Dijkstra Monads for Free

Citation for published version:

Digital Object Identifier (DOI):
10.1145/3009837.3009878

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
The 44th ACM SIGPLAN Symposium on Principles of Programming Languages (POPL)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Dijkstra Monads for Free

Jonathan Protzenko
Aseem Rastogi
Nikhil Swamy

University of Edinburgh
Inria Paris
Microsoft Research

Abstract

Dijkstra monads are a means by which a dependent type theory can be enhanced with support for reasoning about effectful code. These specification-level monads computing weakest preconditions, and their closely related counterparts, Hoare monads, provide the basis on which verification tools like F∗, Hoare Type Theory (HTT), and Ynot are built. In this paper we show that Dijkstra monads can be derived “for free” by applying a continuation-passing style (CPS) translation to the standard monadic definitions of the underlying computational effects.

Automatically deriving Dijkstra monads provides a correct-by-construction and efficient way of reasoning about user-defined effects in dependent type theories. We demonstrate these ideas in EMF∗, a new dependently typed calculus, validating it both by formal proof and via a prototype implementation within F∗. Besides equipping F∗ with a more uniform and extensible effect system, EMF∗ enables within F∗ a mixture of intrinsic and extrinsic proofs that was previously impossible.

1. Introduction

Monads are a versatile concept:

- From Moggi (1989), they are used to give semantics to call-by-value reduction.

- From Moggi (1989), Wadler (1990, 1992), Filinski (1994, 1999, 2010), Benton et al. (2002) and others, they are used as a way to introduce effects into a functional language.

- From Moggi (1989); Flanagan et al. (1993); Wadler (1994) and others, they provide a foundation on which to understand program transformations, notably CPS.

This paper brings together this threefold use of monads to improve upon a fourth use of monads, namely “Dijkstra monads”, a recent proposal by Swamy et al. (2013, 2016) and Jacobs (2015), who suggest using monads of predicate transformers (like Dijkstra’s weakest preconditions), to verify effectful programs within a dependently typed logic. However, these constructions require a meta-theoretic argument to establish their soundness with respect to the semantics of effectful programs. This typically requires proofs of various correctness and admissibility conditions, including the monad laws and monotonicity.

1.1 Example: A Dijkstra monad for stateful computations

In Dijkstra’s (1975) weakest precondition semantics, stateful computations transform postconditions relating results and final state, to preconditions on input states. This gives rise to a Dijkstra monad:

\[
\begin{align*}
\text{let } x &= e_1 \text{ in } e_2 \text{ is computed to be } \text{return}_\text{ST} e \text{, and the WP of the sequential composition}
\end{align*}
\]

\[
\begin{align*}
&= \text{return}_\text{ST} x \text{ post } s_0 = \text{return}(x, s_0) \\
&= \text{bind}_\text{ST} f g \text{ post } s_0 = f(\lambda (x, s_1) \rightarrow g x \text{ post } s_1) s_0
\end{align*}
\]

The weakest precondition (WP) of a pure term \(e\) is computed to be \(\text{return}_\text{ST} e\), and the WP of the sequential composition

\[
\text{return}_\text{ST} x \text{ post } s_0 = \text{return}(x, s_0)
\]

\[
\text{bind}_\text{ST} f g \text{ post } s_0 = f(\lambda (x, s_1) \rightarrow g x \text{ post } s_1) s_0
\]

1.2 For fun: Deriving Dijkstra monads

Rather than being given manually, we show that these predicate transformers can be automatically derived by CPS’ing purely functional definitions of monadic effects (with answer type Type). For instance, rather than defining WP, one can simply compute it by CPS’ing the familiar ST monad (i.e., state \(\rightarrow\) state), deriving

\[
\text{WP}_\text{ST} a = ((a \times \text{state}) \rightarrow \text{Type}) \rightarrow \text{state} \rightarrow \text{Type}
\]

We introduce \(\text{DM}\), a simply typed, pure, monadic metalanguage in which one can, in the spirit of Wadler (1992), define a variety of monadic effects, ranging from state and exceptions, to continuations. We define a type-directed CPS translation for this language and show that monads are translated to Dijkstra monads, i.e., monotone, conjunctive, predicate transformer monads.

