Uncertainties: which intervention reduces the risk of preterm birth in women with risk factors?

Citation for published version:
Stock, S & Ismail, KMK 2016, ‘Uncertainties: which intervention reduces the risk of preterm birth in women with risk factors?’ BMJ. DOI: 10.1136/bmj.i5206

Digital Object Identifier (DOI):
10.1136/bmj.i5206

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published in:
BMJ

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Uncertainties: Which intervention reduces the risk of preterm birth in women with risk factors?

<table>
<thead>
<tr>
<th>Journal:</th>
<th>BMJ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manuscript ID</td>
<td>BMJ.2016.034695.R2</td>
</tr>
<tr>
<td>Article Type:</td>
<td>Practice</td>
</tr>
<tr>
<td>BMJ Journal:</td>
<td>BMJ</td>
</tr>
<tr>
<td>Date Submitted by the Author:</td>
<td>n/a</td>
</tr>
<tr>
<td>Complete List of Authors:</td>
<td>Stock, Sarah; University of Edinburgh MRC Centre for Reproductive Health, Obstetrics and Gynaecology Ismail, Khaled; University of Birmingham, College of Medical and Dental Sciences</td>
</tr>
<tr>
<td>Keywords:</td>
<td>Preterm Birth, Cervical Cerclage, Progesterone, Cervical Pessary, Cervical Length, Multiple Pregnancy, Suture Material</td>
</tr>
</tbody>
</table>
Uncertainties: Which intervention reduces the risk of preterm birth in women with risk factors?

Sarah J Stock¹, Khaled M K Ismail²*

¹Senior Clinical Lecturer and Subspecialist Maternal and Fetal Medicine
Tommy’s Centre for Maternal and Fetal Health
MRC Centre for Reproductive Health
University of Edinburgh Queen’s Medical Research Institute
Little France
Edinburgh
EH16 4TJ

²Professor of Obstetrics and Gynaecology
The Birmingham Centre for Women’s and Children’s Health
College of Medical and Dental Sciences
University of Birmingham
Edgbaston
Birmingham
B15 2TT

E-mail: k.ismail@bham.ac.uk

* Corresponding author

Search terms: Preterm Birth, Cervical Cerclage, Progesterone, Cervical Pessary,
Cervical Length, Multiple pregnancy, Suture material.
Introduction

The aim of preventing preterm birth is to improve the health of babies by prolonging pregnancy. Preterm birth (PTB), or delivery before 37 weeks gestation, affects 7.3% of pregnancies in the UK. Around 75% result from spontaneous preterm labour. The remaining 25% are induced for medical reasons and are not considered further in this article.

Who is at risk?

Specific obstetric clinical risk factors and/or ultrasound scan findings associated with an increased risk of spontaneous PTB are listed in box 1. However, these have poor predictive value. Women with multiple pregnancy are also at high risk of preterm birth, and their management is discussed in supplementary online material.

Box 1: Risk factors for PTB

<table>
<thead>
<tr>
<th>Clinical History*</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• History of mid-trimester loss</td>
<td></td>
</tr>
<tr>
<td>• History of preterm prelabour rupture of membranes in a previous pregnancy</td>
<td></td>
</tr>
<tr>
<td>• History of PTB in a previous pregnancy</td>
<td></td>
</tr>
<tr>
<td>• History of cervical treatment for CIN</td>
<td></td>
</tr>
</tbody>
</table>

The presence of any of these clinical risk factors can be considered a trigger for cervical length screening by transvaginal ultrasound scan.

Imaging:

• Short cervix (less than 25mm) on transvaginal ultrasound examination

Word Count: 1,427 (including online material)
Appraising the evidence

Three therapeutic interventions are available for women at risk of spontaneous PTB (Table 1). However, considerable uncertainty exists over the effectiveness of these interventions, in part because clinical trials are hard to perform. Large numbers of trial participants are needed because the majority of high-risk women will deliver at term, even without treatment. It is both difficult and expensive to include neonatal and childhood outcomes in trials, therefore trials mainly focus on rates of preterm birth, not longer-term health outcomes of babies. Furthermore, inconsistencies in definitions, inclusion criteria and outcomes in studies mean it is difficult to summarise trial data in meta-analyses, and difficult to interpret relevance of the findings to individual women in the clinic setting.

