomology of these line bundles vanishes.

We want to link this with the Chern–Simons line bundlesLk
CS constructed earlier. It suffices to

show that the line bundleLk
pd considered above can be given a connection whose curvature is thek-th

multiple of the Kähler class. Indeed, the same is true for the k-th power of Chern–Simons bundle,
and since we know that the moduli spaces are simply connected(by Theorem2.1), all line bundles are
determined by their curvature [47, Cor. II.9.2]. Hence the Chern–Simons line bundleLk

CS andLk
pd are

isomorphic as bundles with connections, and therefore alsoas holomorphic line bundles for the natural
holomorphic structure onLk

CS (see e.g. [12, Thm 5.1]).
By the seminal work of Quillen [62], there exists a natural ‘regularised’ Hermitian metric onde-

terminant line bundles over moduli spaces such asMα. From the discussion above however, it follows
that we are not interested in the determinant line bundle (which isL(1,0) in the notation above) itself,
but rather by a twist of the determinant line bundle (or a power thereof) by a line bundle coming from
the parabolic structures, chosen to correspond to the weights1. There is, however, another viewpoint on
parabolic bundles (for rational weights), as they correspond to orbifold bundles, or alternatively, equiv-
ariant bundles on a suitable ramified cover ofΣσ (also referred to asπ-bundles). In particular, under
this correspondence the moduli spaces of semi-stable bundles are isomorphic (but their natural Kähler
structures differ by a factor).

Biswas and Raghavendra take the latter approach and show that, on the stable locus of the moduli
space ofπ-bundles, theπ-determinant bundle equipped with the Quillen metric has ascurvatureN times
the natural Kähler form [21, Theorem 3.27] (see also [22, 23]). Moreover, using thisπ-determinant they
show [21, §5] that on the moduli space of parabolic bundlesMα, there exists a metrized line bundle
(which they dub theparabolic determinant; it corresponds to the descent of the line bundleL(Np,Npα)

we considered before on the stack, wherep is the least common multiple of all denominators in theαi, j),
whose curvature isNp

2πi times the Kähler formΩ from (2.4) onMα [21, Theorem 5.3]. In particular this
implies

(4.2) c1

(
Lk

pd

)
= k[Ω].

To be precise, they do this without fixing the determinant ofE and then need a correction factor in the
line bundle, which is however trivial in the fixed-determinant case.

We can conclude (recall again our assumption that allλi are regular)

Corollary 4.3. The line bundlesLk
CS andLk

pd are isomorphic as holomorphic line bundles onMα.

Note that an alternative approach, avoiding the use ofπ-bundles, would be to use the recent work
of Zograf and Takhtajan [68], who calculate the curvature of the Quillen metric, not on the determinant
line bundle but on the canonical bundle of the moduli space. They show in particular that its curvature
is equal to a multiple of the Kähler form, minus a ‘cuspidal defect’, which they express in terms of
natural curvature forms on line bundles coming from the parabolic bundles. We can on the other hand
identify the canonical bundle for the moduli stack of quasi-parabolic bundles. Indeed, it follows from

1Though less relevant for our approach as we work with punctured Riemann surfaces, the matter of the Quillen metric in
the case of Riemann surfaces with boundary was discussed in [29].
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e.g. [52, Thm 8.5] thatMΣ,P,Pi is a flag bundle (locally trivial in the étale topology) overthe stack
of (non-parabolic) bundlesMΣσ. The canonical bundle ofMΣσ,P,Pi is therefore the tensor product of
the canonical bundle ofMΣσ with the canonical bundle of the various flag varietiesG/Pi (as before
G = SL(N,C). The former is determined by the weight−2h∨ [67, Cor. 10.6.4], the latter is well-known
to be−2ρPi [45, Page 202], whereh∨ is the dual Coxeter number ofG andρPi is half the sum of those
positive roots ofG that determinePi. Combining these two expressions should lead to the same result,
giving (a multiple of) the Kähler form onMα as curvature for a connection on the line bundleLk

pd,
but we were unable to resolve some ambiguities with respect to normalisation conventions.
We can finally summarise all the results quoted in this Section as

Theorem 4.4. There exists an isomorphism, canonical up to scalars, between the space of conformal
blocks and the Kähler quantisation of the moduli space of flat connections using the Chern–Simons line
bundle:

V
†

N,k,λ
(Σσ,P) � H0(Mα,L

k
CS),

if k is such that allλi = kαi are elements of the latticesX(Pi), and
∑

i λi is in the root lattice ofSL(N,C).

4.2 Equivariance

For our purposes it is very important to establish the isomorphism given in Theorem4.4 as an f -
equivariant isomorphism. In Section3.3 a lift of any diffeomorphismf ∈ Diff+(Σ, z, α) to the Chern–
Simons line bundle was constructed. This will induce an action on the geometric (Kähler) quantisation
only if the chosen complex structure is also preserved byf . In such a casef is finite order, and vice
versa, for every finite order diffeomorphism one can choose a complex structureσ on Σ preserved by
it. We shall now assume such a complex structure to be chosen,and we shall discuss the corresponding
equivariance of the spaces of conformal blocks and non-abelian theta functions. All throughout we
shall considerf to be a finite order automorphism of the Riemann surface whichpreserves the set of
labelled marked points (i.e. subsets ofP are only allowed to be permuted if the correspondingλi are the
same) that gives rise to an automorphism of a marked surfaceΣ (as in the introduction) whose surface
is Σ.

We begin by making an elementary observation.

Lemma 4.5. If f is a finite order diffeomorphism ofΣ that preserves the set of marked pointsP, and
some choice of non-zero tangent vectors at the pi up to real positive scalars, then necessarily all f -
orbits inP are generic, i.e. their lengths are equal to m, the order of f .

