Evaluating the inevitability of a phonological change: /æ/ in Philadelphia

Citation for published version:
Fruehwald, J & Sneller, B 2016, 'Evaluating the inevitability of a phonological change: /æ/ in Philadelphia' 24th Manchester Phonology Meeting, Manchester, United Kingdom, 26/05/16 - 28/05/16,

Link:
Link to publication record in Edinburgh Research Explorer

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Evaluating the inevitability of a phonological change: /æ/ in Philadelphia

What is happening to /æ/ in Philadelphia?

2 allophones of /æ/:
- "Tense": [iə ~ ɛː]
- "Lax": [æ]

The complex Philadelphia System (Philly) of distributing these allphones is being replaced by the simpler Nasal System (Nasal)

Questions:

Overarching question:
- Is it inevitable that a system as complex as Philly would be replaced by Nasal?

Specific questions:
- What is the likelihood that given Philly input data, learners would hypothesize a Nasal grammar?
- Once both Philly and Nasal grammars are available, is Nasal destined to win in grammar competition?
Outline

- A brief overview of the Philly and Nasal systems.
- A productivity analysis to see whether a Nasal grammar is plausible given Philly input.
- A grammar competition analysis to see whether Nasal is destined to replace Philly.
 - A brief diversion into challenges we faced when trying to apply grammar competition models to phonology.

The Philadelphia and Nasal Systems

The Philadelphia System

Lexical Exceptions:

\[
\begin{align*}
\text{if } \ae \in L_{\text{tense}} & \text{ then } \ae \\
\text{if } \ae \in L_{\text{lax}} & \text{ then } \ae
\end{align*}
\]

Phonological Regularity

\[
\begin{align*}
\text{if } \ae \in x \in [\text{stem}] & \text{ and } x \in P \text{ such that } \\
P = (\text{nasals } \cup \text{voiceless fricatives}) \cap \text{anterior } & \text{ then } \ae \\
\text{else } & \ae
\end{align*}
\]

The Philadelphia System

Anteriority:

\[
\begin{array}{c|c|c}
\text{ham} & \text{ban} & \text{bang} \\
\text{calf} & \text{path} & \text{pass} & \text{cash}
\end{array}
\]

Syllabicity:

\[
\begin{array}{c|c|c}
\text{ham} & \text{hammer} \\
\text{cast} & \text{castle}
\end{array}
\]
The Philadelphia System: Abstractness

Affixation

<table>
<thead>
<tr>
<th>class</th>
<th>classes</th>
<th>classing</th>
<th>classic</th>
</tr>
</thead>
<tbody>
<tr>
<td>man</td>
<td>manning</td>
<td>Manning</td>
<td></td>
</tr>
</tbody>
</table>

Truncation

mathematics	math
examination	exam

The Philadelphia System: Abstractness

Affixation

<table>
<thead>
<tr>
<th>class</th>
<th>classes</th>
<th>classing</th>
<th>classic</th>
</tr>
</thead>
<tbody>
<tr>
<td>man</td>
<td>manning</td>
<td>Manning</td>
<td></td>
</tr>
</tbody>
</table>

Truncation

mathematics	math
examination	exam

The Philadelphia System: Abstractness

Syncope

| family: [fæ.mə.li] & [fæm.li] |
| camera: [kæ.mə.ro] & [kæm.ro] |

Assimilation

| fan club: [fæn.klʌb] [fæŋ.klʌb] |
| fang club: [fæŋ.klʌb] |

The Philadelphia System: Lexical Exceptions

L_{lax} {ran, swam, began, and, can, than}, aspirin, carafe, alas

L_{tense} {mad, bad, glad}
The Philadelphia System

Tensing of /æ/ before anterior, tautosyllabic [nasals, voiceless fricatives]
Applies at stem level

Inflectional vs. derivational morphemes
Learned words
Class 3 strong verbs (past tense)
Mad, bad, glad

Productivity Analysis

Yang’s Productivity Model

T ≤ N / ln(N)
Tolerance Principle: A productive rule can handle N/ln(N) exceptions
Is the Nasal system a plausible rule, given Philly input?

<table>
<thead>
<tr>
<th>Condition</th>
<th>Philly</th>
<th>Nasal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ant. tautosyll. Voiceless Fric</td>
<td>pass</td>
<td>tense</td>
</tr>
<tr>
<td>MBG exceptions</td>
<td>mad, bad, glad</td>
<td>tense</td>
</tr>
<tr>
<td>Anterior tautosyll. nasals</td>
<td>man, ham</td>
<td>tense</td>
</tr>
<tr>
<td>Anterior heterosyll. nasals</td>
<td>hammer, manage</td>
<td>lax</td>
</tr>
<tr>
<td>Posterior nasals</td>
<td>hang, bank</td>
<td>lax</td>
</tr>
<tr>
<td>Nasal exceptions</td>
<td>ran, and</td>
<td>lax</td>
</tr>
<tr>
<td>Elsewhere</td>
<td>cat</td>
<td>lax</td>
</tr>
</tbody>
</table>

Token (Philly)	Expectation (Nasal)	Exception?
mǣn | mǣn | no
cae | caet | no
bǣd | bæd | yes

T = total number of exceptions
N = total number of /æ/ words
Applying Tolerance Principle
CHILDES database (MacWhinney, 2000)

Applying Tolerance Principle: most frequent words

Productivity Wrap Up

Grammar Competition
Yang’s Grammar Competition Model
Fitness (G) = proportion of unambiguously ‘G’ clauses it generates out of all the clauses it generates.
If Fitness(G1) > Fitness(G2), G1 wins.
V2 and SVO competing

<table>
<thead>
<tr>
<th>Ambiguous</th>
<th>VSO</th>
</tr>
</thead>
<tbody>
<tr>
<td>V2 Advantage</td>
<td>XVS, OVS</td>
</tr>
<tr>
<td>SVO Advantage</td>
<td>SXVO, SXVO</td>
</tr>
</tbody>
</table>

The Challenge in Applying Competition to Phonology

<table>
<thead>
<tr>
<th>Ambiguous</th>
<th>Phillly, Nasal</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nasal Advantage</th>
<th>Nasal</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Philly Advantage</th>
<th>Philly</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td></td>
</tr>
</tbody>
</table>

van der Feest & Fikkert (2015) found children detected default-for-marked errors, but not marked-for-default.
Noisy Harmonic Grammars

Philly data

Noisy Harmonic Grammar

training

testing

Nasal data

Philly Grammar

Philly grammar accuracy on Nasal data

Nasal data

Noisy Harmonic Grammar

Nasal Grammar

Nasal grammar accuracy on Philly data

Constraint Set =

\[\{*, \text{æ}, \text{ǣ}, \text{æ}, m, *, \text{æ}, n, *, \text{æ}, s, *, \text{æ}, p, \ldots \} \]

\[\{*, \text{æ}, m, *, \text{æ}, n, *, \text{æ}, s, *, \text{æ}, p, \ldots \} \]

10 chains, 9,000 training iterations

Harmonic Grammar Results

Conclusions
Conclusions