1.3 For profit: Program verification with user-defined effects

We apply our technique of deriving Dijkstra monads to F∗ (Swamy et al. 2016), a dependently typed programming language that already has at its core a system of primitive effects specified using Dijkstra monads. Our goal is to make F∗’s effect system easier to configure and extensible beyond the primitive effects it already supports; we proceed as follows.

A core dependent type theory with monadic reflection To formally study our improvements to F∗, we define a new dependently typed core calculus, \(\text{EMF∗}\) (for Explicitly Monadic F∗) that features an extensible effect system. \(\text{EMF∗}\) is loosely based on the Calculus of Constructions (Coquand and Huet 1988) with (among other features): (1) a predicative hierarchy of non-cumulative universes; (2) a weakest-precondition calculus for pure programs; (3) refinement types; and (4) a facility for representing user-defined effects using the monadic reflection and reification of Filinski (1994), adapted to the dependently typed setting. New effects can be introduced into the language by defining them in terms of the built-in pure constructs, related to each other via monad morphisms, and each such effect obtains a suitable weakest precondition calculus derived from the underlying pure WPs. We prove the calculus strongly normalizing and the WP calculus sound for total correctness verification, for both pure and effectful programs.
Translating DM to EMF

To extend EMF with a new effect, one starts by defining a monadic effect (say ST) in DM. Via the CPS transformation, we obtain the Dijkstra variant of that effect (WP, ST) as a predicate transformer monad in EMF. A second translation from DM produces expression-level terms to represent monadic computations in EMF. A logical relations proof shows that monadic computations are correctly specified by their predicate transformers. We show examples of these translations at work on monadic effects including state, exceptions, information-flow control, continuations, and some combinations thereof.

Intrinsic and extrinsic proofs in EMF

Effectful programs in EMF can be proven correct using one or both of two different reasoning styles. First, using the WP calculus, programs can be proven intrinsically, by decorating their definitions with specifications that must be proven to be at least as strong as their WPs. We refer to this as the intrinsic style, already familiar to users of F∗, and other tools like HTT (Nanevski et al. 2008), Dafny (Leino 2010), and Why3 (Filliatre and Paskevich 2013).

Second, through monadic reification, EMF allows effectful programs to be revealed as their underlying pure implementations. Once reified, one can reason about them via the computational behavior of their definitions. As such, one may define effectful programs with relatively uninformative types, and prove properties about them as needed, via reification. This extrinsic style of proving is familiar to users of systems like Coq or Isabelle, where it is routinely employed to reason about pure functions. In EMF, this style extends smoothly to terminating effectful programs.

Primitive effects in a call-by-value semantics

We see EMF as a meta-language in which to analyze and describe the semantics of terms in an object language, EMFST, a call-by-value programming language with primitive state. In the spirit of Moggi (1989), we show that EMF programs that treat their ST effect abstractly soundly model EMFST reductions—technically, we prove a simulation between EMFST and EMF. As such, our work is a strict improvement on the prior support for primitive effects in F∗: despite programming and proving programs in a pure setting, stateful programs can still be compiled to run efficiently in the primitives effectful EMFST, while programs with other user-defined effects (e.g., information-flow control) can, unlike before, be executed via their pure encodings.

A prototype implementation for F∗

We have adapted F∗ to benefit from the theory developed in this paper, using a subset of F∗ itself as an implementation of DM, and viewing EMFST as a model of its existing extraction mechanism to OCaml. Programmers can now configure F∗‘s effect system using simple monadic definitions, use F∗ to prove these definitions correct, and then use our CPS transformation to derive the Dijkstra monads required to configure F∗‘s existing type-checker. To benefit from the new extrinsic proving capabilities, we also extended F∗ with two new typing rules, and changed its normalizer, to handle monadic reflection and reification.

Several examples show how our work allows F∗ to be easily extended beyond the primitives effects already supported, without compromising its efficient primitive effect compilation strategy, and how the new extrinsic proof style places effectful reasoning in F∗ on an equal footing with its support for reasoning about pure programs.

1.4 Summary of contributions

The central contribution of our work is designing three closely related lambda calculi, studying their metatheory and the connections between them, and applying them to provide a formal and practical foundation for a user-extensible effect system for F∗. Specifically,

(1) EMF∗: A new dependent type theory with user-extensible, monadic effects; monadic reflection and reification; WPs; and refinement types. We prove that EMF∗ is strongly normalizing and that its WPs are sound for total correctness (§3).