Proof. As mentioned above, we can pick a complex structure preserved by f , so thatf is an automor-
phism ofΣσ, e.g. by choosing anf -invariant metric. It now suffices to show thatf cannot fix any of the
P (indeed, if there were no fixed points inP, but some orbit was not generic, then a suitable power off
would fix that orbit and we could replacef by that power). Suppose thatp were anf -fixed point, then
we can choose a holomorphic disk aroundp preserved byf . It is well known that automorphisms of
holomorphic disks preserving the centre have to be rotations, and since we also know thatf preserves
a tangent vector atp up to real positive scalars,f has to be the identity on this disk, hence everywhere
onΣ. �

This of course implies thatn has to be a multiple ofm. It also implies that we can find open disksDi

around thepi with local holomorphic coordinateszi giving isomorphisms onto the unit disk inC, and
that are preserved byf , i.e. zj◦ f = zi , if f (pi) = p j . Vice versa, given an automorphismf that preserves
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such a choice of holomorphic coordinates around the points in P, we can choose tangent vectors such
that f is an automorphism of the marked surface (in any case, for finite order automorphisms of the
marked surface we can always find a suitable normalisations of the tangent vectors, so that we need not
be concerned about theR+-ambiguity). We shall therefore from now on assume that sucha choice of
coordinates has been made, and that the constructions in Sections3.2.2and3.2.3are done with respect
to these neighbourhoods.

4.2.1 Action on spaces of conformal blocks

From the work of [73] it follows that the bundle of conformal blocks is a vector bundle over the stack
of smooth marked curvesMg,n (in fact even over its Deligne–Mumford compactificationMg,n, though
that does not concern us here). In particular this implies that for every Riemann surface with auto-
morphisms, there exists a canonical action of the automorphism group on the corresponding space of
conformal blocks. Moreover this story goes through even if one allows automorphisms that can inter-
change marked points with identical labels. This is explained in detail in [7].

In our case, asf comes from an automorphism of a marked surface, a concrete description of this
action is provided by [7, Proposition 4.3], in terms of the construction of the spaces of conformal blocks.
As we will need a minor variation on this description to link it with the non-abelian theta-functions, we
outline it here.

Given a semi-simple (complex) Lie algebrag, we will denote bŷgn the central extension of
⊕n

j=1 g⊗

C((ξ j)). Hereξ j is a local coordinate at thej-th marked point, and the Lie bracket of the central extension
is determined by thinking of this Lie algebrâgn as a Lie subalgebra of then-fold sum of the affine Lie
algebra ofg:

ĝn ⊂

n⊕

j=1

ĝ.

We fix a levelk andn weightsλi ∈ X(Pk), and look at the representation of
⊕n

j=1 ĝ given term-wise by
the corresponding representations of levelk and weightλi of ĝ:

Hk,λ = Hk,λ1 ⊗ . . . ⊗Hk,λn.

Now we begin by defining the dual of the space of conformal blocks, also known as the space of co-
vacua:

V
g,k,λ(Σσ,P) = V

g,k,λ = Hk,λ/̂g(UP)Hk,λ.

HereUP = Σσ \P and̂g(UP) is the Lie algebrag⊗O(UP). This is a Lie subalgebra of
⊕n

j=1 g⊗C((ξ j)),
and since by the residue theorem the restriction of the central extension of the latter to this subalgebra
splits, we can think of it as a subalgebra ofĝn. The space of conformal blocksV†

g,k,λ
(Σσ,P) = V†

g,k,λ
,

also known as the space of vacua, is the dual to the space of co-vacua. Alternatively, we can put

V
†

g,k,λ
=

(
H∗

k,λ

)̂g(UP)
,

i.e. thêg(UP)-invariant subspace ofH∗
k,λ

. Wheng = sl(N,C) we use the notationV†
N,k,λ

andVN,k,λ.

We now want to describe the induced action off onV†
g,k,λ

. In order to do so we will assume

that, besides the marked points on the Riemann surface, we have chosen a divisorQ consisting of one
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generic orbit off , i.e. one pointp ∈ Σσ that is not part of the marked points inP, as well as all of its
f -translates

Q = p+ f (p) + f 2(p) + . . . + f m−1(p),

wherem is the order off – the genericity of the orbit implies that thesempoints are all distinct. To each
of the points in this orbit we assign the weight 0 – hence by thepropagation of vacua we have an explicit
isomorphism between the spaces of conformal blocks (Theorem 4.5 in [7]), and in the description above
we are usingUP∪Q. We assume that we have chosenf -compatible formal neighbourhoods around these
new marked points, which we can always do.

The action of f onHk,λ andH∗
k,λ

is now simply given by the permutation on the tensor factors,

determined by the permutation byf of the marked points. As the latter action preservesĝ(UP∪Q) this
induces an automorphism ofV†

g,k,λ
.

Remark4.6. This description appears slightly different from the one in [7, Proposition 4.3], because
there one changes the labelling of the marked points (and local coordinates) byf , and therefore the
isomorphism between the spaces of conformal blocks is induced by the identity onH

λ
.

