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Abstract

We state Asymptotic Expansion and Growth Rate conjectuweshie Witten—Reshetikhin—
Turaev invariants of arbitrary framed links in 3-manifgldsid we prove these conjectures for the
natural links in mapping tori of finite-order automorphisofanarked surfaces. Our approach is
based upon geometric quantisation of the moduli space abpéic bundles on the surface, which
we show coincides with the construction of the Witten—R&khan—Turaev invariants using con-
formal field theory, as was recently completed by Andersehldeno.

1 Introduction

In this paper we study the asymptotic expansion of the WiRashetikhin—Turaev (WRT) invariants of
certain 3-manifolds with links, building on the work, [5], which also used the geometric construction
of the WRT-TQFT via the geometric quantisation of modulicgmof flat connections on surfaces as
first considered by Axelrod—Della Pietra—Wittetd], Hitchin [44] and further explored by the first
named author to prove asymptotic faithfulne8k [For references concerning the study of the large
level asymptotics of the WRT quantum invariants of closeddhifolds see the references #j.[ Let

us here first present a generalisation of the Asymptotic &sipa Conjecture to pairs consisting of a
general closed oriented 3-manifold together with an eméeédudiented framed link, labelled by level
dependent labels.

The Asymptotic Expansion and Growth Rate Conjectures

The quantum invariants and their associated Topologican@um Field Theories were proposed in
Witten's seminal paper7P] on quantum Chern—Simons theory with a general compactlsisimply-
connected Lie groug, and subsequently constructed by Reshetikhin and Tukwp, 77] for K =
SU(2) and then foK = SU(N) by Wenzl and Turaev in76, 75]. These TQFTs were also constructed
from skein theory by Blanchet, Habegger, Masbaum and Vog§24, 25] for K = SU(2) and for
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K = SU(N) in [26]. We will denote these TQFTs fdt = SUN) by Z!. The WRT-TQFT associated
to a general simple simply-connected Lie grdGmwill be denoted byzg‘), e.g.ZI(\Ik) = Zg%(N).
The label set of the WRT—TQFZ&‘) theory is given as

(1.1) AY = {2eP.10< (0,0 <k,

whereP, is the set of dominant integral weightstpthe Lie algebra oK. Here( , )is the normalized
Cartan—Killing form defined to be a constant multiple of thert@n—Killing form such thagg, 6) = 2,

for the longest roob of t. We will use( , ) at various places throughout the text to identify weights
and coweights.

Let X be an oriented closed 3-manifold and lebe a framed link contained K. For notational
purposes pick an ordering of the componentd.of L; U... UL, Let ﬁ(k) = (/l(k), . ..,Aﬂ‘)), be a
labelling of the components &f which isk-dependent (possibly only farforming a sub-sequence of
N). In fact, throughout this paper we will restrict to the slmpxampleli(k) = JAjsfor k-independent
A € AE\,"O), with k = slg for some fixedkg. After identifying thed; with elements in the Cartan algebra
of su(N) using( , ) we denote the conjugacy class in $l)containinge' asc;.

We conjecture that the asymptotic expansion of the WittesHetikhin—Turaev invariant oK(L,
E(k)) associated with the quantum groUp(a) at the root of unityg = €#%/¥, k = k + h", k being the
level, hY the dual Coxeter number, andhe Lie algebra of the complex reductive grokip has the
following form.

Conjecture 1.1 (Asymptotic Expansion Conjecture for tripleX, (., c)). There exist functions af =
(C1,...,Cn) (depending on 1), d;j(C) € Qand b,(C) e Cforr = 1,...u;(©), j = 1,...,m(C), and

aEr(E) eCforj=1,...,v(C), p=1,2,..., such that the asymptotic expansion ﬁ?(Z(, L,ﬁ(k)) in the
limit k - oo is given by

V(©) _ U@ 0
zOx LAY ~ Y ek N kO, () [1 + (C)k—p/Z],
j=1 r=1 p=1

where q, ..., Qyg are the finitely many gferent values of the Chern—Simons functional on the space of
flat K-connections on X L with meridional holonomy around;lcontained ingi=1,...,n.

Here~ meansasymptotic expansionin the Poincaré sense, which means the following: let
d(6) = max(d, ()

Then for any non-negative integBr there is &p € R such that

o o ou@ P _ o
ZOX L1 - ) ik N kdiOby () {1 vy el (E)k‘p/z] < Cpkd©®-P-1

=1 r=1

p=1

for all levelsk that occur. Of course such a condition only puts limits on ldrge k behaviour of
z0x. L, 2Y).

Note that a priori, the Chern—Simons functional of a madifelith boundary defines a section
over the relevant moduli space of flat connections on the danyn However, by specifying holonomy

conditions on the boundary as in Conjectdré, the framing structure of the link allows us to make
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sense of the Chern—Simons functional as real valued modtdgers. This is discussed in more detail
in AppendixA.
Let us introduce
dj(©) = mraxd ir (C).

For a flatK-connectionA on the 3-manifoldX \ L with holonomy around.; given byc, i =
1,...n,denote b)h‘A the dimension of theth A-twisted cohomology groups of \ L with Lie algebra
codficients. In analogy with the growth rate conjecture statgdjinve offer the following conjecture
for a topological formula fod;(C).

Conjecture 1.2(The Growth Rate Conjecture).et Mq‘ - be the union of components of the moduli
space of flat K-connections on\{_, with holonomy around iLlgiven by ¢, i = 1,...n, and which have
Chern-Simons valugjgThen

hg).

1
di@© = = h
J 2V A ( V.par

XL,c
wheremax here means the maximum valu@pgr— hg attains on a non-empty Zariski open subset of

MY, sonwhich - hJis constant.

Here hO is the dimension of the 0-th cohomology with twisted fméents for the local system
induced by the flat connectiovi on the adjoint bundle, and, followin@(], we deflnehV par 1O be the
dimension of the image of the 1-st cohomology with twistedfleccients and compact support of this
local system in the usual 1-st cohomology with twistedfioients.

Links in mapping tori

We will in this paper prove these conjectureslrﬂ? in the situation where the 3-manifoXladmits the

structure of a finite order mapping torus over a closed agistirface& of genus> 2, and the oriented
framed linkL is induced from marked points on the surface in the followvay. Letf: ¥ —» X be a

diffeomorphism oE. The mapping toruX = X; is defined as

(1.2) X=Ex1)/[(x1)~ (f(x).0)]

with the orientation orX given by the product orientation, and with the standardntaigion on the unit
interval | = [0,1]. We consider special links that wrap the natural fibre direction K. Let® c X
denote a finitef -invariant subset of, i.e. f(P) = £. Then,

(1.3) L=®xI1)/[(x 1)~ (f(x),0)]

Given a labelling? of L we get induced a labelling of the poirfson =.

The two dimensional part of the WRT-TQFT we are considermi@ imodular functor. For the
axioms of modular functor see e.g77], [78], [7, 8, 9. A modular functor is a functor from the
category of labelled marked surfaces to the category ofttirhensional vector spaces.

A marked surface is the following datunx: = (=, P, V,W), whereX is a closed oriented surface,
P ={p1,..., Pn} is a set of points ox, V is a set of ‘projective’ tangent vectors at the marked points
(i.e. non-zero elements GTpIE/R+) andW is a Lagrangian subspace of the first real conomology. of
A labelling of Zisamapl : # — A : pi = 1, whereA is a finite label set specific to the modular
functor in question. From now on we will assume tlias an automorphism of the labelled marked
surface E, ).



Note that the link inside the mapping torus of an automorphif a marked surface naturally
inherits a framing. From the general axioms for a TQFT we have

(1.4) ZQ(2r. L) = tr (ZQ(F) : ZKE. 1) - ZOE. D).

We shall in this paper use the gauge theory constructioneofelstor spacéﬁ‘)(i 1) that the WRT-

TQFTZE‘) associates to a labelled marked surfagel). Let us from now on in this paper specialise to
the case&K = SU(N). This allows us to use the work of Andersen and Uena| 9, 6] as follows: if
(VL « is the vacua modular functor constructed 7 then the main result of] states

Theorem 1.3(Andersen & Uena) For anyAf\'l‘) =AY -labelled marked surfac&, 1), there is a

. _ SU(N)
natural isomorphism o o
Ink: ZWE.2) > Vi, E D)

which is an isomorphism of modular functors.

By Definition 11.3 in [7], (VTN’k(i 1) is the space of covariantly constant sections of a bundle

equipped with a flat connection over the Teichmdller spagef the marked surfacg (see [, §3]
for a discussion of’5). Further, by Remark 11.4 o], we have for any point- in 75 (giving rise to
the Riemann surfacg,) that

T Ty ~ (U Vs i
V@) = (V) 2(Z) © Vi Co P)-

Here/ is thecentral chargeof the Wess—Zumino—Novikov—-Witten (WZNW) conformal fieltkbry,

i.e. )
_ kdim(K)

k+hv '’
((V;b)‘%év(i(,) is the fibre overr of a certain line bundle overs (depending oW), defined in Theorem
11.3 of [1], and(VTN ki(Eg, P) is the space of vacua or conformal blocks for the WZNW modettie

curvex, (see Sectior).
From now on we will assume thdtis of finite orderm. Then there exists- € 75 which is a fixed

point for f. Let us also denote bf the element{, 0) in the extended mapping class grouEofThen
by Remark 11.4 inq] we have that

(1.5) trZ8(h) = tr (£ (V) () - (Vi) ()

A (V] (0 VE (EeP) = V] (EeP)).
Let use the notation
(1.6) Det) 3¢ = tr(f* : (Vi) 24(Z,) = (V) #(Z,).

The factor Det()‘%é“ was computed explicitly in4, Theorem 5.3] in terms of the Seifert invariants of
X. We shall denote for short

i _ vt Lt i
tr ((VN’kj(f)) —tr ((VN’kj(f) VL CnP) >V, P)).



In order to compute this trace, we will need an alternate rijgtfan of the vector spac@/r\l kj(E(,,SD)

and the actiorﬂ/L kj(f) of f onit. Indeed, one can consider the algebraic stigk p p, of (quasi-)

parabolic bundles oB,, (i.e. algebraickc = G-bundles orE, with a reduction of structure group to
the parabolic subgroupB; at the marked points), and through a presentation of thek stevolving
the loop group ofG, one can identify the spaces of conformal blocks with spafesctions of line
bundlesL(kj) on this stack, as was shown 59, 52]. Moreover, each of these line bundles determines
a stability condition on the stack, and the substack it ¢eleas a so-callegood moduli spagewhich
is a variety, a coarse moduli space for the moduli problerariged by that line bundle. In turn these
moduli spaces of (semi-)stable parabolic bundles can bifel with gauge-theoretic moduli spaces
of flat connections on the punctured surface# with prescribed holonomy around the punctures.

We shall denote these moduli spaces\és_» 5, or Mg for short; herex is %. From the gauge the-
ory side they come equipped with a natural symplectic strectand one can construcpee-quantum
line bundIeLES for them, from (classical) Chern—Simons theory. In a slétglense this can be identi-
fied with the polarising line bundle from the algebro-geaigberspective, which we shall denote by

k .
Loy
Theorem. We have
kK ~ pk
LCS = Lpd'
Finally all of this combines under some minor conditione(Sections8 and4) to give

Theorem. There is a natural isomorphism, canonical up to scalars,

i ~ HO k
Vi (o) = HOMa, LE9).
In Sections3 and4 we will construct an explicit action of on both of the line bundles occurring,
covering its action opMz and establish that this isomorphism is equivariant. Frasile get that

(L.7) tr((VL M(f)) = tr (£ HOMg, L9 — HOMg, L59).

Let Mz, | z be the moduli space of flat connectionsXn\ L whose holonomy aroung lies in the
conjugacy class containirgfi. We have the following main theorem of this paper.

Theorem 1.4.For A = (14,...,A,) with all 4; € AE\'I‘), there exist unique polynomials, Bf degree d,
such that _ . .
Z®(s1. L) = Det(f) 2 ) ek P, (1/k).
Y

Here the sum is over all componentof M;, the f-fixed point locus oMz. The number gis the
value the Chern-Simons functional takes on any elemeMyQf, 5 restricting to the corresponding
component oMg. If the componeny is contained in the smooth locus of the moduli spAdethen

Py(K) = exp &Q |y) U ch( ; Mz) ™t U Td(T ) N [MZ],

where Q is the Kahler form onMg, and /lfl/\/(a is a certain element in the K-theory d#l;. In
particular in the cases wherdz is smooth we get a complete formula for the asymptotic eipans
of Z|(\|k)(2f, L, 1), where each cggcient of a power of k is expressed as a cohomology pairing en th
moduli spaceMg.