(2) DM: A simply typed language to define the expression-level monads that we use to extend EMF∗ with effects. We define a CPS transformation of DM terms to derive Dijkstra monads from expression-level monads, as well as an elaboration of DM terms to EMF∗. Moreover, elaborated terms are proven to be in relation with their WPs (§4).

(3) EMFST: A call-by-value language with primitive state, whose reductions are simulated by well-typed EMF∗ terms (§5).

(4) An implementation of these ideas within F∗ (§3.5, §4.6) and several examples of free Dijkstra monads for user-defined effects (§2). We highlight, in particular, the new ability to reason extrinsically about effectful terms.

The auxiliary materials for this paper (https://www.fstar-lang.org/papers/dm4free) contain appendices with complete definitions and proofs for the formal results in §3, §4 (Appendix A below), and §5. The F∗ source code (https://github.com/FStarLang/FSstar) now includes the extensions from §3.5 and §4.6 and the examples from §2 (https://github.com/FStarLang/FSstar/tree/master/examples/dm4free).

2. Illustrative examples

We illustrate our main ideas using several examples from F∗, contrasting with the state of affairs in F∗ prior to our work. We start by presenting the core WP calculus for pure programs (§2.1), then illustrate how state can be added to it (§2.2). After showing our basic methodology on state (§2.3 and §2.4), we present a few additional examples, including combining exceptions with state (§2.5), information-flow control (§2.6), and continuations (§2.7).

Notation: The syntax λ(b1) ... (bn) t introduces a lambda abstraction, where b expresses the evaluation of the bindings before evaluating t. The type b1 → ... → bn → c is the type of a curried function, where c is a computation type—we emphasize the lack of enclosing parentheses on the b. We write just the type in b when the name is irrelevant, and t → t′ for t → Tot t′.

2.1 WPs for pure programs

Reasoning about purely functional programs is a relatively well-understood activity: the type theories underlying systems like Coq, Agda, and F∗ are already well-suited to the task. Consider proving that pure term \(\lambda x. 0 \) always returns a non-negative integer. A natural strategy is an extrinsic proof, which involves giving \(\text{sqr} \) a simple type such as \(\text{int} \rightarrow \text{tot int} \), the type of total functions on integers, and then proving a lemma \(\forall x. \text{sqr} x \geq 0 \). In the case of F∗, the proof of the lemma involves, first, a little computation to turn the goal into \(\forall x. \text{sqr} x \geq 0 \), and then reasoning in the theory of integer arithmetic of the Z3 SMT solver (de Moura and Bjørner 2008) to discharge the proof.

An alternative intrinsic proof style in F∗ involves giving \(\text{sqr} \) type \(\text{cint} \rightarrow \text{pure int} \), \(\lambda \text{cint} \rightarrow \forall y. \text{cint} \rightarrow \text{cint} \) a dependent function type of the form \(\text{cint} \rightarrow c \), where the formal parameter \(\text{cint} \) is in scope in the \text{computation type} \(c \) to the right of the arrow. Computation types \(c \) are either \(\text{tot} t \) (for some type \(t \)) or of the form \(M \rightarrow w \), where \(M \) is an effect label, \(t \) is the result type of the computation, and \(w \) is a predicate transformer specifying the semantics of the computation. The computation type we give to \(\text{sqr} \) is of the form \(\text{pure} t \rightarrow w \), the type of \(t \)-returning pure computations described by the the predicate transformer \(w : (t \rightarrow Type) \rightarrow Type \), a function taking postconditions on the result (predicates of type \(t \rightarrow Type \)), to preconditions. These predicate transformers form a Dijkstra monad. In this case, the \(w \) states that to prove any property \(\text{post} \) of \(\text{sqr} \ x \), it suffices to prove
post y, for all non-negative y—as such, it states our goal that sqr x is non-negative. To prove sqr can be given this type, F* infers a weakest precondition for sqr x, namely \(\lambda x. \text{post } \to \text{post } (x \times x)\) and aims to prove that the predicate transformer we specified is at least as strong as the weakest one it inferred: \(\forall y. y \geq 0 \implies \text{post } y \implies \text{post } (x \times x)\), which is discharged automatically by Z3. For pure programs, this intrinsically proof style may seem like overkill and, indeed, it often is. But, as we will see, this mechanism for reasoning about pure terms via WPs is a basic capability which we can leverage for reasoning about terms with more complex, effectful semantics.