What is the evidence of uncertainty?

See Table 2 for summary of evidence.

Singleton Pregnancies

Cervical Cerclage

An individual patient data (IPD) meta-analysis (5 RCTs involving 504 women) and a systematic review (12 RCTs involving 3328 women) showed that cervical cerclage delayed the gestational age at delivery and reduces PTB in women at risk of early delivery. There was no statistically significant difference in perinatal mortality with cerclage. The IPD meta-analysis, which only included women with a short cervix (25mm), showed a reduction in composite neonatal morbidity in the cerclage group. However, no reduction in morbidity was seen in the larger meta-analysis of summary
data, where participants in the included studies had a more diverse range of risk factors for PTB. For women, higher rates of vaginal discharge, vaginal bleeding, pyrexia, and caesarean section were found in those who underwent cerclage.

Vaginal Progesterone

An IPD meta-analysis (5 RCTs involving 775 women and 827 infants) and a systematic review (36 RCTs involving 8523 women and 12,515 infants) support vaginal progesterone use to reduce PTB in women with singleton pregnancies at risk of PTB. The results of both systematic reviews are mainly driven by one RCT in which all pregnant women were screened for cervical length with transvaginal ultrasound and progesterone given if the cervix was 10-20mm. It is difficult to interpret these data where universal screening of cervical length in pregnancy is lacking, such as in the UK.

A large UK based RCT (OPPTIMUM) was published after these systematic reviews and the release of NICE guidelines. OPPTIMUM is the largest RCT of vaginal progesterone and the only one powered to include a childhood primary outcome. It included women at risk of PTB (Box 1) and found that vaginal progesterone did not reduce any of the primary outcomes: PTB, neonatal death or severe morbidity, or the childhood neurodevelopment development (standardised cognitive score (Bayley-III)) at 2 years of age. There were no harms associated with progesterone use.

Cervical Pessary

Two randomised trials of several hundred women have evaluated the Arabin pessary with a short cervix on transvaginal ultrasound. The smaller trial reported a
benefit in using the pessary, whilst the larger trial found no statistically significant difference in PTB rate between women randomised to cervical pessary and those randomized to expectant management.

Comparison of treatments to prevent PTB

As yet there are no reported trials comparing the effectiveness of cervical cerclage, progesterone supplementation and cervical pessary against each other when used in isolation or in combined management strategies in women at risk of PTB.

Multiple Pregnancies

Overall there is less evidence regarding management in multiple pregnancies. See Table 3 (online) for summary of evidence.

Cervical cerclage

A systematic review found no evidence that cervical cerclage reduces PTB in women with multiple pregnancy. However, only 128 women with multiple pregnancy were included, firm conclusions about benefits and harms cannot be made.

Vaginal progesterone

Evidence from an IPD meta-analysis of 1,7345 women with multiple pregnancies shows no benefit from vaginal progesterone in this group as a whole. However, progesterone did reduce poor perinatal outcome in a small subgroup of 116 women who had both multiple pregnancy and a short cervix. Further evidence is required to confirm this observation.
Cervical pessary

Two randomised controlled trials included twin pregnancies with no other risk factors for preterm birth and found there was no difference between cervical pessary compared to routine care. A third randomised controlled trial, confined to women with multiple pregnancy and a short cervix has recently been published, and did show a reduction in PTB with a cervical pessary.

Is ongoing research likely to provide relevant evidence?

Clinical trials addressing uncertainties in clinical management of women at risk of spontaneous PTB were identified through a search of clinical trials databases (Box 2) and are summarized in table 4. Only two of the five identified studies (C-STITCH and STOPPIT-2) have primary outcomes focused on mortality or neonatal health, with other studies using the surrogate outcome of gestation at delivery.