We will see in Sectiorb.1 below that indeed the value the Chern—Simons functionastaln a
connection inMs, | z depends only oty. The theorem is proved in a way similar to the proof of the
main theorem of4], namely by applying the Baum—Fulton—MacPherson—Quaralisation theorem
to compute {.7) as a sum of contributions from each component of the fixettyar This is then
combined with an identification of the traces on the fibreshefline bundleﬂéS over each of these
components. Itis exactly here that the use of the buﬁ@tgzcoming from Chern—Simons theory comes
in, as this part of the contribution can be expressed as thgri of the classical Chern—Simons form
over the mapping torus. See Sectwfor the details. Our main theorem has the immediate follgwin
corollary:

Corollary 1.5. The Asymptotic Expansion Conjecture holds for the p@frs= X, L) obtained from
finite order mapping tori and for any ¥ sky-dependent labelling (s N)

—(K -
/l()=k/l,

whered = (11,...,A,) and all A; € Ag\lk") for some fixed ke N.

By further analysing dimensions of parabolic twisted cobtogy groups (see Sectidn3), we get
the following theorem. L(—:‘JZ\/@f |- be the union of components @ty | 7 whose connections restrict

to lie in they-component of/\/(;.

Theorem 1.6. If a given connected componentontains smooth points fromrz, then

1
== max (ht_. -h9),
dy VEMgf.L,H ( V. par V)

wheremax here means the maximum valu@rﬁr - hg attains on a non-empty Zariski open subset of

Mgf Lz on which | oar ™ h is constant. In particular, the Growth Rate Conjecture Isofdr pairs of
manifolds and linkgX = X¢, L) which are obtained as finite order mapping tori, when all cected

componenty contain smooth points.

Outline and further comments

The rest of this paper is organised as follows: in SecBiove give a quick introduction to the moduli
spacesMg of parabolic bundles or flat connections on punctured sesfato set up notations. We
also give a proof of the simply-connectednessAdf. Section3 is entirely devoted to th€hern—
Simons line bundlen Mz — this line bundle arises from classical Chern—Simons thaod is gauge-
theoretic/ symplectic in origin, giving a pre-quantum line bundﬁ—éS for the canonical symplectic
form on Mgz. We study how dfeomorphisms act on this line bundle, and in fact we do a lititee:
we construct a lift of the action of the relevant mapping €lgsoup to the total space of this bundle.
In Section4 we switch to an algebro-geometric or representation-#teopicture, and discuss the
parabolic determinant bundlen Mg, whose sections give rise to the spaces of conformal blocks.
Again we exhibit the lift for the action of a (complex) autorpbism of the Riemann surface to the total
space of this bundle, and using known results on Quilleniosetve show that the Chern—Simons and
parabolic determinant line bundles are indeed equivdyiastmorphic. In the final Sectiob we put
the strategy of4] to work to establish the Asymptotic Expansion Conjectureliihks in finite-order
mapping tori by using the Lefschetz—Riemann—Roch theofdBaom, Fulton and Quart on the moduli



spacesMg. We conclude with a discussion of parabolic group cohomptbgt establishes the Growth
Rate Conjecture in our situation.

We should mention at this point a certain restriction we havinpose: as we are relying heavily
on the paper33] for the construction OTEI((:S, we are forced to restrict ourselves to the situation where
the aj, or equivalently thel;, areregular, that is to say, they are contained in the interior of the Weyl
chamber (this is equivalent to working withll flagsin the picture of parabolic bundles). Though
the statements of their results are no doubt true in greaeerglity, Daskalopoulos and Wentworth
need to impose this restriction for technical reasons onnalbrew of occasions. We will therefore also
impose this restriction from Sectidh2.2through Sectior8.3.2 as well as anywhere later on where
L& oceurs.

We would like to remark that we completely link the gaugestietic definition of the quantum
invariants with the construction of the modular functorngsconformal blocks. Through the work
of Andersen and Uend3| 7, 9] the latter is known to be equivalent to the original constians of
Reshetikhin—Turaev.

As a quick look at the bibliography will betray we are drawungpn a rather large body of literature
to establish our results, and necessarily this paper iegokarious perspectives andfdrent technical
tools (from Sobolev spaces to algebraic stacks and Kac—lbael algebras). In particular we are
crucially using the paper&)], [33], [52], [20] and [21] together with [, 8, 9, 6]. To the extent possible
we have tried to use notations in line with those authors,imgeneral we have tried to strike a balance
between giving complete references to the literature, &oitlimg an overload of translations between
notational conventions in our exposition.

An obvious further question following on our results is tdedenine the coficients in the Asymp-
totic Expansion Conjecture , and to give a topological jptetation of them, as was done in the case of
mapping tori without links in%]. We intend to take this up in future work.

Acknowledgements

The authors wish to thank Indranil Biswas, Christoph Soriftichael Thaddeus, and in particular
Richard Wentworth for helpful conversations.

2 Moduli spaces of parabolic bundles and flat connections

Let X, be a compact Riemann surface of gegus 2, and®? = {pi,..., pn} & collection of distinct
marked points ox,.. Below we shall denote with the smooth surface underlyiriy., and withz° the
punctured surfac® \ £. A quasi-parabolicstructure on a holomorphic vector bundie— X of rank
N is a choice of a filtration of its fibres over each of the point®i

E|pi = Ei,1 2 Ei,2 2.2 Ei,ri 2 Ei,ri+1 = {0}

Its multiplicities arem; ; = dim(E; j/Ei j.+1). If all multiplicities are 1 for a given, or equivalently
ri = N, then the flag ap; is said to bdull; in general the tuplenG 1, ..., m,,) is said to be thélag type
at p;. Alternatively, this data determines a reduction of suitestgroup for the frame bundle & to
the corresponding parabolic subgroups of BLT) at the marked points (below we shall freely switch
between the equivalent vector bundle and principal bunidieies).

A parabolic bundle is further equipped wiplarabolic weightsy = (a1, ..., an) for all flags, i.e. a
choice of real numbers,

(2.1) @ = (ai1,...,aiy) With O0<ai1<ai2<...<aj; <L
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Note that often in the literature the inequalities betwew®n ; for various j are asked to be strict (as
above), but later on it will be convenient for us to relax tbadition. One can think of each of the
parabolic weightsy; (with each of they; ; occurring with multiplicitym ;) as living in the Weyl alcove
in the Cartan algebra of SN{.

Theparabolic degreef E is pdegE) = degE) + ¥ j @i jmj, and itsslopeis

_ pdegE)
HE) = =E

Any sub-bundleF of E inherits a canonical structure of parabolic bundle its#ilé (same is true for
quotient bundles). We can therefore defti¢o be (semi-)stable if, for every sub-bundfe we have
that

u(F) S H(E).

For purely numeric reasons, the set of parabolic weightsafgiven flag-type for which strictly
semi-stable bundles can exist consists of a union of hypeesl in the space of all weights (and indeed,
for those weights strictly semi-stable bundles do existe aNall refer to weights in the complement
of these hyperplanes ggneric Given any rank, degree, flag type and choice of weightsethgists
a coarse moduli spacky_pz, or Ny for short, of (S-equivalence classes of) semi-stable parabolic
bundles §7].

By taking the determinant, one obtains a morphism fregto the Picard group of. The moduli
space of semi-stable parabolic bundles with trivial deteamt My, 5, or Mgz for short, is the fibre of
the trivial line bundle under this morphism (we shall focusMj in the sequel). Botivg and Mg are
normal projective varieties. Their singular locus corssistactly of the semi-stable bundles (with the
exception of the fixed-determinant non-parabolic rank 2 gagenus 2).

We note that when considering bundles with trivial deteamir(or, equivalently, SIN, C) principal
bundles), conventions in the literature vary about the ftsigOne can ask for thg j to satisfy the same
inequality above plus the condition that «; jm j € Z or, corresponding to a standard representation
for the Weyl alcove of S, C), for ai1 < aj2 < ... < ajy, With @iy, — @iz < 1and}ja;jm; = 0.
We shall use the latter convention, in particular this implthat the parabolic degree of our bundles
vanishes.

There exists a homeomorphism (which is @bmorphism on the smooth locus) betweely and
the moduli space of those representationz¢£°) into SUN) where the loop around each of tipe
gets mapped to the conjugacy class of the exponential ofahabplic weights%7]. Indeed,z1(=°)
admits a presentation

(22) n1(2°):<A1,...,Ag,Bl,...,Bg,al,...,an

g n
[ﬁmaﬂim=q.
1 j=1

If we fix the conjugacy classes,...,c, € K = SU(N), each containing® respectively (where we
abuse notation and let be the diagonal matrix with entriés; j, each occurring with multiplicityn j),
then we have topologically

(2.3) Mz = {p € Hom(ry(2%),K) | p(a) € G, i = 1,....n} [ K,

where K acts by simultaneous conjugation, using the presentatiomn (&°) given above. For our
purposes it is most useful to consider thé&eatiential geometric version of this, due to Biquald][



Poritz [60] and Daskalopoulos—Wentwortl33], generalising the work of DonaldsoB7] in the non-
parabolic case. From this point of view there is #abmorphism betweeMg; and the moduli space
of flat SUN)-connections whose holonomy around the marked pointsnitke conjugacy class of the
exponential of the relevant weights (remark that the flang® consequence of the vanishing of the
parabolic degree; more generally one would have centrahture determined by the parabolic degree).
As we shall need the construction in our discussion of the@Hgimons bundle, we shall review it in
Section3, following [33]. To minimise notation we shall denote both the moduli spafcparabolic
bundles and the moduli space of flat connectionsMy, as it will always be clear from the context
which perspective we take.

The moduli spaceVz (and hence by restriction alsblz) admits a natural symplectic form on its
smooth locus (independent of the complex structurg)pthat combines with the complex structure to
give a Kahler structure. In the closed case this was firatriesd by Atiyah—Bott 11] and Goldman
[43]. In the non-closed case we are considering here, it wasisied by Biswas and Guruprasad in
[20]. Itis perhaps easiest described in terms of moduli of cotioes, from the principal point of view.
Let K be a compact Lie group (this shall be $Ufor us) witht its Lie algebra. Then the (real) tangent
space to a smooth poin?] of Mgz can be described as the image of

H1(ZC, tag) — HY(Z, tad),

whereH} stands for first cohomology with compact support, and we idenghe adjoint bundlé,q
with the induced flat connection given By Using the Killing form ont, we put

(2.4) Q(A, B) = fz (AAB).

In Section5.3 below we shall also need another incarnation of the tangextes in line with the view
on Mg as a character variet@ (3), given by P0]. Indeed, if p] is an equivalence class of (irreducible)
representations, we have

T Mz = Hpalma(Z%), tag,).

where the right hand side is the first parabolic group cohomplsee Section.3 below for further
details and references).
Finally, we shall need to know the fundamental grouphd.

Theorem 2.1. For £ and # as above, bottMg and its smooth locus are simply-connected for any
choice of weight&.

This line of proof was essentially already suggested) page 173], see als83, §4]. Note that
this property also follows from the rationality of these mbdpaces 28], since smooth projective
rationally connected varieties are simply-connec®s] Cor. 4.18], and rational varieties are rationally
connected. In order not to impose the (minor) conditions28f,[or genericity of weights, we have
provided the direct proof below.

Proof. We will find it useful here to allow the inequalities i2.Q) to be weak. If any of they; |
coincide for consecutivg, it is clear that the stability of any parabolic bundle is &qto that of the
underlying coarser parabolic bundle, where the relevaritgidhe flag is forgotten. In particular, for
sucha, the moduli space is a bundle of flag varieties over the cparding moduli space of coarser
flag type. In particular, when one sets all weights equal ®, @me just obtains a flag variety bundle
over the moduli spacé of non-parabolic SLI|, C)-bundles. It was shown by Daskalopoulos and



Uhlenbeck B4, Theorem 3.2] by analytic methods that the smooth part ohthreparabolic moduli
space is simply-connected. Since flag manifolds are alsplgioonnected, we therefore have from the
homotopy long exact sequence for fibre bundles that this #muart of the moduli space of weight
zero is simply-connected.