4.2.2 Alternative description

The link between the spaces of conformal blocks and spaces ofnon-abelian theta functions given in
[52] and [59] depends on a variation of the construction of the covacua:

Proposition 4.7 ([17, Proposition 2.3]). Let P andQ be two non-empty finite disjoint subsets ofΣσ,
with tuples of weightsλ andµ assigned to them respectively (all weights are assumed to bein the Weyl
alcove at level k). For any weightλ we let Vλ be the corresponding irreducible highest weight module
of g, and put V

λ
= Vλ1 ⊗Vλ2 ⊗ . . . . If λ ∈ Λ(k)

N then we consider Vλ as a subspace ofHk,λ. We then have
that the induced natural maps

(
V
λ
⊗Hk,µ

) /
ĝ(UQ)

(
V
λ
⊗Hk,µ

)
−→

(
Hk,λ ⊗Hk,µ

) /
ĝ(UP∪Q)

(
Hk,λ ⊗Hk,µ

)
= V

g,k,λ,µ

and (
V∗
λ
⊗H∗k,µ

)̂g(UQ)
→

(
Hk,λ ⊗Hk,µ

)̂g(UP∪Q)
= V

†

g,k,λ,µ

are isomorphisms to the spaces of covacua and vacua respectively. Hereg(UQ) acts on each of the Vλi

and V∗
λi

by evaluation at the corresponding point ofP.

We will use the alternative description of the spaces of conformal blocks offered by this proposition
in the particular case whereP is the set of chosen marked points as before, andQ is the disjoint extra
genericf -orbit we have chosen (any will do). It is clear how thef -action carries over to this description:
again one simply takes the induced action by permuting the factors in the tensor productsV∗

λ
andH∗k,µ.

4.2.3 Equivariance of line bundles over stack

The proof of Theorem4.1stated above of Pauly and Laszlo–Sorger relies on a presentation of the stack
MΣσ,P,Pi as a quotient of a product of an affine Grassmannian and some flag varieties. We need a minor
variation:

Proposition 4.8. LetΣσ,P andQ be as above. There is an isomorphism of stacks

MΣσ,P,Pi � G(UQ)
∖
Q

par
G ,
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where

(4.3) Q
par
G =

∏

Q

QG ×
∏

P

G/Pi ,

which is canonical once local coordinates are chosen. HereQG is the affine Grassmannian, and G(UQ)
is the group of algebraic morphisms from UQ to G.

The case where #Q = 1 is the one proven by Pauly and Laszlo–Sorger.

Proof. This is a direct and straightforward generalisation of the proofs of [59, Proposition 4.2] and [52,
Theorem 8.5]. �

We want to study the induced action off onMΣσ,P,Pi , given by pulling back bundles (recall that
we assume thatf satisfies the conditions described at the beginning of Section 4.2). In the above
presentation this induced action is again straightforward:

Lemma 4.9. Under the isomorphism of Proposition4.8 the action of f onMΣσ,P,Pi is induced by the
permutation of the factors of (4.3) by f .

The proof of Theorem4.1 in [59] and [52] uses the presentation of Proposition4.8 for the stack
MΣσ,P,Pi , as well as the Borel–Weil–Bott theorem, both the standard one for flag varietiesG/P and the
affine version due to Kumar [50] and Mathieu [54, 55] that realises representations of the affine Lie
algebrâg as sections of line bundles overQG. In our case, as we are replacing a single ‘dummy’ point
by an entiref -orbit Q, the morphismQpar

G → MΣσ,P,Pi is no longer locally trivial in the étale topology,
hence it no longer induces an isomorphism of Picard groups.

We no longer have in general that the Picard group ofMΣσ,P,Pi is equal to the Picard group ofQpar
G ,

but we can easily describe the pullbacks of the lineL(k,λ) to Qpar
G . Indeed, the Picard group ofQpar

G is
isomorphic toZm⊕

⊕
i X(Pi), and we have

Lemma 4.10. The pullback of the line bundleL(k,λ) toQpar
G is given by(k, . . . , k, λ).

Proof. It suffices to remark that for eachj = 1, . . . ,m, we can consider the morphismQG×
∏

i G/Pi →

Q
par
G that sends the factorQG as the identity to thej-th factor, and enters the trivial element ofQG for

all other factors. Pulling back line bundles under this morphism gives the morphism of Picard groups
that in the above presentation can be described as (k1, . . . , kn, λ) 7→ (k j , λ). Finally, we can factor the
morphisms toMΣσ,P,Pi through this, and remark that for eachj we have the commutative diagram

QG ×
∏

i G/Pi

Q
par
G MΣσ,P,Pi

Ψ

whereΨ induces an isomorphism of Picard groups. �

Hence if we lift f to act on the line bundle corresponding to (k, . . . , k, λ) onQpar
G by simply permut-

ing the factors, this induces a lift of the action off onMΣσ,P,Pi toL(k,λ), and we can conclude:

Proposition 4.11. The action of f onMΣσ,P,Pi lifts to the line bundleL(k,λ) so that the isomorphism of

Theorem4.1is f -equivariant (with the action of f onV†
N,k,λ

as described in Section4.2).
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4.2.4 Equivariance of isomorphism with Chern–Simons line bundle

We have now two isomorphic line bundlesLk
CS andLk

pd onMα, and two lifts of the action off onM
to them, which we want to show is the same.

Proposition 4.12. The isomorphism of Corollary4.3 is f -equivariant.

As the moduli space is projective, both lifts off can differ at most by a character of the finite cyclic
group generated byf , and it would suffice to verify this character is trivial at a single point inMα to
obtain the result. In the non-parabolic case, i.e. where no link is present (cfr. [4]), one can do this at
the trivial bundle/ trivial connection. In the parabolic case this is not so simple, as, for given parabolic
weights, the trivial bundle may not be stable for any choice of flags. Nevertheless one can make this
reasoning work.

The main thing to note is that the lift of the action constructed in Section3.3 comes from a lift of
the action to the (trivial) line bundle over all ofAδ (as in (3.4)). This means that the lift of the action
also descends to the line bundle over the quotient

[
Aδ/G

C
δ

]
,

interpreted as a stack (hereGC
δ

is the complexification ofGδ), which at least morally speaking is the
same as the stackMΣσ,P,Pi . Hence it suffices to show that the lift agrees for any bundle/connection, not
necessarily a semistable or flat one.