2.2 Adding WPs for state

Consider proving that \(\text{incr } \cdot = \lambda x. (x \times x)\) in put \((x + 1)\) produces an output state greater than its input state. Since this program has the state effect, a proof by extrinsic reasoning is not completely straightforward, because reducing an effectful computation within a logic may not be meaningful. Instead, tools like Ynot (Chlipala et al. 2009), HTT (Nanevski et al. 2008), and F* only support the intrinsic proof style. In the case of F*, this involves the use of a computation type \(\text{ST} t\ wp\), where wp \(\text{WP}_\text{ST} t\) and for our simple example we take \(\text{WP}_\text{ST} t\) \(\tau = (t \times int) \to \text{Type} \to int \to \text{Type}\), i.e., the Dijkstra state monad from the \(\tau\) with state=\(\text{int}\).

Using the \(\text{ST} t\) computation type in F*, one can specify for \(\text{incr}\) the type \(\text{unit } \to \text{ST} t\ unit\ (\lambda \text{post } \to \text{post } \to \text{post } ((\lambda x. (x \times x))))\), that is, to prove any postcondition post of incr, it suffices to prove post \((\lambda x. (x \times x))\) for any s1 greater than s0, the initial state—this is the statement of our goal. The proof in F* currently involves:

1. As discussed already in §1, one must define \(\text{WP}_\text{ST} t\), its return and bind combinators, proving that these specifications are sound with respect to the operational semantics of state.

2. The primitive effectful actions, get and put are assumed to have the types below—again, these types must be proven sound with respect to the operational semantics of F*.

 \[
 \begin{align*}
 \text{get} & : \text{unit } \to \text{ST} t\int (\lambda \text{post } s0 \to \text{post } (s0, s0)) \\
 \text{put} & : \text{int } \to \text{ST} t\unit (\lambda \text{post } \to \text{post } ((\lambda x. (x \times x)))
 \end{align*}
 \]

3. Following the rule for sequential composition sketched in §1, F* uses the specifications of get and put to compute \(\text{bind}_t\text{WP}_\text{get} (\lambda x. (x \times x)\text{put} (x + 1))\) as the WP of incr, which reduces to \(\lambda \text{post } s0 \to \text{post } ((s0, s0 + 1))\).

4. The final step requires proving that the computed WP is at least as weak as the specified goal, which boils down to showing that \(s0 + 1 > s0\), which F* and Z3 handle automatically.

The first two steps above correspond to adding a new effect to F*. The cost of this is amortized by the much more frequent and relatively automatic steps 3 and 4. However, adding a new effect to F* is currently an expert activity, carried out mainly by the language designers themselves. This is in large part because the first two steps above are both tedious and highly technical: a dangerous mixture that can go wrong very easily.

Our primary goal is to simplify those first two steps, allowing effects to be added to F* more easily and with fewer meta-level arguments to trust. Besides, although F* supports customization of its effect system, it only allows programmers to specify refinements of a fixed set of existing effects inherited from ML, namely, state, exceptions, and divergence. For example, an F* programmer can refine the state effect into three sub-effects for reading, writing, and allocation; but, she cannot add a new effect like alternative combinations of state and exceptions, non-determinism, continuations, etc. We aim for a more flexible, trustworthy mechanism for extending F* beyond the primitive effects it currently supports. Furthermore, we wish to place reasoning about terminating effectful programs on an equal footing with pure ones, supporting mixtures of intrinsic and extrinsic proofs for both.

2.3 CPS'ing monads to Dijkstra monads

Instead of manually specifying \(\text{WP}_\text{ST}\), we program a traditional ST monad and derive \(\text{WP}_\text{ST}\) using a CPS transform. In §4, we formally present DM, a simply typed language in which to define monadic effects. DM itself contains a single primitive identity monad \(\tau\), which (as will be explained shortly) is used to control the CPS transform. We have implemented DM as a subset of F*, and for the informal presentation here we use the concrete syntax of our implementation. What follows is an unsurprising definition of a state monad \(\text{st a}\), the type of total functions from \(s\) to identity computations returning a pair \((a \times s)\).

\[
\begin{align*}
\text{let } & \text{st } a = s \to \tau (a \times s) \\
\text{let } & \text{return } (x;a) : \text{st } a = \lambda s0. x \to s0 \\
\text{let } & \text{bind } f (\text{st } a) : \text{st } b = \lambda s0 \to \text{let } x,x1 = f s0 \in g x s1 \\
\text{let } & \text{get } () : \text{st } a = \lambda s0 \to s0, s0 \\
\text{let } & \text{put } (x;s) : \text{st } unit = \lambda a. x \to a,
\end{align*}
\]