It is a well-known fact, essentially a consequence of Zésiskain theorem (see e.g3], Thm.
12.1.5] or B, page 33]), that the fundamental group of an open subvaoieynormal variety sur-
jects onto the fundamental group of the whole variety. Weetloee have that both the moduli space
for weights zero, as well as all moduli spaces for weighth@itterior of a nearby chamber, are all
simply-connected (since the bundles that are stable farweights remain so for weights in an adja-
cent chamber). Moving the weights around in general leattstavell-known variation of GIT pictures
(see e.q.36], [71, §7] or [27]). In particular, all moduli spaces are birational, andsithe fundamen-
tal group is a birational invariant for smooth projectiveigdes, we obtain the result for all generic
weights. By using the fact that the singular locus for wesgirt a wall is of high enough codimension,
and by applying the above fact of fundamental groups for mbwarieties when hitting a wall, we
finally obtain it for both the stable (i.e. non-singular) dgcas well as the whole moduli space, for any
choice of weights. O

Remark that this proof does not hold for genus 1, since thretlied moduli space of non-parabolic
bundles all points are strictly semi-stable (sé4] ffor a rendition of Atiyah’s classical resultd (] in
this language), and as a consequence one cannot use thetagrobthe birational argument.

3 The Chern-=Simons line bundle

As mentioned in the introduction we need to consider two boedles onMg, one of a symplec-
tic / gauge-theoretic nature (the Chern-Simons line bundla,abran algebro-geometric nature (the
parabolic determinant bundle). In this section we dischieddrmer. Our prime focus is on describing
the lift of the action of the mapping class group to this bendl

3.1 Review for closed surfaces

To set the tone we begin by reviewing the construction ofitheflthe mapping class group action on
the Chern—Simons line bundle in the case of a closed suHalceSection3.2we will then construct an
analogous lift for the case of a punctured Riemann surfice X \ . Let X denote a closed Riemann
surface of genug > 0. LetP be a smooth principaK-bundle overz, for K a compact, semi-simple
and simply-connected Lie group — without a loss of gengrate can and will assume this to be trivial
P=XxK. Let f: X — X be an orientation-preservingftfomorphism ok.

We are now interested 'Lﬂ'(‘:s, i.e. the Chern—-Simons line bundle at leke¢ Z over the moduli
space of flat connectionst described in §3] for K = SU(2) or B9] in the general case, and used
in [4], for example. It can be constructed as follows: #& denote the space of connections Bn
— using our trivialisation ofP we can identifyAp with the space of sections of the adjoint bundle
of P, by expressing any = Va asd + A (in Section3.2 we will use Sobolev completions, which
strictly speaking ought to be done here as well). The mogaceM can be constructed as an (infinite
dimensional) symplectic reduction ¢1p by the gauge groug =~ C*(Z, K); here the moment map is
given by the curvature of a connection, hence the level setahe takes the quotient of consists of the
flat connections. One can now lift the action@fo the trivial bundleAp x C as follows: define the
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cocycle®X : Ax G — C by
(3.1) 0 (Va. g) := exp(2rik(CS@A%) - CS@))).

whereA anddg are any extensions @ andg (which always exist in our setup) to an arbitrary compact
3-manifoldY with boundaryX and CS is the Chern—Simons action as usual, i.e.

1 2
CS(A) = @j;tr(A/\ dA + §A/\ A/\A)

The action ofg on A x C is given by
(Va.2) - 9= (V. 04(Va.0) - 2,

WhereVi =d+ Ad(‘{l A + g*w denotes the usual gauge group action witk Q(G, g) the Maurer—
Cartan form. Sinc@®X satisfies the cocycle condition

OK(Va, 9)OX(VE, h) = @(Va, gh),

and@ preserves flat connections, we obtain the induced Cherrerifine bundIeLES over M.

For future purposes it is useful to observe tB4tcan equivalently be constructed without requiring
the existence of a bounding 3-manifold fbr Since every gauge transformation is homotopic to the
identity, we may extend on X to § on the cylinder [01] x £ using such a homotopy, so ttgt= g and
01 = e Forr : [0,1] x £ — X the natural projection map, extefd onX to Va=a"Va=d+r*Aon
[0,1] x X. Th(—:‘n@TAg is an extension OV% to [0, 1] x . Choosing the standard orientation onJpwe
define

(3-2) ©(Va, 9) = exp(—2rik CSo 11 (A%),

and one can easily show that equatioBsl) and @3.2) agree. The expression f@ given in 3.2)
generalises more readily to the case of a surface with prexgince it does not require the existence
of a bounding 3-manifold to be well defined.

A crucial aspect of the line bundLé'(‘:S is that it is a pre-quantum line bundle @, i.e. it naturally
comes with a connection whose curvature is the Atiyah—Rxtdman symplectic form.

Let Diff, (X) denote the group of orientation preservinfetbmorphisms of. Then Dif  (Z) natu-
rally acts onAp andG by pullback and we would like to show this action may be liftecan action on
L'(‘:S. First, define an action of Hi, (¥) on Ap x C by

(3.3) f*(Va,2) := (f"Va, 2).

This trivially defines a lifted action offip x C. Furthermore, one can show that this lift is compatible
with the gauge group action. Indeed, we have

Lemma 3.1. The two lifts described above combine to a lift of the actibAwt(P) = G =y Diff, (%)
on Ap to Ap x C.

Here the semi-direct product is made with respect to the hismp¥ : Diff () — Aut(G) :
Y(f)(g) = go f. Strictly speaking we have defined a left action offD(X), and we use a right action
of G, so we switch to a right action of Bi (%) to obtain a right action of the semi-direct product. The
proof of this lemma is identical to the proof given in Lem@& for the case with punctures. Since this
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action preserves flatness, we get an induced action ©f @) = Aut(P)/G on Lckzs over the moduli
spaceM.

Let Diffp(X) < Diff.(X) denote the subgroup of fiekomorphisms isotopic to the identity. It is
straightforward to see that By(X) acts trivially on M — perhaps the easiest way to see this is through
the identification of the moduli space as the representaate Homf;(Z), K)/K, and to then ob-
serve that since maps homotopic to the identity induce tletity map on the fundamental group, the
Diffg(X)-action is trivial.

To see that the action of the mapping class group lifts to aaraon the Chern—Simons line bundle,
suppose that € Diffg(Z), let [A] € M be given, and leg be a gauge transformation witiA = A9,

We then claim tha®X(A, g) = 1.

Any isotopy from f to the identity difeomorphism defines a suitable extensiorvafand V% to
[0, 1] x =. Moreover, using the isotopy, how considered agi@dmorphism of [01] x X, this extension
is a pullback of a product connection on JQx £, and since the Chern—Simons functional of a product
connection vanishes, the claim follows byfdomorphism invariance of the Chern—Simons functional.

As in [4, §7], given a fixed pointVa] € M, so that f*Va] = [Va], then sinceP is isomorphic
to f*P, there exists an isomorphisinfrom P to f*P such thaty f*Va = Va. Composingy with the
natural bundle map fronfi*P to P covering f, we get a lifty : P — P coveringf. LetV,, denote the
connection induced by on the mapping toruB, = [0, 1] x, P.

Lemma 3.2. [4, Lemma 7.2], B9, Thm. 2.19] We have

tr(f* : LES|[VA] - LES|[VA]) = exp(27ik CSP,. A,)).

The proof of this is identical to the proof of Lemr320 given in the sequel.

3.2 Punctured surfaces
3.2.1 Introduction

In this section we give a construction of tldnern—Simons line bundi@ver the moduli space of flat
connections with prescribed holonomy around the punctuidsis line bundle has been discussed
in many places in the literature (e.g63 48, 49, 33, 40, 58, 3(Q]), but apparently never quite in the
generality or the setting we need. All the basic ideas aré-kmelwn however. Remark that the line
bundle we construct ffers somewhat from the one considered by Freed#. [In general Freed
lays out the classical Chern—Simons field theory in greaildéence motivating the appearance of the
Chern-Simons line bundle. However, for surfaces with bamptie chooses to use a slight modification
of the Chern—Simons action, so as to obtain a line bundledéstends to all moduli spaces of flat
connections with prescribed holonomy, without an intatyralondition on the latter. As mentioned by
Freed, by just using the Chern—-Simons action instead onédvattiain the line bundle as ir8f]; this

is the approach we shall follow. Unlike the description 58,[30], we work with punctured surfaces,
rather than surfaces with boundary, though the end resudisd be equivalent.

The analytic construction of the moduli spaces was done lowd@d [L9], Poritz [60] and Das-
kalopoulos—Wentworth33, 32]. All of them useweightedSobolev spaces, the use of which in a
gauge-theoretic context was pioneered by Taubgls As only Daskalopoulos—Wentworth discuss the
line bundle we are interested in, we shall follow their apggta  Strictly speaking, the exposition in
[33] was only for the case of once-punctured Riemann surfaagsatbitrary rank), and in32] these
authors discuss the case for arbitrary finite puncturespibiytfor the case of SU(2). The general case
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is a superposition of these two though, and we summarisestjhst for the sake of completeness (see
also b6, §3] for some of the analytic background). Remark that uniik8ection3.1we now specialise
to the casé&K = SU(N).

The construction of th€hern—-Simons line bundlé'(‘:S can be found in33] in the case wher@®
consists of a single point. Note that the constructionV6f andL'éS by [33] happens in two steps: in
the first step one takes the quotient of the space of all cdimnady the group of gauge transformations
that vanish at the marked points, and in the second step aheffguotients out by a finite-dimensional
compact Lie group. The construction of the line bundle atdlodvs this two step procedure. The first
step follows closely the case for a surface without punetuse outlined above, using a certain cocycle
to define the line bundle. This part of the construction akvgges through. In the second step one
needs however a certain integrality condition on the pdialeights times the levet to hold for the
line bundle to fully descend td4;.

3.2.2 Construction of the moduli space

Let (D, z) be (disjoint) local coordinates around egghe ¥, so thatz are local isomorphisms onto
the open unit disk it with z(p;) = 0. Settingw; = —logz, thenw; mapsD; \ {p;} to the semi-infinite
cylinder

C={(t,0)|7=20,0€]0,21]}/[(7,6) ~ (1,0 + 2n)] .

Let (7i, 6;) denote the corresponding coordinated®n {p;}. Also fix a metrich on Z° compatible with
the complex structure on such that it restricts to the standard flat metric on the sefimite cylinder,
h|Di\{pi} = driz + def. Note that a priori the; are just smooth functions, but if a complex structure is
chosen to obtain a Riemann surfaie we will assume theg, to be holomorphic.

We suppose we have chosen weights for each optls in €.1) — recall from the introduction that
we will now assume these to be regular. Recall that we thintkkede as living in the Weyl alcove of
SU(N), and we denote the corresponding diagonal matriu{iN) also asy;.

We shall need the centraliser efi in SU(N), denoted byL?, as well as the Lie algebra of its
normaliser in GLY, C), which we shall denote aS (note that in B3] the former are denoted ag)P

Let P be the trivial principaK = SU(N)-bundle oveix?; further letE be the vector bundle associ-
ated toP and the defining representation of SN)( gp the adjoint bundle oP, andglg = E® E* — all
of these are smooth complex hermitian bundles, and we cak tifiigp as a sub-bundle afie. We fix
a base connectioWp on P that takes the fornd + «;dg; on D; \ {p;} (such aVg always exists), and by
abuse of notation denote the induced linear connectiors, gp andglg by Vg as well.

For a given Hermitian vector bundlé over £° equipped with a hermitian connectidfy (e.g.

E ® T*X°, where we combine the base connectionEowith the Chern connection 6h*x°), we will
need to consider thereightedSobolev spaces of sections Bf For anys € R, recall that this is the
completion of the space of (compactly supported) smootticecof T*X° ® E in the norm

p
ol = ( f & (IV0alP + - + [Vool? + |a|P)) .
z

Herer : £° — R is the smooth function coinciding with on eachD; \ {p;j}, and zero outside of the
D;. We remark that the weightsused for the Sobolev spaces and the parabolic weiglaee diferent
notions.