To make this reasoning precise, we can argue as follows:

Proof of Proposition4.12. Without a loss of generality we can assume that the base connection ∇0

chosen in Section3.2.2 is f -invariant. By (3.9) we have of course thatf acts trivially on the line
over ∇0. Moreover, with this assumption the action off , induced by pulling back connections, on
L2

1,δ(T
∗Σo ⊗ gP) (as in (3.4)) is linear. Take now a flat connection, represented by a smooth element of

L2
1,δ(T

∗Σo ⊗ gP), as well as all of itsf -orbit. These generate a complex finite-dimensional sub-vector

spaceV of L2
1,δ(T

∗Σo ⊗ gP), consisting of smooth elements. We think of this subspace as parametrising
a family of connections onΣo, and using the complex structure onΣσ, we take all of the associated
complex structures given by the (0, 1)-part of the connections. These all extend to the whole ofΣσ as
(quasi-)parabolic bundles, as in e.g. [60, §4]. This gives us now an algebraic family of parabolic bundles
parametrised byV, hence a morphismϕ from V intoMΣσ,P,Pi . As we had chosen the connection∇0 to
be f -invariant, the same will be true for the corresponding complex structure and parabolic structures,
and by using the presentation ofMΣσ,P,Pi as in Proposition4.8, we can represent this by an element
of Qpar

G that is invariant under the permutations induced byf . Finally, by Lemma4.9 and the lift of
f to the line bundle (k, ..., k, λ) we have chosen, we see that also the action off on the line over the
corresponding point inMΣσ,P,Pi is trivial. This implies that the two line bundles we can consider on
V are f -equivariantly isomorphic (since also linearizations of actions on affine spaces are unique up
to characters). If we now restrict to the subset ofV whose connections are flat, or equivalently to
the subvariety where the corresponding complex structuresare semi-stable, we can descend the line
bundles to the moduli spaceMα. This shows that the lifts over thef -orbit we have chosen are identical,
and as the moduli spaces are projective we can conclude that indeed the line bundlesLk

CS andLk
pd are

f -equivariantly isomorphic over the whole ofMα. �

We can therefore conclude this Section with
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Corollary 4.13. The isomorphism of Theorem4.4 between the Kähler quantisation of the moduli
space of flat connections using the Chern–Simons line bundleand the spaces of conformal blocks is
f -equivariant.

4.3 Further comments

Though the Chern–Simons and parabolic determinant bundlesare isomorphic, it should be noted that
they have a different nature. In [39] Freed stresses that Chern–Simons theory takes values in the CS
bundle, not in the determinant bundle. This is also reflectedin [40], where it is shown that when one
considers both of these bundles over the moduli space of Riemann surface, they differ by tensoring by
the Hodge bundle.

5 Main results

5.1 Fixed points and the CS functional

We now want to consider the mapping torusΣ f of Σ, which contains the linkL that is the mapping torus
of P. The complement ofL in Σ f is Σo

f , the mapping torus ofΣo.
Recall that the fundamental group ofΣo

f can be written as

(5.1) π f := π1(Σo
f ) = π1(Σo) ⋊ f Z =

〈
π1(Σo), η

∣∣∣ η−1γη = f∗γ for all γ ∈ π1(Σo)
〉

We shall denote byMΣ f ,L,α the moduli space of flat connections onΣo
f whose holonomy around the

i-th component of the linkL lies in the conjugacy class ofeαi (we orient the links compatibly with the
orientation ofΣσ, such that an oriented frame inΣ together with a vector in the positive ‘time’ direction
gives an oriented frame forΣ f ). Alternatively, one can think ofMΣ f ,L,α again as a moduli space of
representations ofπ f in K = SU(N).

We can restrict connections onΣo
f to Σo, giving rise to a mapr :MΣ f ,L,α →Mα, with the image of

this map in fact being contained in the fixed point locusM f
α
. As in [4, §7], one sees that over the part

of the fixed point locus consisting of irreducible connections, this map is a|Z(G)|-fold cover, though
we will not use this directly. The main points of relevance for us are the following: firstly, recall from
Lemma3.8 that given a∇A with [∇A] ∈ M f

α
, we can create a connectioñ∇A on the mapping torus

P f̃ thought of as a bundle overΣo
f . Of particular relevance is that this implies that CSΣo

f
(Ã+A0) only

depends on the restriction of a connection toΣo (using Lemma3.9). In particular the Chern–Simons
functional takes the same value on all components ofMΣ f ,L,α that restrict to the same component in

M
f
α
, the f -fixed point locus inMα.

5.2 Localization

We will use the following special form of the Lefschetz–Riemann–Roch theorem of Baum, Fulton and
Quart.

Theorem 5.1([15],[16]). Let M be a projective variety,L a line bundle over M, and f a finite order
automorphism of M that is lifted toL. Then we have

(5.2)
∑

i

(−1)i tr
(
f : Hi(M,Lk)→ Hi(M,Lk)

)
=

∑

γ

ak
γ ch(Lk

∣∣∣
Mγ ) ∩ τ• ◦ Lγ•(OM),
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wherech is the Chern character, the sum is over all the fixed point components Mγ of the action of f
on M, ak

γ is the number by which f acts onLk
∣∣∣
Mγ

, and

Lγ• : Keq
0 (M)→ K0(Mγ) ⊗ C

and
τ• : K0(Mγ)→ H•(M

γ)

are as defined in [15, §2] and [16, page 180] respectively. If a fixed point component Mγ is contained
in the smooth locus of M then

(5.3) ch(Lk
∣∣∣
Mγ ) ∩ τ• ◦ Lγ•(OM) = exp (kc1(L |Mγ )) ∪ ch(λγ

−1M)−1 ∪ Td(TMγ ) ∩ [Mγ],

whereλγ
−1M is as defined in [4, p. 31].