An individual patient data meta-analysis of vaginal progesterone to prevent preterm birth is planned by the US Patient Centred Outcomes Research Initiative (http://www.pcori.org), which should help clarify whether progesterone is effective, and if so, which women should be offered it.

It is essential that future studies use standard definitions, protocols and core outcomes so that data regarding important, but uncommon outcomes (like neonatal mortality) can be readily synthesized and guide decision-making.
Box 2: Search Strategy

We searched clinical trials databases (www.controlled-trials.com/isrctn;/ http://clinicaltrials.gov/) and the UKCRN Portfolio database (http://public.ukcrn.org.uk/search/) with search terms relating to PTB, miscarriage, perinatal mortality and neonatal morbidity. We also had personal communication with the Royal College of Obstetricians and Gynaecologists Preterm Birth Clinical Study Group.

What should we do in the light of the uncertainty?

Parents should be aware that a reduction in incidence of early delivery may not necessarily translate into improved health in children.

It is reasonable to follow NICE (UK) guidance on the prevention of preterm birth and offer cervical cerclage when there has been a previous PTB, midtrimester loss, preterm prelabour rupture of membranes or cervical treatment, and the cervix is short

6. Alternatively, progesterone may be offered
6, however, the OPPTIMUM trial, (published after the NICE guideline), showed no benefit of vaginal progesterone in this group 13. We were unable to find any international guidance relating to prevention of preterm birth.

We believe that further evidence is needed before offering the cervical pessary out of a research setting 14 15.

In our opinion women with multiple pregnancies should not be offered treatments to prevent PTB (except in the context of clinical trials) as no clear benefit has been
shown. We suggest that clinicians share the uncertainly about PTB and offer women the opportunity to participate in relevant clinical trials.

What you need to know

- The best intervention for prevention of spontaneous PTB in women with risk factors is still unclear. In women with a singleton pregnancy risk of PTB and a short cervix, the evidence for use of cervical cerclage is clearer than that for progesterone or cervical pessary.
- Discuss with parents that prevention of preterm delivery may not necessarily translate into improved health in children.

BOX 3 Recommendations for future research

Future research should:

- Use standard definitions, protocols and core outcomes so that data can be meta-analysed.
- Be adequately powered for important outcomes including neonatal morbidity and perinatal mortality, rather than surrogate outcomes such as PTB.
- Include consent to allow follow-up studies so that long term outcomes can be determined.
- Data from trials should be made available for subsequent meta-analysis.

How patients were involved in the creation of this article
“Which interventions are most effective to predict or prevent PTB?” was the number one uncertainty prioritised by the James Lind Alliance PTB Priority Setting Partnership, which brings together patients, carers and clinicians in partnership to identify and prioritise research questions and uncertainties relating to a healthcare problem. No patients were directly involved in creating this article.

References

Contributors

SJS and KMKI planned the organization, content, and structure of the article. SJS performed the literature search and drafted the article, with crucial edits and additions from KMKI. Both authors participated in subsequent revisions. KMKI is guarantor.

Disclosure Statement
We have read and understood the BMJ policy on declaration of interests and declare
the following interests: SJS is an unpaid representative on Scottish Governmental
Advisory Groups, and a member of the RCOG Preterm Birth Clinical Study Group
and has received travel expenses to attend meetings relating to these roles. SJS is
chief investigator and a co-investigator in trials relating to preterm birth funded by
NIHR HTA, and the institution she works at has also received research funding from
Sparks, Tommy’s and the British Maternal and Fetal Medicine (BMFMS) Society.
SJS has been provided with ultrasound equipment and software for use in studies of
preterm birth research from GE and Philips. SJS has received Honoraria for
contributing to book chapters, and travel and accommodation expenses as an invited
speaker at conferences and academic institutions. KMKI is chief investigator for C-
STICH, funded by NIHR HTA. KMKI receives travel and accommodation expenses
as an invited speaker at conferences and academic institutions; however, honoraria or
royalty fees generated from academic activities funds academic activities related to
women’s health. The authors had no support from any organization for the submitted
work. The authors grant the publishers a worldwide license.