We define a space of connections modelled on these Banadtsspac

(3.4) As = Vo + LI (T @ gp),
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and we will denote byA;r the subspace of flat irreducible connectionsAfn Note that these spaces
do not change if we replacéy by another connection which coincides wilg on theD;. From the
complex structure af the vector spaclei s(T"X°®gp) moreover inherits a canonical complex structure
(cfr. [11, §5] and for further discussion see als})[

Next we turn our attention to the group of gauge transforomati Define

D = {p € L0 (e | IVogl, < o0}.

Here, as usuaLg Ioc. €fers to those sections whose product with the charatitefisiction 1, for any
compactK c £°, is in L2.

We furthermore have a natural map,
ocg:D - HIF co > (01(e), . . ., om(@)).
[

Here we id(—:‘ntifyljc with the space of parallel sections (with respec?p of gl(ap) restricted to a circle
aroundp; in Dj, and we putri(¢)(0) = lim— <p(vvi’1(r, 0)) (see B3, §3.1] or [56, §2] for more details).
We can now define the Banach Lie groups

Gs=lpeD|ps" =¢"p=1detp=1},
Gos = {90€g5|0'(90) = |},
and we have a short exact sequence
(3.5) 1— Gos — Gs — 1—[ Lf — 1.
|

We are thinking here of eadtf as sitting insidé}c. The sequenced(5) in fact splits (at least when we
are using regulat; so that allL® are equal to the maximal torus in SU) see B2, p. 26]), so we have

Gs = Goss > (Hi Lf). The spaces we are interested in are

Fs = Ask/Goss Ms = Asr/Gs,
and we have of course
Ms =5/ | JLE.
i

One of the reasons for setting up the weighted Sobolev sfasepposed to just working with the
Fréchet spaces of smooth sections) is access to indexetheotn particular we have the following, an
application of an Atiyah—Patodi—Singer index theordr@| [ Let

Sy = (V.eVe?) : LI (T (D) ®@ap) > LI (A’T"E°® ap) @ L3 s(ap)-

Here V* is the L? adjoint of V. Then, for a small positive range &f this operatowy is bounded
Fredholm, of index 2{— 1)(N? - 1) + X; dim(SU(N)/L¥) [33, Prop. 3.5]. Henceforth, we shall always
assume to be in this range.

As a consequence, Daskalopoulos and Wentworth prove tloavfod:

Theorem 3.3([33, Theorems 3.7 and 3.13]'he space$ and M; are smooth manifolds of dimen-
sions(2(g - 1) + n)(N? = 1) and2(g — 1)(N?> - 1) + 3; dim(SUN)/L{) respectively. Moreover there is
a diffeomorphism betweeMs and the stable locus o¥z. Finally a complex structure oB naturally

puts the structure of an almost complex manifoldMgthat makes the gieomorphism biholomorphic.

In [33] only irreducible connections are discussed, but it is skathwn that if one also includes
reducible flat connections, one obtains a homeomorphisimalliof Mg, see e.g. §0, Theorem 6.4].
The image ofFs-orbits of reducible flat connections is exactly the serabkt locus inMz.
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3.2.3 Construction othgS

Now we define a cocycle that will be the analogue &Y. It will be convenient to define this cocycle
in terms of the Chern—Simons action on the cylinded o X°. Let

50,5 ={0:[0,1] xZ° - G|{(t,") € Gos, Yt € [0, 1], and is continuous and piecewise smoott}.in

Since every gauge transformationdl s is smoothly homotopic to the identity3dg, Prop. 3.3]), we
may extendy € Gos onX°to g e 50,5 so thatgp := §(0,) = ganddy := §(1,-) = e. Similarly, using
the natural projection map: [0, 1] x £° — X°, Va = Vo + A onX° extends t&Va = 7'Va = d + A+ A,
whereA+Ag = n*(A+Ag). ThenVa® € A is an extension oF3 to [0, 1] x X°, and we define

(3.6) OX(Va. 0) = exp(—erik cs{o,uxzo(mog)) .
Recall that Daskalopoulos and Wentworth®3[Eqg. 5.1] define a cocycle
0% : L2 (T"2°® ap) X Go,s — U(L),

_ ik ik 3
OX(Va. Q) := ex (—f tr(Adg-1(A+Ag) A g~dg) — — tr (§~1dg )
(Va0 =exp 7 | WAdgs(A+A) gD~ 3 | (5*dg)

and use this to define the Chern—Simons line burﬁ@gover/\/((; (hered = d + d%). Note that we have
used Ad-invariance of tr to writeé3B, Eq. 5.1] in a slightly diferent form than it originally appeared.
The two cocycles are equal:

Lemma 3.4. ©X(Va, g) = ©X(Va, 9).

Proof. We have the formula

82 C pens (A7707) = f

[0,1]xx0

~ l ~ ~ ~
0 [T P — GATRY A AT 0 ATR).
Now, the usual gauge change formula for the curvature is
Fﬁg = Adg1 Fg,

and by definition )
AR = Adgs ATAg + G,

wherew is the Maurer—Cartan form d@. SinceA+Ag = 7*(A+Ag), some of the forms involving only
A+A, on [0, 1] x =° vanish and we have

tr(ATAS A Fa) =t (g*w N Ady s 0ATR + 20w n Ady s[ATRg A A"mo]) .
Also, one computes
2 tr (AT A AT 1 ATAG) =

%tr (6w A Adga[ATPo A ATR)) + %tr (Adgs A+Po A [Tw A §Fw]) + :—étr (FwA[FTwAFol).
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We have

8 CS[O,l]xZO(mog) =
[ (g n Ads s 0(A570) - 3 Ads s A5 A [0 50l = G A [0 5.
and one can show that
(3.7) Ady 1 d (A+70) = d (Adg 1 A+7o) + [§"w A Adg1 A+A).

Using 3.7),

f[o e (6w A Adg1 d(A+A))

= ‘f[;llxzo tr (Q*w A [d (Adg_l A-.%) + [g*w A Adg-l A—_m)]])

B j[;,l]xzo r (
(

_ f tr (Adg ATRo A 05w + d (Adg ATRo A §'w) + Adgs Ao A [§7w A §a]).
[0,1]xx°

§'w A d(Adgr A¥Rg) + Adg 1 ATRo A [§w A §w])

Thus

8% CSo 1o (AT = f

tr (d (Adg2 ATPo A §'w) - }Q*w AFw A C]*a)]),
[0,1]x=0 6

since the Maurer-Cartan equation says
ok l ok ok
dg w+§[g wAf§w]=0.
Since Stokes’ theorem holds whéne Lid(T*E0 ® gp), the Lemma is proven after writing‘® =
g1dg. O

Given Lemma3.4, one has again thaX is independent of the choice of the pathdis ([33,
Lemma 5.2]). The action @fos on A;s x C is given by

(3.8) (Va2)-g:= (V3. 0(Va.0) - 2,
and we have the following

Lemma 3.5. OK satisfies the cocycle condition
©(Va, 9)ON(V3, h) = ©4(Va, gh).

This corresponds td8B, Lemma 5.3]; as no proof is given there we include one heredorplete-
ness, using our construction oFf.
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Proof. Let N
hy:[0,1] x° — G,

be an extension df from X° to [0, 1] x X° such that
h(0.)=h(), and (1) =e(),
wheree : 2° — G is the identity gauge transformation. Let
G1:[0,1] x2° - G,
be an extension af from Z° to [0, 1] x ° such that
81(0,)) =g(), and (L") = ().

Define an extensiohy : [0, 1] x =° — G of h by:

O T g2t = 1), t> 1/2,

so that, N N
ho(0,-) = h(-), and ho(1,-) = €().
Also, define an extensiogy” [0, 1] x £° — G of g by:

ﬂ-*g 2t, *)s t < 1/2,
gl( t e .)’ t >— / e

so that
8o(0,-) =g(-), and §o(1,-) = &(:).
By construction we have
O(Va, gh) = exp| -2k CSp 13z (mogh)]
= exp [_onik CSo.1jxze (mo@f’“f’)], since®X is independent of extension
— exp| -2k (CSp e (ATAP™) 4 0 e (AT
= exp|—2rik (cslo,llxzo ((71'* (A+Ao)9)ﬁl) + CSoee (mgl))] by definition offo, Go,

=exp —2nik (CSO,l]XZO ((7'[* (A+A0)g)h1) + C%O,l]xzo (mgl))]
= 0 (V3. h)- ©4(Va.g). by definition of©*.

O

Since® satisfies the cocycle condition agls preserves flat connections, we obtain the induced
Chern-Simons line bundle ové&s. This line bundle will not always descend fal; however — the
weights from 2.1) need to satisfy an integrality condition for that. The fdult is:
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Theorem 3.6(Cfr. [33, Theorems 5.8 and 6.1]Buppose that, for k N, k times the parabolic weights
a; from (2.1) are in the co-character lattice offLfor each marked pointjpe £, and that k3’; a; is in
the co-root lattice oSU(N). Then the k-th power of the line bundle B constructed above descends
to Ms. It comes naturally equipped with a connection, whose dureas% times the symplectic form
Q from (2.4).

Once again, strictly speaking this is only discussedi$} pnly for the locus ofMgz consisting of
irreducible connections. It however carries over to the levlod Mg: as discussed ir3p, page 268],
one needs to be concerned only about the connected compafaht stabilisers of flat connections
acting trivially, and by 4, Proposition 6.8], in the case & = SU(N), this reduces to checking that the
centre of SUN) acts trivially, which is indeed covered b83].

By abuse of notation we shall refer to these line bundleseStern—Simons line bundledenoted
by LES. Recall that the (complex) codimension of the strictly setable locus is at least two (except
if g =2r = 2), hence by Hartogs’ theorem this line bundle extends daaliy to all of Mz. In
fact, there is no obstruction to carrying the constructibf38] of the line bundleﬂéS through also for
reducible connections, which would constrlﬁgS directly for all of Mg.

3.3 Lift of the mapping class group action

In this section we will discuss how any suitabléfdomorphism o&° gives an action oMy that lifts

to the line bundIeL'(‘:S. In fact we will do a little more, and show that this actionttas through the
mapping class group. TheftBomorphisms, and isotopies, in question are supposed $erpesome
first order information at the marked points, and there areraber of ways to encode this. One could
allow diffeomorphisms that only permute pointsfirthat carry the same label, and as before preserves
some projective tangent vector there. We will however chaosltterent description, dictated by our
construction ofMgz using weighted Sobolev spaces as outlined above. In plantioue will only allow
those difeomorphisms that preserve the chosen local coordinatesérarked points (only permuting
those with equal weights), and all isotopies have to do theesdt is a straightforward exercise that
the mapping class group so obtained is isomorphic to the dregeronly projective tangent vectors are
asked to be preserved.

3.3.1 Dffeomorphisms

Let Diff . (£, Z @) denote the orientation-preservingtdomorphisms ok preserving each subset Bf
whose points carry the same weights, as well as their neighbodsD; and local coordinateg we
have chosen, i.ejo f = z if f(p;) = p;. Our goal is to show that an analogue of Lemr@z) holds
for the punctured surface® when f € Diff,(X,Z @). First remark that Ot , (X, Z @) acts by pullback
on As, as by construction the weights used in the Sobolev normpraserved. We lift this action to
the trivial line bundle#s x C by

(3.9) f*(Va,2) := (f"Va, 2),

for f € Diff.(Z,Z @). As in the case without punctures, we can define a morplsmiff, (£,Z @) —
Aut(Go,s) by P(f)(9) := go f, and we have again

Lemma 3.7. The lifts 3.8) and (3.9 combine to an action @ =y Diff1(Z,Z @) on As x C.
As with Lemma3.1we have switched again to a right action offR{Z, z, @) to obtain a right action

of the semi-direct product.
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Proof. This statement reduces to showing that
(3.10) (Va2 - 9) = (f'(Va, 2) - (9o ),
for f € Diff1(Z,Z @), € Gos. To see this, first observe that
(3.11) (VA" = (VD).
which is easy to show directly. Then compute
(f(Va.2) - (o f) = ((FVa)*", 0X(F*Va,go ) - 2)
= (f*(VR).0X(f*Va.go f) - 2), by (3.11),
= (V3. 0X(f*Va.go f) - 2).
Hence to establistB(10 it suffices to show that
(3.12) OX(f*Va,go ) = OX(Va, g).