A general overview of the theorem and its ingredients was given in [5, Appendix B]; we refer to
this for further details.

We can now move on to

Proof of Theorem1.4. We apply Theorem5.1 to the f -equivariant line bundleLk
pd overMα. By The-

orem4.2 we have that the higher cohomology vanishes, hence the LHS of(5.2) is exactly (1.7). We
now combine (1.4), (1.5) and (1.6). In the RHS of (5.2) the ak

γ are by Lemma3.9 and the discussion
in Section5.1exactly equal toe2πikqγ , whereqγ is the corresponding element in CS(MΣ f ,L,α). Here we
use the interpretation of the Chern–Simons functional given in AppendixA; the correspondence with

Lemma3.9is given in LemmaA.2. IfMγ

α
is smooth we have by (4.2) that ch

(
Lk

CS

∣∣∣
M

γ

α

)
= exp

(
kΩ

∣∣∣
M

γ

α

)
,

and we shall below abuse notation and denote by [Ω] the cohomology class1kc1

(
Lk

CS

)
on all ofMα.

Hence we arrive at

Z(k)
N (Σ f , L, λ) = Det(f )−

1
2ζ

∑

γ

e2πikqγ exp
(
k [Ω]

∣∣∣
M

γ

α

)
∩ τ•(L

c
•(OMα

))

= Det(f )−
1
2ζ

∑

γ

e
2πikqγ

dc∑

h=0

(
1
h!

(
[Ω]

∣∣∣
M

γ

α

)h
∩ τ•(L

c
•(OMα

))

)
kh

 ,
(5.4)

establishing Theorem1.4, when combined with formula (5.3) above. �

5.3 Growth rate conjecture

Finally, we discuss the Growth Rate Conjecture for the linkL in Σ f , i.e. Theorem1.6 from the intro-
duction. In the closed case, this is a statement about dimensions of fixed point components in relation
to the dimensions of certain twisted de Rham cohomology groups (or, alternatively, group cohomology
groups) that come from the relevant mapping torus. The cohomology groups enter the picture as they
correspond to tangent spaces of the moduli spaces under consideration. In the parabolic case, the tan-
gent space at a given conjugacy class of aπ1-representation is no longer the full cohomology group but
ratherparabolic group cohomology(cfr. [20]), and so these will be the groups of interest to us.
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5.3.1 (Parabolic) group cohomology

Let us just briefly recall the construction of group cohomology in low rank. Letπ be any group. Aπ-
moduleis an abelian groupN with a left action ofπ. The elements ofN invariant under the action will
be denotedNπ. A cocycle onπ with values in Nis a mapu : π→ N satisfying the cocycle condition

u(gh) = u(g) + gu(h).

A coboundaryis a cocycle of the formg 7→ δm(g) := m− gm for somem ∈ N. The set of cocycles
is denotedZ1(π,N), and the set of coboundaries is denotedB1(π,N). We define the first cohomology
group ofπ with coefficients ofN as the quotient

H1(π,N) = Z1(π,N)/B1(π,N).

Notice that an element ofN satisfiesδm≡ 0 exactly whenm ∈ Nπ. We are thus led to define

H0(π,N) = Nπ.

We will now be interested in the caseπ = π1(Σo) – recall that we had given a particular presentation
of this in (2.2). Let π denote the fundamental group of a genusg surfaceΣ with n punctures.

Now, for everyρ ∈ Hom(π,K), π acts onk = Lie(K) by γ.v = Ad(ρ(γ))v, and we will denote by
Zi(π,Ad ρ) andBi(π,Ad ρ) the corresponding spaces of cocycles and coboundaries as described in the
previous section.

We say that a cocycleu ∈ Z1(π,Ad ρ) is parabolic if for every i = 1, . . . , n there is aµi ∈ k such that
u(ai ) = µi − Ad ρ(ai)µi . The space of parabolic cocycles will be denotedZ1

par(π,Ad ρ). Then [20, (1.1)]
says that for an equivalence classρ ∈ Mα (using the incarnation of (2.3)), the Zariski tangent space at
ρ is

T[ρ]M � Z1
par(π,Ad ρ)/B1(π,Ad ρ) =: H1

par(π,Ad ρ),

which we refer to as thefirst parabolic (group) cohomology.

5.3.2 Mapping tori and dimensions of fixed point components

Just like above, we can talk about the (parabolic) group cohomology ofπ f (note that in this section we
do not need to assume thatf is of finite order). That is, suppose we have an element of Hom(π f ,K)
that restricts toρ on π = π1(Σo), and that maps the newly introduced generatorη of π f – see (5.1) – to
g ∈ K. We shall denote this homomorphism by (ρ, g), we letH0(Σ f ,Ad(ρ, g)) be theπ f -invariant part
of k, andH1

par(Σ f ,Ad(ρ, g)) as above; note that it still makes sense to talk about parabolic cocycles by
regarding the boundary homotopy classesai from π as elements inπ f .

Lemma 5.2. We have

H1
par(π f ,Ad(ρ, g)) � image

(
H1

c(Σ f \ L, kad)→ H1(Σ f \ L, kad)
)
.

