Evaluating the inevitability of a phonological change: /æ/ in Philadelphia

Citation for published version:
Fruehwald, J & Sneller, B 2016, 'Evaluating the inevitability of a phonological change: /æ/ in Philadelphia', 24th Manchester Phonology Meeting, Manchester, United Kingdom, 26/05/16 - 28/05/16.

Link:
Link to publication record in Edinburgh Research Explorer

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and/or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Evaluating the inevitability of a phonological change: /æ/ in Philadelphia

What is happening to /æ/ in Philadelphia?
2 allophones of /æ/:
• “Tense”: [iə ~ ɛ:].
• “Lax”: [æ].

The complex Philadelphia System (Philly) of distributing these allphones is being replaced by the simpler Nasal System (Nasal).

Questions:
Overarching question:
• Is it inevitable that a system as complex as Philly would be replaced by Nasal?

Specific questions:
• What is the likelihood that given Philly input data, learners would hypothesize a Nasal grammar?
• Once both Philly and Nasal grammars are available, is Nasal destined to win in grammar competition?
Outline

• A brief overview of the Philly and Nasal systems.
• A productivity analysis to see whether a Nasal grammar is plausible given Philly input.
• A grammar competition analysis to see whether Nasal is destined to replace Philly.
 • A brief diversion into challenges we faced when trying to apply grammar competition models to phonology.

The Philadelphia and Nasal Systems

The Philadelphia System

Lexical Exceptions:

- if $\alpha \in L_{tense}$ then α
- if $\alpha \in L_{lax}$ then α

Phonological Regularity

- if $\alpha \in x$ and $\{\alpha\}_{\text{stem}}$ and $x \in P$ such that
 - $P = (\text{nasals} \cup \text{voiceless fricatives}) \cap \text{anterior}$
 - then α
- else α

The Philadelphia System

Anteriority:

- lax \rightarrow

<table>
<thead>
<tr>
<th>ham</th>
<th>ban</th>
<th>cash</th>
<th>bang</th>
</tr>
</thead>
<tbody>
<tr>
<td>calf</td>
<td>path</td>
<td>pass</td>
<td></td>
</tr>
</tbody>
</table>

Syllabicity:

- lax \rightarrow

<table>
<thead>
<tr>
<th>ham</th>
<th>hammer</th>
</tr>
</thead>
<tbody>
<tr>
<td>cast</td>
<td>castle</td>
</tr>
</tbody>
</table>
The Philadelphia System: Abstractness

Affixation ← tense lax →
class classes classing classic
man Manning manning

Truncation ← tense lax →
mathematics math
examination exam

Syncope ← tense lax →
family:
[fæ.mə.li] & [fæm.li]
camera:
[kæ.mə.ro] & [kæm.ro]

Assimilation ← tense lax →
fan club: [fæn.ˈklʌb] [fæn.ˈkləb]
fang club: [fæŋ.ˈklʌb] [fæŋ.ˈkləb]

The Philadelphia System: Lexical Exceptions

L_{lax} \{(ran, swam, began, and, can, than), aspirin, carafe, alas\}

L_{tense} \{mad, bad, glad\}
The Philadelphia System

Basic segmental conditioning
+ Complicated morphological interactions
+ Lexical exceptions

Tensing of /æ/ before anterior, tautosyllabic [nasals, voiceless fricatives]

Applies at stem level

Inflectional vs. derivational morphemes

Learned words

Class 3 strong verbs (past tense)

Mad, bad, glad

- ask
- aspirin
- carafe
- ran
- swam
- began
- mad
- bad
- glad

Productivity Analysis

The similarity between Philly and Nasal

Philly: Tensing of /æ/ before anterior, tautosyllabic [nasals, voiceless fricatives]
Nasal: Tensing of /æ/ before [nasals]