The verification of 8.12) boils down to basic dieomorphism invariance of integration on manifolds.
Indeed, by definition

O(f*Va,g o f) = exp(~2rik CSp.apess (" (1 (A+A)*T),
and if we putF = id xf we can write this as
. goF
OK(f*Vago f) = exp(—27r|k CSoapee (F* (A7)’ )
= exp(~2rik CSpaps0 (F* (A7)

By diffeomorphism invariance of integration on manifolds,

CSoupese (F* (A7) = CSoapesn (ATA),
and therefore3.12) follows. O

Lemma3.7implies that the action of O, (Z,Z @) on As x C descends to an action on the Chern—
Simons line bundle ovef;. As explained in 33, §4.2 and§5.2], there are some rationality conditions
on the weights to further descend the line bundleMg, but when it comes to lifting the action of
Diff (X, Z @) these pose no further problem, as the action df [{f, Z @) commutes with the action
of [T; L{. Hence we obtain as desired a lift of the action off Pz, z @) to L'(‘:S, whenever the latter
exists.

Finally, once again as i}| §7] we have the following basic observation:

Lemma 3.8. Let V4 be a connection with prescribed holonomy such {Raf € M;. We can then find
alift f of f to P such tha¥, is invariant underf.

Remark however that whil€™ = id, the same need not be the caseffor
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Proof. Let f’ : f*(P) — P be the natural bundle isomorphism coverigrhen, sinceA] € M; there
exists a bundle isomorphisgfrom P to f*P (covering the identity ox®) such thaty(Va) = f*(Va).
The composition off” with ¢ gives us the desiretl. O

Given such &4 and f, we can create a connectidh, on the mapping toru®, = [0,1] x, Q
thought of as a bundle ov&® =. We have the following:

Lemma 3.9.

(3.13) tr(f* L8 = 2 ) = em(2rik C2(Q, Va).

[VA])
Proof. Without a loss of generality, we can assume Watakes the standard fordw «;dg; on D; [33,
Lemma 2.7]. Given thatf['Va] = [Va] with f € Diff(Z,Z @), there existg € Gos such that

f*Va = V9.
Then

[(Va, 2] = [(f'Va, 2]
=[(v%, 2]
=[(Va, O (Va0 - 2,

where by definition

©(Va, 0) = exp(~2rik CSopasn (ATAS’)).

and the connectiofﬂg descends to the connectidyg on the bundleQ, = [0, 1] x, Q over the open
mapping torug? := [0, 1] x; X°. Thus

©(Va, g) = exp(-2rik CS;,(Q,, Va,)),

and indeed

(f: £ed o = L'(‘:S|[VA]) - exp(21ik CSQ;. Va,))

3.3.2 lIsotopy

Suppose now that is an element of Ofy(Z, Z @), the subgroup of OF . (X, Z @) consisting of difeo-
morphisms isotopic to the identity within Bi (X,Z @). Suppose we have a smooth isotofpgiven,
with fg = id, andf; = f. Itis standard that the action of afiyon V5 € A; can be understood as a gauge
transformation. Indeed, we can just tg{p) be the holonomy oWV 4 along the patts = f1_t)1-5(P)-
Given thatf € Diffp(Z,Z @) immediately implies thaty € Gos for all t. This shows that Big(Z, Z @)
acts trivially onMg. Moreover we have that

Proposition 3.10. For V4 and g as above, we have th@(Va, go) = 1.
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Proof. Let VA = n*Va be as in 8.6). We consider the gauge transformatipover the surface cylinder
induced byg: from above. We observe thgtis constructed exactly such tHag* has trivial holonomy

along the curves — fi(p), fort € [0, 1] and anyp € X°, which also carries over tﬁg having trivial
holonomy along the curves— (t, fi(p)) in [0, 1] x Z°. Now we define the dieomorphism

F:[0,1]x 2% —[0,1] x £°

by the formula
F(t. p) = (¢ fi(p)).

We observe thaF*ﬁg is trivial along the lines — (t, p) for all p € X°, sinceF maps these lines to the
curvest - (t, fy(p)). This implies that

CJo,1jxx0 (F* (A-Jr\ﬂog)) =0.

We conclude that

CSo.1jxx0 (A-%g) = CYo 1jxz0 (F* (A‘%G)) =0.

Corollary 3.11. We have an induced action of the mapping class group
Diff.(£,2.@) | Diffo(Z.2.)
- - k
on Mgz with a lift to L¢...

Remark3.12 Note that for the action oMz andL'éS, we could actually also allow the ftikomor-
phisms to ‘rotate’ the local coordinates around the markeidtp (i.e. such thagj o f = ez if
f(pi) = p;, for somed; € R, or more generally simply such that the functionis preserved). The
crucial thing to observe is that, though isotopies that nuagte thez act trivially on Mg, they do not
on LK.

In the set up that we have used, where zhare preserved by the fteomorphismsf, this corre-
sponds to the fact that the Dehn twists around the markedspaat trivially on Mz. This was also
observed in30] (in the context of surfaces with boundary), where the ottarawith which the Dehn
twists act on the fibres OEES was also determined. Charles does not allow for boundarypoaents
to be permuted but the result is otherwise the same. We haleded in AppendixB the explicit

evaluation of this character in our setup.

4 Conformal blocks

In this Section we relate the space of holomorphic sectiétiseoChern—Simons line bundjé'éS (for

a given choice of complex structuseon ) constructed in SectioB to the space of conformal blocks
as defined inT3]. The idea that these spaces are linked goes back to Wittiestpaper 79; our
aim is mainly to make this explicit and mathematically rigs for the various precise definitions of
Chern-Simons bundle and space of conformal blocks we usks. allbws us to link the sections of
the Chern—Simons bundle with the Reshetikhin—Turaev iamts 64, 65, 77], as the modular functor
that determines these can be described using conformatsh[ék Once again, essentially all of the
ingredients for this are in the literature, but we are unawarany place where they are linked in
the way we need them. In Sectidinl below we outline the isomorphism, drawing on various known
descriptions and correspondences. In Sedcti@we then discuss how the isomorphism can be shown
to be f-equivariant, which is crucial for our application.
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4.1 Conformal blocks and the stack of quasi-parabolic bundis

Given a Riemann surfacg, and a divisor of marked point® as above, a parabolic subgroBp of
SL(N,C) corresponding to a flag type for every pomtof # (the L{ used in Sectior8 are compact
forms of the Levi factors of these), Tsuchiya, Ueno and Yaamniad[73] construct a corresponding
space of conformal block®’’ K_(ZU,SD) with it for every levelk € N and = (1,.. ., 4,), where the

(integral) weightsy; lie in the Weyl alcove at levef, and moreover in the wall of the Weyl chamber
corresponding td;, for every point inP (we will review the construction below in Sectidn2.1, see
also b3, 72] for coordinate-free constructions). In turn, this is akto moduli of parabolic bundles
by Pauly p9] and Laszlo—Sorgef5p]. In particular, these authors consider the stitk » p, of quasi-
parabolic bundles. Its Picard group is given by

(4.1) Picis, pp) = Z & (P X(P),

where the latter terms are the character lattices of théophcagroups, i.e. Hon#®;, G,)), which can be
identified with the Picard group of the flag varieties BLC)/P;. For the structure group SN(C), the
Z-summand is generated by teterminant of conomology line bundle determinant line bundle for
short. It assigns to a famil§ of quasi-parabolic bundles parametrizedSthe line bundle whose fibre
overse Sis given byAPP(HO(Z,, 7(9)*) ® APP(HL(Z,, () — when thinking in terms of principal
bundles, note that we use the standard representation df, 8).(o define this. The determinant line
bundle only depends on the underlying (non-parabolic) lyrashd not on the parabolic structurefof
Following [70] we say a line bundIeC(kj) onMis,_p p iS semipositivef in the above presentation

of the Picard group it is given bk(1), wherek > 0 and thel; are dominant weights, necessarily in the
face of the Weyl chamber correspondingRo with (1;, 8) < k. The line bundle ipositiveif all these
inequalities are strict, andl is moreover regular. Given a positi\&\(“), the complement of the base

kl) -ss

locus of all powers off, 7, is the semi-stable locus of the stack, denotedm;; . It consists of

those quasi-parabolic vector bundles that are semi-stabthe weightsy; = ?.
We now have the following result by Pauli and Sorger:

Theorem 4.1([59, Prop 6.5 and 6.6]92, Thm 1.2]) Given a line bundIeLM) onMs_p p, as above,
there exists an isomorphism

-, P),

0 -
H Wiz, Locp) = Nk/l

which is canonical once the local coordinates are chosen.

This theorem generalises earlier results of Beauvillezlogld 8] and Kumar, Narasimhan and Ra-
manathan%1] to the parabolic case.

Moreover, for structure group SN(C), most of these line bundles descend to the moduli spaces
Mz (essentially due to a descent lemma of Ken@}8,[Thm. 2.3], see alsol[ Theorem 10.3] —

the terminology of the latteMg is agood moduli spacéor the stackii; (“) S) One just needs to

verify that the stabilisers of (semi-)stable bundles detaity on the flbre of the line bundle over the
corresponding closed point @fs_p p,, which for SL(N, C) reduces to verifying that the exponential
eZiti is trivial on the centre of SII, C). In this case we shall refer to the descemﬁa&) to Mg with

aj = iﬁ as the parabolic determinant bundle, followirg]l and denote it air'jd. We have
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Theorem 4.2([70, Thm 9.6], b9, 5.2]). Whenevep; 4; lies in the root lattice oBL(N, C), there exists
a canonical isomorphism (up to scalars)

HO@s, 2 by Lycpy) = HOMa, L5y),

whereq; = A—k' Moreover all higher cohomology of these line bundles Jags

We want to link this with the Chern—Simons line bundl‘égS constructed earlier. It slices to
show that the line bundlx{kOI considered above can be given a connection whose curvattiiek-th
multiple of the Kahler class. Indeed, the same is true ferkth power of Chern—-Simons bundle,
and since we know that the moduli spaces are simply connélojetiheoren.1), all line bundles are
determined by their curvaturd], Cor. 11.9.2]. Hence the Chern-Simons line bundfe; and £X  are
isomorphic as bundles with connections, and thereforeaddwlomorphic line bundles for the natural
holomorphic structure o (see e.g. 12, Thm 5.1]).

By the seminal work of Quilleng2], there exists a natural ‘regularised’ Hermitian metriccde
terminant line bundles over moduli spaces suciWfs From the discussion above however, it follows
that we are not interested in the determinant line bundléctwis £, 5, in the notation above) itself,
but rather by a twist of the determinant line bundle (or a puatlvereof) by a line bundle coming from
the parabolic structures, chosen to correspond to the wgéigFhere is, however, another viewpoint on
parabolic bundles (for rational weights), as they corregpo orbifold bundles, or alternatively, equiv-
ariant bundles on a suitable ramified covezgf (also referred to as-bundles. In particular, under
this correspondence the moduli spaces of semi-stable égiadé isomorphic (but their natural Kahler
structures dter by a factor).

Biswas and Raghavendra take the latter approach and shgveththe stable locus of the moduli
space ofr-bundles, ther-determinant bundle equipped with the Quillen metric hasuagatureN times
the natural Kahler formJ1, Theorem 3.27] (see als@Z, 23]). Moreover, using thiz-determinant they
show P1, §5] that on the moduli space of parabolic bundlefs;, there exists a metrized line bundle
(which they dub theparabolic determinantit corresponds to the descent of the line bungdlg pn )
we considered before on the stack, wheisthe least common multiple of all denominators indhg),
whose curvature i%’ times the Kahler fornf2 from (2.4) on Mg [21, Theorem 5.3]. In particular this
implies

(4.2) c1 (L) = KIQ).

To be precise, they do this without fixing the determinanE@ind then need a correction factor in the
line bundle, which is however trivial in the fixed-deternmmaase.
We can conclude (recall again our assumption that;ale regular)

Corollary 4.3. The line bundles ¢ andL:;d are isomorphic as holomorphic line bundles ;.