This being a subset of F*, we can use it to prove that this definition is indeed a monad: proofs of the three monad laws for \(\text{st a}\) are discharged automatically by F* below (\(\text{eq}\) is extensional equality on functions, and \(\text{assert}\) requests F* to prove \(p\) statically). Other identities relating combinations of get and put can be proven similarly.

\[
\begin{align*}
\text{let } & \text{right_unit } st (f \text{st } a) = \text{assert } (\text{eqf } (\text{bind } f \text{ return } f) \\
\text{let } & \text{left_unit } st (f;\alpha) : \alpha = \text{assert } (\text{eqf } (\text{bind } f \text{ return } f) \times f) \\
\text{let } & \text{assoc } st (f;\alpha) : \alpha = \text{assert } (\text{eqf } (\text{bind } \lambda x. \text{ bind } f \gamma) \times \text{bind } \lambda x. \text{ bind } f \gamma)
\end{align*}
\]

We then follow a two-step recipe to add an effect like \(\text{st a}\) to F*:

Step 1 To derive the Dijkstra monad variant of \(\text{st a}\), we apply a selective CPS transformation called the \(\star\) translation (§4), first, on type \(\text{st a}\); then, on the various monadic operations. CPS'ing only those arrows that have \(\tau\)-computation co-domains, we obtain:

\[
\begin{align*}
\text{let } & \text{return } (x;a) = \times a \to (\times a \to \text{Type}) \to \text{Type} \\
\text{let } & \text{bind } f (\text{st } a) = \times a \to \times a \to \text{Type} \to \text{Type} \\
\text{let } & \text{get } () = \times a \to \times a \to \text{Type} \\
\text{let } & \text{put } (x;\alpha) = \times a \to \times a \to \text{Type} \\
\end{align*}
\]

Except for a reordering of arguments, the terms above are identical to the analogous definitions for \(\text{WP}_\text{ST}\). We prove that the \(\star\)-translation preserves equality; so, having shown the monad laws for \(\text{st a}\), we automatically obtain the monad laws for \(\text{st a}\). We also prove that every predicate transformer produced by the \(\star\)-translation is monotone (it maps weaker postconditions to weaker preconditions) and conjunctive (they distribute over conjunctions and universals, i.e., infinite conjunctions, on the postcondition).

Step 2 The \(\star\)-translation yields a predicate transformer semantics for a new monadic effect, however, we still need a way to extend F* with the computational behavior of the new effect. For this, we define a second translation, which elaborates the definitions of the new monad and its associated actions to Pure computations in F*. A first rough approximation of what we prove is that for a well-typed DM computation \(e : \tau t\), its elaboration \(g\) has type Pure \(\tau e^*\) in EMF*.

The first-order cases are particularly simple: for example, \(\text{return} = \text{return}\) return has type \(\times a \to \text{Pure a } (\times a \to \text{return } x)\) in EMF*:

\[
\begin{align*}
\text{let } & \text{return } = \text{get } (\text{get } x_0 ;\text{unit }) \to \text{Pure s } (\text{get } x_0 ;\text{get } x_0) \to \text{get } (\text{get } (x_0 ;\text{get } (x_0 ;\text{get } x_0)))
\end{align*}
\]

For a higher-order example, we sketch the elaboration of bind below, writing \(\text{st t wp}\) for \(\text{st a wp}\):

\[
\begin{align*}
\text{bind} & : \text{wpf}(\text{st a}^*) \to f a \to \text{wpf} \\
& \to \text{wpf}(g;\star a \to \times (\times b) \to \times g;\times a \to \times b \text{ wpf x}) \\
& \to \times b \text{ (bind }^* \text{ wpf wpf) } \\
& = \times wpf \times wpf \times s0 \to \times x, x1 = f s0 \in g x s1
\end{align*}
\]
Intuitively, a function in DM (like bind) that abstracts over computations (f and g) is elaborated to a function (bind) in EMF* that abstracts both over those computations (f and g again, but at their elaborated types) as well as the WP specifications of those computations (wpf and wp). The result type of bind shows that it returns a computation whose specification matches bind*, i.e., the result of the CPS'ing \ast-translation.