<table>
<thead>
<tr>
<th>Condition</th>
<th>Example</th>
<th>Philly</th>
<th>Nasal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ant. tautosyll. voiceless Fric</td>
<td>pass</td>
<td>tense</td>
<td>lax</td>
</tr>
<tr>
<td>MBG exceptions</td>
<td>mad, bad, glad</td>
<td>tense</td>
<td>lax</td>
</tr>
<tr>
<td>Anterior tautosyll. nasals</td>
<td>man, ham</td>
<td>tense</td>
<td>tense</td>
</tr>
<tr>
<td>Anterior heterosyll. nasals</td>
<td>hammer, manage</td>
<td>lax</td>
<td>tense</td>
</tr>
<tr>
<td>Posterior nasals</td>
<td>hang, bank</td>
<td>lax</td>
<td>tense</td>
</tr>
<tr>
<td>Nasal exceptions</td>
<td>ran, and</td>
<td>lax</td>
<td>tense</td>
</tr>
<tr>
<td>Elsewhere</td>
<td>cat</td>
<td>lax</td>
<td>lax</td>
</tr>
</tbody>
</table>

Yang’s Productivity Model

Tolerance Principle: A productive rule can handle $N / \ln(N)$ exceptions

Is the Nasal system a plausible rule, given Philly input?

<table>
<thead>
<tr>
<th>Token (Philly)</th>
<th>Expectation (Nasal)</th>
<th>Exception?</th>
</tr>
</thead>
<tbody>
<tr>
<td>mǣn</td>
<td>mǣn</td>
<td>no</td>
</tr>
<tr>
<td>cæt</td>
<td>cæt</td>
<td>no</td>
</tr>
<tr>
<td>bāed</td>
<td>bāed</td>
<td>yes</td>
</tr>
</tbody>
</table>

$T = \text{total number of exceptions}$

$N = \text{total number of } /æ/ \text{ words}$
Applying Tolerance Principle
CHILDES database (MacWhinney, 2000)

Applying Tolerance Principle: most frequent words

Productivity Wrap Up

Grammar Competition
Philly and Nasal in competition

Yang’s Grammar Competition Model

Fitness (G) = proportion of unambiguously ‘G’ clauses it generates out of all the clauses it generates.
If Fitness(G1) > Fitness(G2), G1 wins.

V2 and SVO competing

The Challenge in Applying Competition to Phonology

<table>
<thead>
<tr>
<th>Ambiguous</th>
<th>Fitness(G) = proportion unambiguous</th>
</tr>
</thead>
<tbody>
<tr>
<td>h[ǣ]m, clæt</td>
<td>0.8</td>
</tr>
<tr>
<td>Nasal Advantage</td>
<td>h[ǣ]mmer, h[ǣ]ng, clæ[st], blæid</td>
</tr>
<tr>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>Philly Advantage</td>
<td>h[ǣ]mmer, h[ǣ]ng, clæ[st], blæid</td>
</tr>
<tr>
<td>0.2</td>
<td></td>
</tr>
</tbody>
</table>

The Challenge in Applying Competition to Phonology

<table>
<thead>
<tr>
<th>Ambiguous</th>
<th>Fitness(G) = lax where other has tense</th>
</tr>
</thead>
<tbody>
<tr>
<td>h[ǣ]m, clæt</td>
<td>0.8</td>
</tr>
<tr>
<td>Nasal</td>
<td>h[ǣ]mmer, h[ǣ]ng</td>
</tr>
<tr>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>Philly</td>
<td>clæ[st], blæid</td>
</tr>
<tr>
<td>0.2</td>
<td></td>
</tr>
</tbody>
</table>

van der Feest & Fikkert (2015) found children detected default-for-marked errors, but not marked-for-default.

Noisy Harmonic Grammars

Constraint Set =

\[æ, *ä, *æ, \ldots \]

\[æm, *äm, *æm, \ldots \]

\[æn, *än, *æn, \ldots \]

\[æs, *äš, *æs, \ldots \]

\[æp, *äp, *æp, \ldots \]

...}

10 chains, 9,000 training iterations

Harmonic Grammar Results

Conclusions
Conclusions