Note that an alternative approach, avoiding the use-lafindles, would be to use the recent work
of Zograf and Takhtajargg], who calculate the curvature of the Quillen metric, not loa determinant
line bundle but on the canonical bundle of the moduli spat®yBhow in particular that its curvature
is equal to a multiple of the Kahler form, minus a ‘cuspidafatt’, which they express in terms of
natural curvature forms on line bundles coming from the Ipalie bundles. We can on the other hand
identify the canonical bundle for the moduli stack of quaaiabolic bundles. Indeed, it follows from

1Though less relevant for our approach as we work with puedt®iemann surfaces, the matter of the Quillen metric in
the case of Riemann surfaces with boundary was discussed]in [
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e.g. b2, Thm 8.5] thathiz » p, is a flag bundle (locally trivial in the étale topology) owire stack
of (non-parabolic) bundle®is, . The canonical bundle ofis_» p, is therefore the tensor product of
the canonical bundle abiy_ with the canonical bundle of the various flag varietie&?; (as before
G = SL(N, C). The former is determined by the weigh2h" [67, Cor. 10.6.4], the latter is well-known
to be—2pp, [45, Page 202], wherh" is the dual Coxeter number &f andpp, is half the sum of those
positive roots ofG that determind®;,. Combining these two expressions should lead to the samk,res
giving (a multiple of) the Kahler form oMz as curvature for a connection on the line bundt%,

but we were unable to resolve some ambiguities with respeubtmalisation conventions.

We can finally summarise all the results quoted in this Sea®

Theorem 4.4. There exists an isomorphism, canonical up to scalars, lEtvtlee space of conformal
blocks and the Kahler quantisation of the moduli space ¢tianections using the Chern—Simons line
bundle:

i ~ O k

if k is such that all; = ka; are elements of the latticeégP;), and}; 4; is in the root lattice oSL(N, C).

4.2 Equivariance

For our purposes it is very important to establish the isghism given in Theorend.4 as anf-
equivariant isomorphism. In Secti@3 a lift of any difeomorphismf e Diff, (Z,Z @) to the Chern—
Simons line bundle was constructed. This will induce aroactin the geometric (Kahler) quantisation
only if the chosen complex structure is also preserved bin such a casé is finite order, and vice
versa, for every finite order fleomorphism one can choose a complex struatuoan X preserved by
it. We shall now assume such a complex structure to be chasdnye shall discuss the corresponding
equivariance of the spaces of conformal blocks and noriaabéheta functions. All throughout we
shall considerf to be a finite order automorphism of the Riemann surface whiekerves the set of
labelled marked points (i.e. subsets/oére only allowed to be permuted if the correspondipgre the
same) that gives rise to an automorphism of a marked suFfgas in the introduction) whose surface
isX.

We begin by making an elementary observation.

Lemma 4.5. If f is a finite order dffeomorphism oE that preserves the set of marked poifftsand
some choice of non-zero tangent vectors at thappto real positive scalars, then necessarily all f-
orbits in® are generic, i.e. their lengths are equal to m, the order of f.

Proof. As mentioned above, we can pick a complex structure preddyyé, so thatf is an automor-
phism ofZ,, e.g. by choosing afi-invariant metric. It now sfiices to show thaf cannot fix any of the

% (indeed, if there were no fixed points4t) but some orbit was not generic, then a suitable powér of
would fix that orbit and we could repladeby that power). Suppose thptwere anf-fixed point, then
we can choose a holomorphic disk aroymg@reserved byf. It is well known that automorphisms of
holomorphic disks preserving the centre have to be rotatiand since we also know thafpreserves

a tangent vector gbh up to real positive scalarg, has to be the identity on this disk, hence everywhere
onZx. m|

This of course implies thathas to be a multiple ah. It also implies that we can find open didRs
around thep; with local holomorphic coordinates giving isomorphisms onto the unit disk &, and
that are preserved bly i.e. zjo f = 7, if f(p;) = p;. Vice versa, given an automorphisihthat preserves
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such a choice of holomorphic coordinates around the pair# ive can choose tangent vectors such
that f is an automorphism of the marked surface (in any case, fdeforder automorphisms of the
marked surface we can always find a suitable normalisatibtiedangent vectors, so that we need not
be concerned about thie, -ambiguity). We shall therefore from now on assume that suchoice of
coordinates has been made, and that the constructionstini®®:2.2and3.2.3are done with respect
to these neighbourhoods.

4.2.1 Action on spaces of conformal blocks

From the work of 3] it follows that the bundle of conformal blocks is a vectomnbie over the stack
of smooth marked curves(y (in fact even over its Deligne—Mumford compactificatLTrbg,n, though
that does not concern us here). In particular this implieg tbr every Riemann surface with auto-
morphisms, there exists a canonical action of the autonenphroup on the corresponding space of
conformal blocks. Moreover this story goes through evemé allows automorphisms that can inter-
change marked points with identical labels. This is ex@dim detail in [/].

In our case, ag comes from an automorphism of a marked surface, a concrsteipigon of this
action is provided by{, Proposition 4.3], in terms of the construction of the sgaafeconformal blocks.
As we will need a minor variation on this description to linkiith the non-abelian theta-functions, we
outline it here.

Given a semi-simple (complex) Lie algelyave will denote by, the central extension @?:1 a®
C(¢&;). Here¢jis alocal coordinate at theth marked point, and the Lie bracket of the central extansio
is determined by thinking of this Lie algebga as a Lie subalgebra of threfold sum of the &ine Lie

algebra ofy:
n
wne P
j=1

We fix a levelk andn weights; € X(Py), and look at the representation @?zl’g‘given term-wise by
the corresponding representations of ldvahd weightt; of g:

Wkﬁ = 7'{K,11 ®... ®7'{K,1n.

Now we begin by defining the dual of the space of conformal kdpalso known as the space of co-
vacua:

(VQ’KE(ZUa P) = (Vg’kj = WKQ/IQ\(UP)(]_{K}

HereUyp = X, \ P andg(Uep) is the Lie algebra® O(Up). This is a Lie subalgebra @Tzl a®C(é)),
and since by the residue theorem the restriction of the @leettension of the latter to this subalgebra
splits, we can think of it as a subalgebraggf The space of conformal bIocI(B’T _(ZU,SD) = (V*

also known as the space of vacua, is the dual to the spacevaioca:. Alternatlvely, we can put

t o 3(Up)
okl ( kﬁ) ’

i.e. theg(Uyp)-invariant subspace W:,Z' Wheng = sI(N, C) we use the notatiofVTNkz andVy, 7.

We now want to describe the induced actionfobn " W In order to do so we will assume
g,
that, besides the marked points on the Riemann surface, weechasen a divisaR consisting of one
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generic orbit off, i.e. one pointp € X, that is not part of the marked points#h as well as all of its
f-translates
Q=np+f(p)+ 2(p) +...+ f™(p),

wheremis the order off — the genericity of the orbit implies that thesaoints are all distinct. To each
of the points in this orbit we assign the weight 0 — hence bytgagation of vacua we have an explicit
isomorphism between the spaces of conformal blocks (ThedrB in [7]), and in the description above
we are usindgJpq. We assume that we have chodenompatible formal neighbourhoods around these
new marked points, which we can always do.

The action off on H, 7 andﬂ:j is now simply given by the permutation on the tensor factors,

determined by the permutation Hyof the marked points. As the latter action presemfgspruq) this
induces an automorphism fvrgk}.

Remark4.6. This description appears slightlyffirent from the one in7, Proposition 4.3], because
there one changes the labelling of the marked points (aral tmordinates) byf, and therefore the
isomorphism between the spaces of conformal blocks is ediby the identity orH-.

4.2.2 Alternative description

The link between the spaces of conformal blocks and spacaesrefbelian theta functions given in
[52] and [59] depends on a variation of the construction of the covacua:

Proposition 4.7 ([17, Proposition 2.3]) Let £ and Q be two non-empty finite disjoint subsets¥gf,
with tuples of weightg andz assigned to them respectively (all weights are assumed inthe Wey!
alcove at level k). For any weighitwe let V, be the corresponding irreducible highest weight module
ofg,and put s =V, ®V,,®....If 1€ Af\'l‘) then we consider Vas a subspace offy ;. We then have
that the induced natural maps

(Vj ® 7‘[@7) /@(UQ)(V} ® Wkﬁ) — (ij ® Wkﬁ) /ﬁ(UpUQ)(‘ij ® Wkﬁ) = (Vg,kﬁ,ﬁ

and

(Ve Wiﬁ)g(ua) - (H® Wkﬁ)g(um) = (V;,k,;,ﬁ

are isomorphisms to the spaces of covacua and vacua regglgctHereg(Uq) acts on each of the V
and Vi by evaluation at the corresponding point/f

We will use the alternative description of the spaces of @onél blocks dtered by this proposition
in the particular case whefR is the set of chosen marked points as before,@iglthe disjoint extra
genericf-orbit we have chosen (any will do). Itis clear how thaction carries over to this description:
again one simply takes the induced action by permuting ttterfain the tensor produc\S} and?—(*ﬁ.
4.2.3 Equivariance of line bundles over stack

The proof of Theorerd. 1 stated above of Pauly and Laszlo—Sorger relies on a préisentd the stack
Ms,_pp as a quotient of a product of affiae Grassmannian and some flag varieties. We need a minor
variation:

Proposition 4.8. LetX, £ andQ be as above. There is an isomorphism of stacks

Erﬁzmp’pi = G(UQ) \ anr,
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where
(4.3) o =] [eex]|o/P.
Q P

which is canonical once local coordinates are chosen. Hatds the gfine Grassmannian, and(@g)
is the group of algebraic morphisms fronylo G.

The case where@ = 1 is the one proven by Pauly and Laszlo—Sorger.

Proof. This is a direct and straightforward generalisation of tteofs of [59, Proposition 4.2] andg2,
Theorem 8.5]. O

We want to study the induced action bfon Msz_» p,, given by pulling back bundles (recall that
we assume thaf satisfies the conditions described at the beginning of @edti2). In the above
presentation this induced action is again straightforward

Lemma 4.9. Under the isomorphism of Propositigh8 the action of f oriz_p p, is induced by the
permutation of the factors ofi(3) by f.

The proof of Theorem.1in [59] and [52] uses the presentation of Propositiér8 for the stack
Mz, pp, as well as the Borel-Weil-Bott theorem, both the standagdifor flag varietiess/P and the
affine version due to Kumab{] and Mathieu 54, 55] that realises representations of théree Lie
algebrag as sections of line bundles ov@g. In our case, as we are replacing a single ‘dummy’ point
by an entiref-orbit Q, the morphisml™ — My, pp, is N0 longer locally trivial in the étale topology,
hence it no longer induces an isomorphism of Picard groups.

We no longer have in general that the Picard grouief » p. is equal to the Picard group ﬁigar,
but we can easily describe the pullbacks of the Iifjg; to Qg". Indeed, the Picard group &ty is

isomorphic taz™ & @i X(P;), and we have
Lemma 4.10. The pullback of the line bundi€ , + to Q" is given by(k, .. ., k, ).

Proof. It suffices to remark that for eagh= 1,..., m, we can consider the morphisag x [[; G/P; —
QF" that sends the factaRg as the identity to thg-th factor, and enters the trivial element@§ for

all other factors. Pulling back line bundles under this nhism gives the morphism of Picard groups
that in the above presentation can be describedas. (, kn, 1) — (kj,ﬁ). Finally, we can factor the
morphisms tdlis, p p, through this, and remark that for eaglwve have the commutative diagram

Qe X [[;G/P;
X‘
o My, pp.
whereV induces an isomorphism of Picard groups. O

Hence if we lift f to act on the line bundle corresponding ko.( ., k, 1) on Q%" by simply permut-
ing the factors, this induces a lift of the actionobn s, » p; to L, 3, and we can conclude:

Proposition 4.11. The action of f oz, »p, lifts to the line bundleL, 3 so that the isomorphism of
Theoremd.lis f-equivariant (with the action of f OWL - as described in Sectioh?2).
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4.2.4 Equivariance of isomorphism with Chern—Simons line bndle

We have now two isomorphic line bundlE%S andLr'jd on Mg, and two lifts of the action of on M
to them, which we want to show is the same.

Proposition 4.12. The isomorphism of Corollarg.3is f-equivariant.