In other words, the WPs computed by F^* for monads implemented as Pure programs corresponds exactly to what one gets by CPS'ing the monads. At first, this struck us as just a happy coincidence, although, of course, we now know that it must be so. We see our proof of this fact as providing a precise characterization of the close connection between and WPs and CPS transformations.

2.4 Reify and reflect, for abstraction and proving

Unlike prior F^* formalizations which included primitive exception and state effects, the only primitive monad in EMF* is for Pure computations.\(^1\) Although the translations from DM yield pure definitions of monads in F^*, programming directly against those pure implementations is undesirable, since this may break abstractions. For instance, consider an integer-state monad whose state is expected to monotonically increase: revealing its representation as a pure term makes it hard to enforce this invariant. We rely on Filinski's (1994) monadic reflection for controlling abstraction.

Continuing our example, introducing the state effect in F^* produces a new computation type ST (a-Type) ($wp: (st a) \ast$) and two coercions

\[
\text{reify} : ST \ a \ wp \rightarrow s0; s \rightarrow Pure \ (a \ast s) \ (wp \ s0)
\]

\[
\text{reflect} : (s0; s) \rightarrow Pure \ (a \ast s) \ (wp \ s0) \rightarrow ST \ a \ wp
\]

The reify coercion reveals the representation of an ST computation as a Pure function, while reflect encapsulates a Pure function as a stateful computation. As we will see in subsequent sections, in some cases to preserve abstractions, one or both of these coercions will need to be removed, or restricted in various ways.

To introduce the actions from DM as effectful actions in F^*, we reflect the pure terms produced by the elaboration from DM to EMF^*, obtaining actions for the newly introduced computation type. For example, after reflection the actions get and put appear within F^* at the types below:

\[
\text{get} : unit \rightarrow ST \ a \ (get *) （j）
\]

\[
\text{put} : s1 \rightarrow ST \ unit \ (put * s1)
\]

As in §2.2, we can still program stateful functions and prove them intrinsically, by providing detailed specifications to augment their definitions—of course, the first two steps of the process there are now automatic. However, we now have a means of doing extrinsic proofs by reifying stateful programs, as shown below (taking z=int).

\[
\text{let}\ StNull\ a\ =\ ST\ a\ （λ\ s0\ post→∀x;\ post\ x）
\]

\[
\text{let}\ incr_\ is\ StNull\ unit\ =\ let\ n=\ get\ in\ put\ （n+1)
\]

\[
\text{let}\ incr\ \ increases\ (s0; s)\ =\ assert\ （snd\ （reify\ （incr）） s0）= s0 + 1)
\]

The StNull unit annotation on the second line above gives a weak specification for incr. However, later, when a particular property of incr is required, we can recover it by reasoning extrinsically about the reification of incr as a pure term.

\(^1\) We leave divergence out of scope of the present work as a relatively orthogonal concept. We envisage adding divergence to EMF* and DM as a second primitive effect in the future, with divergent computations interpreted in a partial correctness semantics with only intrinsic proving available. We do not foresee any significant difficulties in doing this, following the treatment of divergence of Swamy et al. (2016). We expect this to provide partial-correctness Dijkstra monads for free.

2.5 Combining monads: state and exceptions, in two ways

To add more effects to F^*, one can simply repeat the methodology outlined above. For instance, one can use DM to define $exn\ a\ =\ unit\ →\ τ(\text{option}\ a)\ in\ the\ obvious\ \way\ (the\ unit\ is\ necessary,\ \cf.\ §4.1),\ our\ automated\ two-step\ recipe\ extends\ F^*\ with\ an\ effect\ for\ terminating\ programs\ that\ may\ raise\ exceptions.\ Of\ course,\ we\ would\ like\ to\ combine\ the\ effects\ to\ equip\ stateful\ programs\ with\ exceptions\ and,\ here,\ we\ come\ to\ a\ familiar\ fork\ in\ the\ road.

State and exceptions can be combined in two mutually incompatible ways. In DM, we can define both $st\

exn\ a\ =\ s\ →\ τ(\text{option}\ a\ast s)$

and $exnst\ a\ =\ s\ →\ τ(\text{option}\ (a\ast s))$. The former is more familiar to most programmers: raising an exception preserves the state; the latter discards the state when an exception is raised, which though less common, is also useful. We focus first on $exnst$ and then discuss a variant of st.