Proof. We will mirror the discussion in [20, p. 537]. The representation (ρ, g) : π f 7→ K induces a
linear representation ofπ f on k, and hence a flat connection on the adjoint bundle, and it is standard that
in this way we have

(5.5) H1
(
π f ,Ad(ρ, g)

)
� H1

(
Σ f \ L, kad

)
,
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sinceΣo
f is aspherical. By slicingΣ f at t = 0 and by choosing a closed neighbourhoodDi around each

marked pointpi , whose (oriented) boundaryS1
i = ∂Di is homotopic toai ∈ π ⊂ π f . If we let D̃i be the

corresponding neighbourhood of thei-th link component inΣ f , with boundarỹS1
i , then we have a map

Ξ : H1

Σ f \
⋃

i

D̃i
o
, kad

→ H1


⋃

i

S̃1
i , kad

 .

Like for surfaces, it follows from [61, Theorem 1] that under the identification (5.5) we have

H1
par(π f ,Ad(ρ, g)) � ker(Ξ).

Finally remark that in the long exact sequence for pairs

. . . −→ H0


⋃

i

S̃1
i , kad

 −→ H1

Σ f \
⋃

i

D̃i
o
,
⋃

i

S̃1
i , kad



−→ H1

Σ f \
⋃

i

D̃i
o
, kad


Ξ
−→ H1


⋃

i

S̃1
i , kad

 −→ . . .

we can replaceH1
(
Σ f \

⋃
i D̃i

o
,
⋃

i S̃1
i , kad

)
by H1

c

(
Σ f \ L, kad

)
and likewiseH1

(
Σ f \

⋃
i D̃i

o
, kad

)
by

H1
(
Σ f \ L, kad

)
. �

For any f ∗-fixed point [ρ] ∈ Mα with g as before, one verifies thatf acts onH1
par(π,Ad ρ) by

mappingu to γ 7→ ad(g)u( f∗γ). We denote this action also byf ∗.

Proposition 5.3. Let [ρ] ∈ Mα be a fixed point of f∗, and let[(ρ, g)] ∈ MΣo
f ,L,α

for a suitable g∈ K.

Then the1-eigenspace E1( f ∗, ρ) of the action of f∗ on T[ρ]Mα � H1
par(π,Ad ρ) has dimension

(5.6) dimE1( f ∗, ρ) = dimH1
par(π f ,Ad(ρ, g)) − dimH0(π f ,Ad(ρ, g)).

Remark5.4. In the non-parabolic case this was proven using a Mayer–Vietoris sequence (cfr. [4, §7]).
As we could not find any corresponding reference in the parabolic case, and as we in fact only need a
small part of the exact sequence, we take a slightly different approach here, based on an explicit and
concrete description of an exact sequence inspired by the Wang exact sequence used in [5, §5.1]. This
is presented explicitly in terms of generators ofπ f , which is the reason we work with (parabolic) group
cohomology rather than twisted de Rham cohomology.

Proof of Proposition5.3. We claim that there is an exact sequence

0 −→ H0(π f ,Ad(ρ, g))
ϕ0

−→ H0(π,Ad ρ)
µ0

−→ H0(π,Ad ρ)

δ
−→ H1

par(π f ,Ad(ρ, g))
ϕ1

−→ H1
par(π,Ad ρ)

µ1

−→ H1
par(π,Ad ρ) −→ · · · ,
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where the maps are the following:

ϕ0(v) = v,

µ0(v) = v− Ad(g)v,

δ(v)(γ) = uv(γ) =


0, γ ∈ π,

v, γ = η,

ϕ1(u) = u|π,

µ1(u) = u− Ad(g) ◦ f ∗u.

Here,
(Ad(g) ◦ f ∗u)(γ) = Ad(g)u( f∗γ).

Assuming that we have this exact sequence, the Proposition then follows: first of all, the dimension of
the 1-eigenspace of Ad(g) ◦ f ∗ on H1

par(π,Ad ρ) is exactly the dimension of kerµ1, and one finds that
this equals the right hand side of (5.6) by applying exactness for each of the first six maps. For this, the
precise expressions for each of the maps are not needed.

Let us ensure that all of the maps are well-defined and that indeed the sequence is exact. First of
all, if v ∈ k is π f -invariant, thenv ∈ k is π-invariant, soϕ0(v) ∈ H0(π,Ad ρ). Likewise, ifv is π-invariant,
then so is Ad(g)v (use the action off∗γ on v), and the first exactness claim follows asv is π f -invariant
if and only if v = Ad(g)v.

Thatϕ1 is well-defined is obvious. That imϕ1 = kerµ1 boils down to showing thatu = Ad(g)◦ f ∗u
for u ∈ H1(π f ,Ad(ρ, g)), which on the other hand follows by the cocycle condition,as

(Ad(g) f ∗u)(γ) = Ad(ρ(η))u( f∗γ) = u(η f∗γ) − u(η)

= u(γη) − u(η) = u(γ) + Ad(ρ(γ))u(η) − u(η)

= u(γ) − δ(u(η))(γ).

At this point, we should note that the same calculation also shows that ifu is parabolic, then so is
Ad(g) ◦ f ∗u, and one thus finds thatµ1 is in fact well-defined.

To see thatδ is well-defined, one readily checks thatuv(γη) = uv(η f∗γ) for γ ∈ π. It is clear that
im δ ⊆ kerϕ1 and that imµ0 ⊆ kerδ. Assume now that [uv] = 0. That is, that there exists aµ ∈ g such
that uv(γ) = µ − Ad(ρ(γ))µ for all γ ∈ π f . Sinceuv(γ) = 0 for γ ∈ π, we see thatµ ∈ H0(π,Ad ρ).
Moreover,v = uv(η) = µ − Ad(ρ(η))µ, and so kerδ ⊆ im µ0. Finally, to see that kerϕ1 ⊆ im δ suppose
thatu(γ) = µ−Ad(ρ(γ))µ for someµ ∈ g and allγ ∈ π, and letv = u(η)−(µ−Ad(ρ(η))µ). One then finds
by application of the cocycle condition thatv is π-invariant, and obviously [u] = [uv], sou ∈ im δ. �

We can link the groupH1
par(π f ,Ad(ρ, g)) with the coefficients occurring in the statement of the

Growth Rate Conjecture1.2and finally conclude with

Proof of Theorem1.6. It suffices to remark that it follows from (5.4) that dγ equals the dimension of
γ-component ofMα, which we claim for generic [ρ] of that component equals the dimension of the
1-eigenspace ofT[ρ]Mα. Hence the result follows from Proposition5.3.