Acknowledgments
The authors would like to thank members of the RCOG Preterm birth Clinical Study
Group for advice on future research recommendations and information on ongoing
trials.

Licence for Publication
The Corresponding Author has the right to grant on behalf of all authors and does
grant on behalf of all authors, an exclusive licence (or non exclusive for government
employees) on a worldwide basis to the BMJ Publishing Group Ltd to permit this
article (if accepted) to be published in BMJ and any other BMJPL products and
sublicences such use and exploit all subsidiary rights, as set out in our licence
(http://group.bmj.com/products/journals/instructions-for-authors/licence-forms).
<table>
<thead>
<tr>
<th>Treatment</th>
<th>What is it?</th>
<th>Usual Timing</th>
<th>Evidence and Guidance for use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cervical Cerclage</td>
<td>A purse string suture that strengthens and tightens the cervix. Usually inserted under regional (spinal) or general anaesthesia.</td>
<td>Inserted between 12 and 24 weeks gestation, and removed at 37 weeks gestation or if there are signs of labour before this.</td>
<td>Current NICE guideline recommends offering cerclage to women with a clinical risk factor (Box 1) and a short cervix on ultrasound (<25mm) but mainly low or moderate quality evidence.</td>
</tr>
<tr>
<td>Progesterone supplements</td>
<td>Intravaginal progesterone is the only formulation available in the UK. Usually prescribed as once daily pessaries.</td>
<td>Commenced between 16 and 22 weeks gestation, and continued to 34-36 weeks gestation.</td>
<td>Current NICE guideline recommends offering vaginal progesterone to women with a clinical risk factor (Box 1) and/or a short cervix on ultrasound (<25mm) but mainly low or moderate quality evidence.</td>
</tr>
<tr>
<td>Cervical Pessary (Arabin)</td>
<td>A silicon ring that sits over the cervix and works by supporting the cervix and tilting it posteriorly. No anaesthesia or analgesia is required for insertion. There is only one cervical pessary on the market – Arabin.</td>
<td>Inserted between 18 and 22 weeks gestation, and removed at 37 weeks gestation or if there are signs of labour before this.</td>
<td>Not reviewed in current NICE guideline.</td>
</tr>
</tbody>
</table>