As the moduli space is projective, both lifts btan difer at most by a character of the finite cyclic
group generated bf, and it would sifice to verify this character is trivial at a single pointAr to
obtain the result. In the non-parabolic case, i.e. wherankoi$ present (cfr. 4]), one can do this at
the trivial bundle/ trivial connection. In the parabolic case this is not so $enas, for given parabolic
weights, the trivial bundle may not be stable for any choitflags. Nevertheless one can make this
reasoning work.

The main thing to note is that the lift of the action constedcin Sectior8.3 comes from a lift of
the action to the (trivial) line bundle over all 55 (as in @.4)). This means that the lift of the action
also descends to the line bundle over the quotient

| 75165 |

interpreted as a stack (heﬁ is the complexification o), which at least morally speaking is the
same as the stadks_» p,. Hence it séfices to show that the lift agrees for any buridbanection, not
necessarily a semistable or flat one.

To make this reasoning precise, we can argue as follows:

Proof of Proposition4.12 Without a loss of generality we can assume that the base cboné/g
chosen in Sectio3.2.2is f-invariant. By @.9) we have of course that acts trivially on the line
over Vo. Moreover, with this assumption the action f©f induced by pulling back connections, on
Li(;(T*EO ® gp) (as in B.4)) is linear. Take now a flat connection, represented by a s#melement of

L%(S(T*E0 ® gp), as well as all of itsf-orbit. These generate a complex finite-dimensional swulbeve

spaceV of LZ (T*2°® gp), consisting of smooth elements. We think of this subspaqeasametrising

a family of connections o&°, and using the complex structure &p, we take all of the associated
complex structures given by the, @)-part of the connections. These all extend to the wholg,ols
(quasi-)parabolic bundles, as in e.§0][§4]. This gives us now an algebraic family of parabolic busdle
parametrised by, hence a morphism from V into Wiz p,. As we had chosen the connectigp to

be f-invariant, the same will be true for the corresponding clexgtructure and parabolic structures,
and by using the presentation 9t p, as in Propositiort.8, we can represent this by an element
of Q& that is invariant under the permutations inducedfbyFinally, by Lemma4.9 and the lift of

f to the line bundlek; ..., k, ﬁ) we have chosen, we see that also the actiofi of the line over the
corresponding point ifis_p p, is trivial. This implies that the two line bundles we can ades on

V are f-equivariantly isomorphic (since also linearizations ofi@ans on &ine spaces are unigue up
to characters). If we now restrict to the subsetVoivhose connections are flat, or equivalently to
the subvariety where the corresponding complex structaresemi-stable, we can descend the line
bundles to the moduli spagel;. This shows that the lifts over theorbit we have chosen are identical,
and as the moduli spaces are projective we can concludenttetd the line bundles andL[‘gd are
f-equivariantly isomorphic over the whole M. O

We can therefore conclude this Section with
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Corollary 4.13. The isomorphism of Theoreth4 between the Kahler quantisation of the moduli
space of flat connections using the Chern—-Simons line buardlethe spaces of conformal blocks is
f-equivariant.

4.3 Further comments

Though the Chern—Simons and parabolic determinant buagéessomorphic, it should be noted that
they have a dferent nature. In39] Freed stresses that Chern—Simons theory takes values iG$h
bundle, not in the determinant bundle. This is also refleatdd0], where it is shown that when one
considers both of these bundles over the moduli space of&iersurface, they fier by tensoring by
the Hodge bundle.

5 Main results

5.1 Fixed points and the CS functional

We now want to consider the mapping toisof X, which contains the link that is the mapping torus
of £. The complement of in £; is 9, the mapping torus c£°.
Recall that the fundamental groupXff can be written as

(5.1) mp = mi(EF) = m(E°) ¢ Z = <7T1(2°), n|ntyn=foyforallye ﬂ1(2°)>

We shall denote byMs, | 7 the moduli space of flat connections Bhwhose holonomy around the
i-th component of the link lies in the conjugacy class efi (we orient the links compatibly with the
orientation ofz, such that an oriented frameirtogether with a vector in the positive ‘time’ direction
gives an oriented frame fdtt). Alternatively, one can think oMy, | 7 again as a moduli space of
representations of; in K = SU(N).

We can restrict connections @ to X°, giving rise to a map : My, | 7 — Mg, with the image of
this map in fact being contained in the fixed point Ioa\a%. As in [4, §7], one sees that over the part
of the fixed point locus consisting of irreducible conneasipthis map is #(G)|-fold cover, though
we will not use this directly. The main pomts of relevanceds are the following: firstly, recall from
Lemma3.8 that given aVp with [Va] € M_, we can create a connectidfn on the mapping torus

P¢ thought of as a bundle ové&l}. Of particular relevance is that this implies thatm) only
depends on the restriction of a connectiomt’o(using Lemma3.9). In particular the Chern—Simons
functional takes the same value on all componentdf | 7 that restrict to the same component in

ML, the f-fixed point locus inM.

5.2 Localization

We will use the following special form of the Lefschetz—Rem—Roch theorem of Baum, Fulton and
Quart.

Theorem 5.1([15],[16]). Let M be a projective varietyl a line bundle over M, and f a finite order
automorphism of M that is lifted t§. Then we have

(5.2) DD tr(fHM, L9 > HI(M, £9) = Y deh(£¥],,) N 7a 0 L2(Ow),
i 4
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wherech is the Chern character, the sum is over all the fixed point camepts M of the action of f
on M, é; is the number by which f acts Qﬂ‘|,\,I , and
Y

LY : K;A(M) > Ko(M?) & C

and
7o . Ko(M?) = H,(M?)

are as defined in15, §2] and [16, page 180] respectively. If a fixed point componeritidcontained
in the smooth locus of M then

(5.3) chc!|,,,) N 7w © L2(Owm) = exp keu(£L ) U ch@?; M)™ U Td(Tw») N [M7],
where1”, M is as defined in4, p. 31].

A general overview of the theorem and its ingredients wasrgin [5, Appendix B]; we refer to
this for further details.
We can now move on to

Proof of Theorem..4. We apply Theorenb.1to the f-equivariant line bundli‘r‘)d over Mg. By The-
orem4.2 we have that the higher cohomology vanishes, hence the LHS.9fis exactly (.7). We
now combine {.4), (1.5 and (.6). In the RHS of 6.2) thea'; are by LemmaB.9 and the discussion

in Section5.1 exactly equal t&®%, whereq, is the corresponding element in G8¢, | 7). Here we
use the interpretation of the Chern—Simons functionalrgineAppendixA; the correspondence with

Lemma3.9is given in LemmaA.2. If M is smooth we have by}(2) that ct‘(L'éS|M(y7) = exp(kQ|M(77),

and we shall below abuse notation and denoteckjytlie cohomology clasécl (L'(‘:S) on all of M.
Hence we arrive at

Z{Ee, LD = Det(n) 3 )" % exp(k[ | ) N 7o (LEOM)
: ;

= Det(f) 2}’ [ezﬂ'k% > (H ([Q] | M;) n T.(LE(OMH))) kh],
Y h=0
establishing Theorerh.4, when combined with formuleb(3) above. O

5.3 Growth rate conjecture

Finally, we discuss the Growth Rate Conjecture for the link X;, i.e. Theoreni.6from the intro-
duction. In the closed case, this is a statement about diorenef fixed point components in relation
to the dimensions of certain twisted de Rham cohomologypgdar, alternatively, group cohomology
groups) that come from the relevant mapping torus. The colagy groups enter the picture as they
correspond to tangent spaces of the moduli spaces undedeatn. In the parabolic case, the tan-
gent space at a given conjugacy class ef-@aepresentation is no longer the full cohomology group but
ratherparabolic group cohomologgcfr. [20]), and so these will be the groups of interest to us.
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5.3.1 (Parabolic) group cohomology

Let us just briefly recall the construction of group cohonggian low rank. Letr be any group. Ar-
moduleis an abelian groupl with a left action ofr. The elements dN invariant under the action will
be denotedN”™. A cocycle onr with values in Nis a mapu : 7 — N satisfying the cocycle condition

u(gh) = u(g) + gu(h).

A coboundaryis a cocycle of the forng — ém(g) := m— gmfor somem € N. The set of cocycles
is denotedz'(rr, N), and the set of coboundaries is denoB3gr, N). We define the first cohnomology
group ofr with codficients ofN as the quotient

HY(r, N) = Z*(x, N)/BY(r, N).
Notice that an element &l satisfiessm = 0 exactly wherm € N”. We are thus led to define
HO(z, N) = N”.

We will now be interested in the case= 71(X°) — recall that we had given a particular presentation
of this in (2.2). Letnr denote the fundamental group of a gegusirfacex with n punctures.

Now, for everyp € Hom(r, K), = acts ont = Lie(K) by y.v = Ad(o(y))v, and we will denote by
Z\(r, Ad p) and B'(7r, Ad p) the corresponding spaces of cocycles and coboundariessasied in the
previous section.

We say that a cocycle € Z1(rr, Ad p) is parabolicif for everyi = 1,...,nthere is g € f such that
u(a) = ui — Adp(a)ui. The space of parabolic cocycles will be denoléglr(n, Adp). Then RO, (1.1)]
says that for an equivalence class Mg (using the incarnation of(3)), the Zariski tangent space at
pis

TM = Zga{m, Ad p) /B (m, Ad p) =: Ho(r, Ad p),

which we refer to as thrst parabolic (group) cohomology

5.3.2 Mapping tori and dimensions of fixed point components

Just like above, we can talk about the (parabolic) group cwhogy of; (note that in this section we
do not need to assume thatis of finite order). That is, suppose we have an element of ek
that restricts t@ onr = 71(£°), and that maps the newly introduced generatof 7s — see §.1) — to

g € K. We shall denote this homomorphism by d), we letH(Z¢, Ad(p, g)) be ther¢-invariant part
of {, and Hé‘ar(Zf,Ad(p, g)) as above; note that it still makes sense to talk about péicatiocycles by
regarding the boundary homotopy clasagBom n as elements in;.

Lemma5.2. We have
Hpalr, Ad(o, 0)) = image(H3(Z \ L, fad) = H'(Z¢ \ L, fad) -

Proof. We will mirror the discussion in40, p. 537]. The representatiop,@) : 7t — K induces a
linear representation af; ont, and hence a flat connection on the adjoint bundle, and aisistrd that
in this way we have

(5.5) HY (m1. Ad(p. @) = H* (¢ \ L. fag).
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sinceX? is aspherical. By slicin@s att = 0 and by choosing a closed neighbourhdcaround each
marked pointp;, whose (oriented) boundas'i1 = dD; is homotopic tag; € 7 C 75. If we let D; be the
corresponding neighbourhood of thth link component irk, with boundarySil, then we have a map

Hl{Ef \ U B/’ ’fad] - Hl[U é?,fad]-
i i
Like for surfaces, it follows from€1, Theorem 1] that under the identificatidb. %) we have

Hpads, Ad(p, @) = ker(E).

Finally remark that in the long exact sequence for pairs
e HO(U é?,fad) — Hl(zf \ U Di’, U gii,fad)
i i i
{Zf \ U Di ,fad] — H {US fad]

we can replac«Hl(Ef \ Ui Di%, U gli fad) by H1 (Zf \ L, fad) and IikewiseHl(Ef \ Ui Di, fad) by
HY (1 \ L. fag). O

For any f*-fixed point p] € Mg with g as before, one verifies thdt acts oanar(n, Adp) by
mappingu to y — ad@)u(f.y). We denote this action also Hy.

Proposition 5.3. Let[p] € Mgz be a fixed point of 1, and let[(p, g)] € Mse L7 for a suitable ge K.
Then thel-eigenspace f*, p) of the action of f on T, Mz = Héar(ﬂ, Ad p) has dimension

(5.6) dimEs(f*, p) = dim Hi,(xr, Ad(o, ) - dim HO(r¢, Ad(p, ).

Remark5.4. In the non-parabolic case this was proven using a Mayerelgesequence (cfr4] §7]).

As we could not find any corresponding reference in the pédiabase, and as we in fact only need a
small part of the exact sequence, we take a slightffedént approach here, based on an explicit and
concrete description of an exact sequence inspired by thney\&act sequence used B) §5.1]. This

is presented explicitly in terms of generatorsref which is the reason we work with (parabolic) group
cohomology rather than twisted de Rham cohomology.