To see the claim, letMγ be a fixedf ∗-fixed component, let [ρ] denote a smooth point inMγ, and let
g be as before. We will show thatT[ρ] Mγ

� E1( f ∗, ρ).

Let α 7→ [ρt(α)] = [etu(α)+O(t2)ρ(α)], α ∈ π, denote a smooth path through [ρ], completely contained
in Mγ. The tangent vector att = 0 is u, which in general is an element ofH1

par(π,Ad ρ), and we claim
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thatu ∈ E1( f ∗, ρ). For eacht, choosegt ∈ K so thatgtρt( f∗α) = ρt(α)gt, g0 = g. Differentiating this
equation and lettingt = 0, we find that

ġ0ρ( f∗α) + gu( f∗α)ρ( f∗α) = u(α)ρ(α)g + ρ(α)ġ0.

Letting m= ġ0g−1 ∈ Lie(K), this tells us that

u(α) = Ad(g)u( f∗α) + δm(α).

On the other hand, we claim that mappingu ∈ E1(ρ, f ∗) to d
dt

∣∣∣
t=0 [etuρ], we end up an element inT[ρ] Mγ.

Lettingρt = etuρ, we find that to first order int and for allα ∈ π,

ρt( f∗α) = et Ad(g−1)u(α)ρ( f∗α) = Ad(g−1)(etu(α))ρ( f∗α)

= Ad(g−1)(etu(α)ρ(α)) = Ad(g−1)ρt(α),

which shows thatddt

∣∣∣
t=0 [etuρ] ∈ T[ρ] Mγ.

�

A The Chern–Simons functional of manifolds with links

A.1 Connections on3-manifolds with links

In this section, we discuss how to make sense of Chern–Simonsvalues for flat connections on 3-
manifolds containing coloured framed links. The Chern–Simons functionals will be defined an the
moduli space of all flat connections on the link complement, but will depend on the framing of the link.
Throughout, ¯α = (α1, . . . , αn) denotes a tuple of elements in the Weyl alcove (at level 1), not necessarily
in the weight lattice.

We begin by choosing a tubular neighbourhood around each link componentLi, with coordinates
(r, θ1, θ2), such that (r, θ1) are polar coordinates in the normal direction at each point, and such that
θ2 parametrisesLi. We want this choice to be adapted to the framing, in the sensethat the framing is
determined by the radial direction (1, 0, θ2). Consider the setAst of smooth connections onX\L, which
are of exactly the following form in these neighbourhoods oftheLi :

∇ = d + ξi,1dθ1 + ξi,2dθ2.

Of course we also want that exp(ξi,1) lies in the conjucacy class of exp(αi) we have associated to
L. We observe that the space of smooth gauge transformationsGst, which are constant in the neigh-
bourhoods of each componentLi acts onAst. We observe that any flat connection onX \ L with the
required holonomy aroundL is gauge equivalent to one of these, e.g. by using the equivalence of the
moduli space of flat connections on a tubular neighbourhood of Li minusLi is given by representations
of π1 of that neighboorhood and that one can get all representations from connections of the above
form. We also observe that two flat such connections are gaugeequivalent iff they are equivalent under
Gst. Now it is clear that the Chern–Simons functional is well defined onAst, since the support of the
Chern–Simons 3-form has compact support and the functionalis invariant mod integers underGst.
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A.2 The mapping torus case

Now, we will see that the Chern–Simons values we used in Section 3 are actually the Chern–Simons
values introduced above.

More precisely, assume that we are in the setup of Lemma3.9. That is, letf : Σ→ Σ be an element
of Diff+(Σ, z, α) (as in Section3.3.1). In particular, f preserves the disjoint unionD of the disksDi

around the marked points inP. Assume that [∇A] ∈ Mα is a fixed point off and letg ∈ G0,δ such that
∇A

g = f ∗∇A. Let gt be a path iñG0,δ with g0 = g, g1 = e. Now, choose a proper subsetD1/2 ⊆ int(D),
each component containing a marked point and assume furthermore, without loss of generality, that
gt |D is the identity for allt.

Let ∇̃A be the connection onΣ f = [0, 1] × Σo/ ∼ given by∇̃A|Σo×{t} = ∇
gt
A . Choose a smooth cut-off

functionh : Σo→ [0, 1] with h|D1/2 = 0, h|Dc = 1, and defineh : Σ f → [0, 1] by h(t, x) = h(x).

As in Section3, it makes sense to talk about the Chern–Simons value of∇̃A independently of the
previous discussion.

Lemma A.1. Write Ã = π∗A andÃ0 = π
∗A0. Then

CS(̃A+ Ã0) = CS(hÃ+ Ã0).

Proof. It suffices to notice that CS((̃A+ Ã0)|[0,1]×D) = CS((hÃ+ Ã0)|[0,1]×D) = 0. This is the case as for
both connections, thet-derivative vanishes by choice ofgt. �

Now, everything has been set up for the following result to hold.