Table 1: Treatment options for preterm birth
Table 2

<table>
<thead>
<tr>
<th>Study design</th>
<th>Population</th>
<th>Intervention/Comparator</th>
<th>Reduction in PTB?</th>
<th>Reduction in Perinatal Mortality?</th>
<th>Reduction in Adverse Neonatal Outcome?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cervical Cerclage</td>
<td>Cervical length less than 25mm</td>
<td>Cervical Cerclage/Expectant Management</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>(5 trials; 504 women/infants)</td>
<td></td>
<td></td>
<td><35 weeks 28.4% vs 41.3% RR 0.70 95% CI 0.55–0.89 (5 trials; n=504)</td>
<td>8.8% vs 13.8% RR 0.65 95% CI 0.40–1.07 (5 trials; n=504)</td>
<td>12.8% vs 20.1% RR 0.64 95% CI 0.43–0.96 (5 trials; n=504)</td>
</tr>
<tr>
<td>Systematic review and IPD level meta-analysis [7]</td>
<td></td>
<td></td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8.8% vs 13.8% RR 0.65 95% CI 0.40–1.07 (5 trials; n=504)</td>
<td>12.8% vs 20.1% RR 0.64 95% CI 0.43–0.96 (5 trials; n=504)</td>
<td>17.5% vs 23.2% RR 0.82 95% CI 0.61, 1.09 (4 trials; n=817)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Yes</td>
<td>9.7% vs 17.3% RR 0.57 95% CI, 0.40-0.81 (5 trials; n= 827)</td>
<td>9.7% vs 17.3% RR 0.57 95% CI, 0.40-0.81 (5 trials; n= 827)</td>
</tr>
<tr>
<td></td>
<td>Systematic review and meta-analysis of summary statistics (8 trials; 2392 women, 2391 infants) [8]</td>
<td>High risk of preterm birth (history and/or short cervix)</td>
<td>Cervical Cerclage/Expectant Management</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><34 weeks 17.6% vs 23.1% RR 0.79 95% CI 0.61-1.00 (8 trials; n=2392)</td>
<td>8.4% vs 10.7% RR 0.78 95% CI 0.61, 1.09 (4 trials; n=817)</td>
<td>17.5% vs 23.2% RR 0.82 95% CI 0.61, 1.09 (4 trials; n=817)</td>
</tr>
<tr>
<td></td>
<td>Systematic review and IPD level meta-analysis (5 trials; 775 women, 827 infants) [9] **</td>
<td>Cervical length of ≤25mm</td>
<td>Vaginal Progesterone/Placebo</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><34 weeks 16.0% vs 27.1% RR 0.61 95% CI 0.47–0.81 (5 trials; n= 775)</td>
<td>3.4% vs 5.3% RR 0.63 95% CI 0.34-1.18 (5 trials; n= 775)</td>
<td>9.7% vs 17.3% RR 0.57 95% CI, 0.40-0.81 (5 trials; n= 827)</td>
</tr>
<tr>
<td></td>
<td>Systematic review and meta-analysis of summary statistics (5 trials; 1165 women/infants) [10]</td>
<td>Previous preterm delivery</td>
<td>Vaginal Progesterone*/Placebo or no treatment</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><34 weeks 3.5% vs 21.7% RR 0.21 95% CI 0.34- 1.29</td>
<td>3.7% vs 5.6% RR 0.67 95% CI 0.34- 1.29</td>
<td>-</td>
</tr>
<tr>
<td>Study Type</td>
<td>Intervention Details</td>
<td>Outcome Measures</td>
<td>RR/95% CI (N)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---</td>
<td>--</td>
<td>------------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Systematic review and meta-analysis of summary statistics (2 trials; 732 women/infants) [10]</td>
<td>Ultrasound identified short cervix</td>
<td>Vaginal Progesterone*/Placebo</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>95% CI 0.10-0.44 (4 trials; n=454)</td>
<td>(2 trials; n=752)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><34 weeks 20.8% vs 36%</td>
<td>RR 0.58 95% CI 0.38-0.87 (1 trial; n=250)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.0% vs 5.3%</td>
<td>RR 0.56 95% CI 0.27-1.17 (2 trials; n=732)</td>
<td></td>
</tr>
<tr>
<td>Randomised Control Trial (1228 women/infants) [13]</td>
<td>High risk of PTB (history &/or short cervix or positive fetal fibronectin + clinical risk factor)</td>
<td>Vaginal Progesterone*/Placebo</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><34 weeks 18% vs 16%</td>
<td>Unadjusted OR 1.14 95% CI 0.41-3.17</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1% vs 1%</td>
<td>Adjusted OR 0.62 10% vs 7% 95% CI 0.38-1.03</td>
<td></td>
</tr>
<tr>
<td>Randomised Trial (1 trial; 385 women/infants) [14]</td>
<td>High risk of preterm birth (history and/or short cervix)</td>
<td>Cervical Pessary/Expectant Management</td>
<td>Yes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>95% CI 0.13-0.43 (1 trial; n=385)</td>
<td>(2 trials; n=732)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td><34 weeks 6.3% vs 26.8%</td>
<td>RR 0.24 95% CI 0.0-0.0</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0 vs 0.5%</td>
<td>RR 0.0 95% CI 0.0-0.0</td>
<td></td>
</tr>
<tr>
<td>Cervical Pessary</td>
<td>Ultrasound identified short cervix (=25mm)</td>
<td>Cervical Pessary/Expectant Management</td>
<td>No</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Randomised Trial (932 women/infants) [15]</td>
<td></td>
<td></td>
<td><34 weeks 12.0% vs 10.8%, OR 1.12</td>
<td>OR 1.38 95% CI 0.63-3.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.2% vs 2.4%</td>
<td>6.7% vs 5.7%, OR 1.18 95% CI 0.69-2.03</td>
<td></td>
</tr>
</tbody>
</table>