Proof of Propositiors.3. We claim that there is an exact sequence

0 0
0 — H%y, Ad(p, g)) — HO(r, Ad p) - HO(x, Ad p)

1
2 Hiyre Ad(p. @) 25 Hy(r Adp) 25 iy Adp) — -+ |
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where the maps are the following:

o’V = v,
K0() = v Ad(g)v,
50)0) = W) = {O’ ven
V’ y - n’
Qol(u) = u|7r,
ut(u) = u—Ad(g) o f*u.

Here,
(Ad(9) © fru)(y) = Ad(g)u(f.y).

Assuming that we have this exact sequence, the Propodi@mfollows: first of all, the dimension of
the 1-eigenspace of Agfc f* on Héar(ﬂ, Adp) is exactly the dimension of kat, and one finds that
this equals the right hand side &.6) by applying exactness for each of the first six maps. For thés
precise expressions for each of the maps are not needed.

Let us ensure that all of the maps are well-defined and thaeihdhe sequence is exact. First of
all, if v € tis w¢-invariant, therv e t is z-invariant, sap°(v) € HO(x, Ad p). Likewise, ifv is z-invariant,
then so is Adg@)v (use the action of.,y onv), and the first exactness claim follows\as 7 ¢ -invariant
if and only if v = Ad(g)v.

Thate?! is well-defined is obvious. That ima! = keru! boils down to showing that = Ad(g) o f*u
for u € H(x¢, Ad(p, g)), which on the other hand follows by the cocycle conditias,

(Ad(9) f*u)(y) = Ad(p(m)u(f.y) = u(nf.y) — u(y)
= u(yn) — u(m) = u(y) + Ad(p(y))u(m) - u(n)
= u(y) — 6(u@m) ().

At this point, we should note that the same calculation alsmwvs that ifu is parabolic, then so is
Ad(g) o f*u, and one thus finds that is in fact well-defined.

To see thabt is well-defined, one readily checks thaiyn) = u,(nf.y) for v € n. Itis clear that
im ¢ C kerg! and that imu® C kers. Assume now thatlp] = 0. That is, that there existsiae g such
thatuy(y) = 1 — Ad(o(y))u for all y € n¢. Sinceuy(y) = 0 fory € &, we see that € HO(r, Ad p).
Moreover,v = U(17) = u — Ad(o(;7))u, and so kes C im 0. Finally, to see that kes* C im § suppose
thatu(y) = u—Ad(o(y))u for someu € g and ally € n, and letv = u(n) — (u—Ad(o())u). One then finds
by application of the cocycle condition thats m-invariant, and obviousiyy] = [w], soueimé§. O

We can link the groupiéar(nf,Ad(p, g)) with the codficients occurring in the statement of the
Growth Rate Conjecturé.2 and finally conclude with

Proof of Theoreni..6. It suffices to remark that it follows fronb(4) thatd, equals the dimension of
y-component ofMgz, which we claim for genericd] of that component equals the dimension of the
1-eigenspace of [, Mz. Hence the result follows from Propositién3.

To see the claim, I1e¥” be a fixedf *-fixed component, lefd] denote a smooth point iM?, and let
g be as before. We will show thag,;M” = Ey(f*, p).

Leta - [or(@)] = [EU@*O®)p(q)], @ € 7, denote a smooth path through],[completely contained
in MY. The tangent vector &t= 0 isu, which in general is an element blféar(n, Adp), and we claim
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thatu € E1(f*,p). For eacht, chooseg; € K so thatgio(f.a) = pi(a)g, go = 9. Differentiating this
equation and letting = 0, we find that

Gop(fia) + gu(f.@)o(f.@) = u(@)o(@)g + p(a)Qo.
Lettingm = gog~?* € Lie(K), this tells us that
U(e) = Ad(Q)u(f.a) + sm(a).

On the other hand, we claim that mapping Ei (o, f*) to $|._ [€"0], we end up an element ify,;; M.
Letting por = €Yp, we find that to first order ihand for alle € 7,

pu(foa) = @AM, 0) = Ad(g™)(E)p(f.)
= Ad(g )" “p(@)) = Ad(g pr(@),

which shows thatl| _ [€'p] € Ty, M?.

-

A The Chern-Simons functional of manifolds with links

A.1 Connections on3-manifolds with links

In this section, we discuss how to make sense of Chern—Simvalnes for flat connections on 3-
manifolds containing coloured framed links. The Chern-@imfunctionals will be defined an the
moduli space of all flat connections on the link complemeuatwill depend on the framing of the link.
Throughoutw = (a1, . .., an) denotes a tuple of elements in the Weyl alcove (at leveldt)nacessarily
in the weight lattice.

We begin by choosing a tubular neighbourhood around eaklcbmponent.;, with coordinates
(r,61,62), such thati(, 6,) are polar coordinates in the normal direction at each paintl such that
6, parametrises;. We want this choice to be adapted to the framing, in the stiradahe framing is
determined by the radial direction, (@ 6,). Consider the sefis; of smooth connections oX\ L, which
are of exactly the following form in these neighbourhoods$hefl;:

V =d + & 1061 + & 2d0>.

Of course we also want that exp{) lies in the conjucacy class of exp] we have associated to
L. We observe that the space of smooth gauge transformaiignghich are constant in the neigh-
bourhoods of each componentacts onAs.. We observe that any flat connection ¥n, L with the
required holonomy around is gauge equivalent to one of these, e.g. by using the eguizalof the
moduli space of flat connections on a tubular neighbourhddd minusL; is given by representations
of w1 of that neighboorhood and that one can get all represensafiom connections of the above
form. We also observe that two flat such connections are gaqggalent ff they are equivalent under
Gst. Now it is clear that the Chern—Simons functional is well defi onAg;, since the support of the
Chern-Simons 3-form has compact support and the functisi@ariant mod integers undéks;.
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A.2 The mapping torus case

Now, we will see that the Chern—Simons values we used in @e8tare actually the Chern—-Simons
values introduced above.

More precisely, assume that we are in the setup of Le@@adl hat is, letf : ¥ — X be an element
of Diff,(X,Z @) (as in Sectior3.3.1). In particular, f preserves the disjoint unioR of the disksD;
around the marked points . Assume thatVa] € Mg is a fixed point off and letg € Go s such that
Va? = f*Va. Letg be a path i@o,g with go = 9, 91 = €. Now, choose a proper subde{,» C int(D),
each component containing a marked point and assume forthey without loss of generality, that
0ip is the identity for allt.

Letﬁ be the connection oB; = [0, 1] x X°/ ~ given byﬁhoxm = V%‘. Choose a smooth cufio
functionh : ° — [0, 1] with hlp,, = 0, hipe = 1, and definér : Xt — [0, 1] by h(t, X) = h(x).

As in Section3, it makes sense to talk about the Chern—Simons vallﬁdhdependently of the
previous discussion.

Lemma A.1. Write A = 7*A andAg = 7*Ag. Then
CSA + Ag) = CSHA + Ay).

Proof. It suffices to notice that CS&+ Ag)ljo.11xp) = CS(BA + Ag)ljo.1jxp) = 0. This is the case as for
both connections, thiederivative vanishes by choice gf. O

Now, everything has been set up for the following result tlwho

Lemma A.2. By taking the natural tubular neighbourhood(ly = [0, 1] x D12/ ~ of L, adapted to
the framing by definition, thefmA + A0)|[0,1]xD§/2 extends to a connection ifig;, whose Chern—-Simons

functional, as defined in Sectioh1, agrees with the Chern—Simons functionalVHf as defined in
Section3.

B Dehn twist action

As we noticed in RemarR.12 in general Dehn twists around marked points will act ndnaity on the
Chern-Simons line bundle, even though they act triviallff@base moduli space. In this section, we
evaluate the lifted action of such a Dehn twist explicitlydas a corollary we show that the Asymptotic
Expansion Conjecture also holds for mapping tori for thesarbtwists.

Let p; € P be a given marked point with coordinate neighbourhdddZ) as in Sectior2, so that in
particular ¢, 6;) denote coordinates &; \ {p;}. Choose a smooth increasing functibn R — [0, 2r]
with the property thaff (0) = 0, f(1) = 2, f’(0) = f’(1) = 0. Leta; denote the Lie algebra element
whose exponential is the fixed holonomy aroymdWe assume the conditions of Theor8r6are met,
and in particular that; = ka; is a co-weight.

By a Dehn twist aroundy, we mean the dieomorphism (or its mapping clas$) : X° — X°
defined to be+;,6) — (7;,6 + f(r;)) on D; \ {p} and the identity everywhere else. As a map of
punctured surfaced; is isotopic to the identity o&° and thus acts trivially o z.

Proposition B.1. For every poin{Va] € Mg, the map induced by;Ton LES|[VA] is given by multipli-
cation byexp(-nik(ai, @i)) = exp( —nill(/lilz)'
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Proof. In this case it sfiices to calculate the Chern—Simons functional fay a G5 that matches a
specific difeomorphism realizing the Dehn twist, and a suitable conmests. Indeed, in general the
cocycle®* may be ill-defined when the Chern—Simons functional doesowterge foig € Gs \ Gogs,
and then the full two-step approach to constructing thebimedle, as in33, §5], is required. When it
is well-defined however (as will be the case below), the neiagpas in B3, Lemma 5.4] goes through,
and we explicitly get the lift ofy to the fibres of the trivial bundle ovéta andvi € As. Since the lift
(3.9 of the difeomorphism is trivial on the fibres, we find that the Dehn taids by the inverse of the
value the cocycle on the fibre (ﬂ*és over [Va] € Mg.

Let (r,0) = (13, 6;). Without loss of generality, we can assume t¥iattakes the fornd + «; dg on
D;. Indeed, evergos-orbit contains a smooth connectio®0[ Theorem 6.12], and every smooth flat
connection can be put in this forr83, Lemma 2.7]. We will now assume such a figt chosen. We
introduce for each € [0, 1] the mapf; : [0, o) X R/(27Z) — [0, o) x R/(27Z) given by

fi(r,0) = (r,0 + (L - t) (1)),

extending trivially to a mag; : Z° — X°. As in Section3.3.2 we get gauge transformatiogs such
that
fiVa= V3,

the only diference being that thg are now inGs but not inGos. Sincefo = T we haveV%J =T*Va.
Just as previously we now consider the gauge transtpom the trivial bundle over [A] x X° defined
by theg;, and we apply it tdva. It is straightforward to see that dh,

VAl = d+a;d + o (1- 1)/ (2)dr,

and hence we need to apply the Chern—Simons functionBl#oa; d6 + «; (1 — t) f’(r) dr on D;. Of
courseB A B A B = 0, and by direct calculation we find

BAdB= —(aj,ai)f'(r)dt A dr A d6.

Now sinceg; is trivial outsideD; we can omit all but [01] x D; from the integrand, and hence we have

il 7t _ 2rail? ™, il
CS@B) = o7 Lofe:o tzof(r)dt/\dr/\de_ 7 Lof(r)dr_ >

This gives®X(Va, go) = exp(%‘“'z), from which we finally conclude that acts by

oy —il 4|2
exp(-riklail?) = exp(—k
on the fibres of£¥ ¢ over all of M. O

RemarkB.2. Whena® = ka € Aﬂ‘), this agrees with the action @f in conformal field theory; herd;;

acts on conformal blocks by multiplication bytedependent root of unityﬁ';), an entry of the so-called
T-matrix, cf. e.qg. #2], [46].

Proposition B.3. The Asymptotic Expansion and Growth Rate Conjectures lool@®f, L) obtained
from mapping tori of fe (T; | i = 1,...,n) with A% as in Corollary1.5.
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Proof. That the quantum invariants in this case have asymptotiaresipns of the desired form follows
from RemarkB.2. That the phases occuring are the relevant Chern—-Simounss/ébllows from the
proof of PropositiorB.1; see in particular42, App. Al.

As follows also by RemarB.2, the growth rate of the quantum invariants is the growth cathe
spaces of conformal blocks, which on the other hand is thesdéion of the moduli space, i.e. the
dimension of the fixed point set @f, so the Growth Rate Conjecture follows from Propositofas
in the proof of Theoreni..6. O
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