Lemma A.2. By taking the natural tubular neighbourhood N(L) = [0, 1] × D1/2/ ∼ of L, adapted to
the framing by definition, then(hÃ+ Ã0)|[0,1]×Dc

1/2
extends to a connection inAst, whose Chern–Simons

functional, as defined in SectionA.1, agrees with the Chern–Simons functional of̃∇A as defined in
Section3.

B Dehn twist action

As we noticed in Remark3.12, in general Dehn twists around marked points will act non-trivially on the
Chern–Simons line bundle, even though they act trivially onthe base moduli space. In this section, we
evaluate the lifted action of such a Dehn twist explicitly, and as a corollary we show that the Asymptotic
Expansion Conjecture also holds for mapping tori for these Dehn twists.

Let pi ∈ P be a given marked point with coordinate neighbourhood (Di , zi) as in Section2, so that in
particular (τi , θi) denote coordinates ofDi \ {pi}. Choose a smooth increasing functionf : R → [0, 2π]
with the property thatf (0) = 0, f (1) = 2π, f ′(0) = f ′(1) = 0. Letαi denote the Lie algebra element
whose exponential is the fixed holonomy aroundpi . We assume the conditions of Theorem3.6are met,
and in particular thatλi = kαi is a co-weight.

By a Dehn twist aroundpi we mean the diffeomorphism (or its mapping class)Ti : Σo → Σo

defined to be (τi , θi) 7→ (τi , θi + f (τi )) on Di \ {p} and the identity everywhere else. As a map of
punctured surfaces,Ti is isotopic to the identity onΣo and thus acts trivially onMα.

Proposition B.1. For every point[∇A] ∈ Mα, the map induced by T∗i onLk
CS

∣∣∣
[∇A] is given by multipli-

cation byexp(−πik〈αi , αi〉) = exp
(
−πi|λi |

2

k

)
.
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Proof. In this case it suffices to calculate the Chern–Simons functional for ag ∈ Gδ that matches a
specific diffeomorphism realizing the Dehn twist, and a suitable connection ∇A. Indeed, in general the
cocycleΘk may be ill-defined when the Chern–Simons functional does notconverge forg ∈ Gδ \ G0,δ,
and then the full two-step approach to constructing the linebundle, as in [33, §5], is required. When it
is well-defined however (as will be the case below), the reasoning as in [33, Lemma 5.4] goes through,
and we explicitly get the lift ofg to the fibres of the trivial bundle over∇A and∇g

A ∈ Aδ. Since the lift
(3.9) of the diffeomorphism is trivial on the fibres, we find that the Dehn twistacts by the inverse of the
value the cocycle on the fibre ofLk

CS over [∇A] ∈ Mα.
Let (τ, θ) = (τi , θi). Without loss of generality, we can assume that∇A takes the formd + αi dθ on

Di . Indeed, everyG0,δ-orbit contains a smooth connection [60, Theorem 6.12], and every smooth flat
connection can be put in this form [33, Lemma 2.7]. We will now assume such a flat∇A chosen. We
introduce for eacht ∈ [0, 1] the mapft : [0,∞) × R/(2πZ)→ [0,∞) × R/(2πZ) given by

ft(τ, θ) = (τ, θ + (1− t) f (τ)),

extending trivially to a mapft : Σo → Σo. As in Section3.3.2, we get gauge transformationsgt such
that

f ∗t ∇A = ∇
gt
A ,

the only difference being that thegt are now inGδ but not inG0,δ. Since f0 = T we have∇g0
A = T∗∇A.

Just as previously we now consider the gauge transform ˜g on the trivial bundle over [0, 1] × Σo defined
by thegt, and we apply it tõ∇A. It is straightforward to see that onDi,

∇̃A
g̃
= d + αi dθ + αi (1− t) f ′(τ)dτ,

and hence we need to apply the Chern–Simons functional toB = αi dθ + αi (1 − t) f ′(τ) dτ on Di. Of
courseB∧ B∧ B = 0, and by direct calculation we find

B∧ dB= −〈αi , αi〉 f
′(τ) dt ∧ dτ ∧ dθ.

Now sincegt is trivial outsideDi we can omit all but [0, 1] × Di from the integrand, and hence we have

CS(B) =
−|αi |

2

8π2

∫ ∞

τ=0

∫ 2π

θ=0

∫ 1

t=0
f ′(τ) dt ∧ dτ ∧ dθ =

−2π|αi |
2

8π2

∫ ∞

τ=0
f ′(τ) dτ =

−|αi |
2

2
.

This givesΘk(∇A, g0) = exp
(

2πik|αi |
2

2

)
, from which we finally conclude thatT acts by

exp
(
−πik|αi |

2
)
= exp

(
−πi|λi |

2

k

)

on the fibres ofLk
CS over all ofMα. �

RemarkB.2. Whenλ(k) = kα ∈ Λ(k)
K , this agrees with the action ofTi in conformal field theory; here,Ti

acts on conformal blocks by multiplication by aλ-dependent root of unityT(k)
λλ

, an entry of the so-called
T-matrix, cf. e.g. [42], [46].

Proposition B.3. The Asymptotic Expansion and Growth Rate Conjectures hold for (Σ f , L) obtained
from mapping tori of f∈ 〈Ti | i = 1, . . . , n〉 with λ̄(k) as in Corollary1.5.
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Proof. That the quantum invariants in this case have asymptotic expansions of the desired form follows
from RemarkB.2. That the phases occuring are the relevant Chern–Simons values follows from the
proof of PropositionB.1; see in particular [42, App. A].

As follows also by RemarkB.2, the growth rate of the quantum invariants is the growth rateof the
spaces of conformal blocks, which on the other hand is the dimension of the moduli space, i.e. the
dimension of the fixed point set ofT, so the Growth Rate Conjecture follows from Proposition5.3 as
in the proof of Theorem1.6. �
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