Summary data of Systematic Reviews of Randomised Trials of Interventions to Prevent Preterm Birth (PTB) in Women with Risk Factors and Singleton Pregnancy.
We performed searches in Medline and the Cochrane Libraries using search terms for PTB combined with terms for progesterone, cervical pessary, Arabin and cervical cerclage and a filter for systematic reviews of randomized control trials restricted to studies in humans.

*This review included data from trials of intramuscular 17 alpha hydroxyprogesterone acetate, which is not available in the UK. Data presented here are restricted to those relating to vaginal progesterone.

** review included some multiple pregnancies

IPD : Individual patient level data meta-analysis

RR: Risk Ratio

OR: Odds Ratio

CI: Confidence Interval

Yes and No indicate statistically significant difference in outcome
<table>
<thead>
<tr>
<th>Study design</th>
<th>Population</th>
<th>Intervention/Comparator</th>
<th>Reduction in PTB?</th>
<th>Reduction in Perinatal Mortality?</th>
<th>Reduction in Adverse Neonatal Outcome?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cervical Cerclage</td>
<td>Multiple pregnancy</td>
<td>Cervical Cerclage vs Expectant Management</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Systematic review and meta-analysis of summary statistics (5 trials, 128 women, 262 infants) [16]</td>
<td></td>
<td></td>
<td>46.2% vs 31.8% RR 1.16 95% CI 0.44-3.06 (4 trials; n = 83)</td>
<td>19.2% vs 9.5% RR 1.74 95% CI 0.92-3.28 (5 trials, n = 262)</td>
<td>40.4% vs 20.3% RR 1.54 95% CI 0.58-4.11 (3 trials; n = 116)</td>
</tr>
<tr>
<td>Vaginal Progesterone</td>
<td>Multiple pregnancy</td>
<td>Vaginal Progesterone* vs Expectant Management</td>
<td>No <35 weeks</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Systematic review and IPD level meta-analysis (7 trials; 1,735 women, 3470 infants) [17]</td>
<td></td>
<td></td>
<td>26% vs 28% RR 0.94 95% CI 0.8-1.1 (7 trials; n=1,735)</td>
<td>2% vs 2% RR 0.97 95% CI 0.65-1.4 (7 trials; n=3,470)</td>
<td>13% vs 13% RR 0.97 95% CI 0.83-1.1 (7 trials; n=3,470)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Short cervix subgroup 26.8% vs 63.5% RR 0.57 95% CI 0.47-0.70 (n=116) **</td>
</tr>
<tr>
<td>Cervical Pessary</td>
<td>Multiple pregnancy</td>
<td>Cervical Pessary vs Expectant Management</td>
<td>No</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Randomised Trial (808 women; 1634 infants) [18]</td>
<td></td>
<td></td>
<td>4% vs 4% RR 0.83 95% CI 0.41-1.68 (1 trial; n=1,634)</td>
<td>13% vs 14% RR 0.98 95% CI 0.69-1.39 (1 trial; n=1,634)</td>
<td>Short cervix subgroup 12% vs 29% **</td>
</tr>
<tr>
<td>Randomised Trial [1,180 women; 2,354 infants][19]</td>
<td>Twins</td>
<td>Cervical Pessary vs Expectant Management</td>
<td>No</td>
<td><34 weeks 13.6% vs 12.9% RR 1.05 95% CI 0.79-1.44</td>
<td>No</td>
</tr>
<tr>
<td>Randomised Trial [137 women; 274 infants] [20]</td>
<td>Twins and short cervix (≤25mm)</td>
<td>Cervical Pessary vs Expectant Management</td>
<td>Yes</td>
<td><34 weeks 16.2% vs 39.4% RR 0.41 95% CI 0.22-0.76</td>
<td>No</td>
</tr>
</tbody>
</table>

Table 3: Summary data of Systematic Reviews of Randomised Trials of Interventions to Prevent Preterm Birth (PTB) in Women with Risk Factors and Multiple Pregnancy.

We performed searches in Medline and the Cochrane Libraries using search terms for PTB combined with terms for progesterone, cervical pessary, Arabin and cervical cerclage and a filter for systematic reviews of randomized control trials restricted to studies in humans.
*This review included data from trials of intramuscular 17 alpha hydroxyprogesterone acetate, which is not available in the UK. Data presented here are restricted to those relating to vaginal progesterone.

IPD: Individual patient level data meta-analysis

RR: Risk Ratio

OR: Odds Ratio

CI: Confidence Interval

Yes and No indicate statistically significant difference in outcome
<table>
<thead>
<tr>
<th>Title</th>
<th>Setting [Trial Registration or ID] Funder</th>
<th>Population</th>
<th>Intervention</th>
<th>Comparator(s)</th>
<th>Primary Outcome</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-STITCH: Cerclage suture Type for an Insufficient Cervix and its effect on Health outcomes) UK Multicentre [ISRCTN15373349] NIHR HTA</td>
<td>Women with singleton pregnancy and indication for cervical cerclage (n=900).</td>
<td>Cervical cerclage using monofilament (nylon) suture</td>
<td>Cervical cerclage using multifilament (Mersilene tape) suture</td>
<td>Pregnancy loss rate (miscarriage and perinatal mortality, defined as any still birth or neonatal death in the first week of life)</td>
<td>Primary outcome influenced by patient and public involvement group, and chosen as most relevant to pregnant women.</td>
<td></td>
</tr>
<tr>
<td>MAVRIC: A multicentre randomised controlled trial of transabdominal versus transvaginal cervical cerclage UK Multicentre [ISCTRN33404560] The Moulton Charitable Foundation</td>
<td>Women with singleton pregnancy and previous failed vaginal cerclage (n=133)</td>
<td>Abdominal Cerclage</td>
<td>High or Low Vaginal Cerclage</td>
<td>Spontaneous PTB < 32 weeks</td>
<td>Recruitment closed and reports in preparation</td>
<td></td>
</tr>
<tr>
<td>SuPpORT: Stitch, Progesterone or Pessary: a Randomised Trial UK Multicentre [EudraCT 2015-000456-15] NIHR Research Fellowship</td>
<td>Women with singleton pregnancy at high risk of spontaneous preterm birth with a short cervix (~25mm) (n=540)</td>
<td>Cervical Cerclage</td>
<td>Vaginal Progesterone 200mg or Cervical Pessary</td>
<td>Delivery <37 weeks</td>
<td>2 trials comparing interventions in women with risk factors for PTB.</td>
<td></td>
</tr>
<tr>
<td>ReCAP: Randomised Trial into Prevention of Preterm Birth: Feasibility Study UK 2 Centres [UKCRN ID 18675]</td>
<td>Women with singleton pregnancies at high risk of spontaneous preterm birth with a short cervix</td>
<td>Cervical Cerclage</td>
<td>Vaginal Progesterone 200mg or Cervical Pessary</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>NIHR RfPB</td>
<td>(<3rd centile) (Feasibility – no specified sample size)</td>
<td>Pessary</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td>---------</td>
<td>-------------</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: HTA: Health Technology Assessment, RfPB: Research for Patient Benefit, PTB: Preterm Birth