Relating st and $exnst$ Translating st (as before) and $exnst$ to F^* gives us two unrelated effects ST and $ExnST$. To promote ST computations to $ExnST$, we define a lift relating st to $exnst$, their pure representations in DM, and prove that it is a monad morphism.

\[
\text{let}\ lift_\ (\text{fst} x)\ a:\ exnst\ a\ =\ λs0→\text{Some}\ （fs0）
\]

\[
\text{let}\ lift_\ is\ an\ \ast-exnst\ _\ \text{monad-morphism} =
\]

\[
\text{assert} （'x \ f e q (\text{lift} (ST \ \text{return} x))）(\text{ExnST} \ \text{return} x));
\]

\[
\text{assert} （'\ f \ g \ f e q (\text{lift} (ST \ \text{bind} \ f g))）(\text{ExnST} \ \text{bind} \ (lift \ f）(\ λx→\text{lift} (g x)))
\]

Applying our two-step translation to lift, we obtain in F^* a computation-type coercion from $ST \ a \ wp \rightarrow ST \ a \ (lw' \ wp)$. Through this coercion, and through F^*’s existing inference algorithm (Swamy et al. 2011, 2016), ST computations are implicitly promoted to $ExnST$ computations whenever needed. In particular, the ST actions, get and put, are implicitly available with $ExnST$. All that remains is to define an additional action, $raise = λs0→\text{None}$, which gets elaborated and reflected to F^* at the type unit $→$ExnST $a\ (λp→p)$ None.

$ExnST$ programs in F^* can be verified intrinsically and extrinsically. For an intrinsic proof, we show div_intrinisic below, which raises an exception on a divide-by-zero. To prove it, we make use of an abbreviation $ExnST\ a\ pre\ post$, which lets us write specifications using pre- and postconditions instead of predicate transformers, which can be more convenient—the F^* keywords, requires and ensures are only there for readability and have no semantic content.

\[
\text{let}\ ExnST\ a\ pre\ post\ =\ ExnST\ a\ （λs0\ p→
\]

\[
\text{pre}\ s0\ ∧\ ∀x;\ post\ s0\ ×\ x\ =\ p\ x)
\]

\[
\text{let}\ div_\intrinisic\ i\ j;\ ExnST\ int\ \text{int} （\text{requires} （λ→True））
\]

\[
\text{（ensure} （λs0\ x→match\ with\ \text{as before})
\]

\[
\text{（} \text{None} \rightarrow j=0	ext{）}
\]

\[
\text{（} \text{Some}\ （z; s1）→s0= s1\ ∧\ j<0\ ∧\ z=i+j\text{）}
\]

\[
=\text{if }\ j=0\ \text{then}\ raise\ （\text{else} i+j)
\]

Alternatively, for an extrinsic proof, we give a weak specification for div_extrinisic and verify it by reasoning about its refined definition separately. This time, we add a call to incr in the ST effect in case of a division-by-zero. F^*’s type inference lifts incr to $ExnST$ as required by the context. However, as the proof shows, the incr has no effect, since the raise that follows it discards the state.

\[
\text{let}\ ExnSTNull\ a\ =\ ExnST\ a\ （λs0\ post→∀x;\ post\ x）
\]

\[
\text{let}\ div_\extrinisic\ i\ j;\ ExnSTNull\ int\ =\ if\ j=0\ then\ incr();\ raise\ （j\ else i+j\}
\]

\[
\text{let}\ \text{lemma}\ \text{div}_\extrinisic\ i\ j\ =
\]

\[
\text{assert} （\text{match} \ \text{div}_\extrinisic\ i\ j\ 0\ \text{with}
\]

\[
\text{（} \text{None} \rightarrow j=0	ext{）}
\]

\[
\text{（} \text{Some}\ （z, 0）→j<0\ ∧\ z=i+j\text{）}
\]

Using reify and reflect we can also build exception handlers, following ideas of Filinski (Filinski 1999). For example, in try_div below, we use a handler and (under-)specify that it never raises an exception.
It is easy to prove this program non-interferent via the extrinsic, relational proof below, which states that regardless of its secret input (h₀, h₁), ifc when run in the same public initial state (s₀) produces identical public outputs. This generic extrinsic proof style is in contrast to Barthe et al. (2014), whose rF⁺ is a custom extension to F⁺ supporting only intrinsic relational proofs.

let ni_ifc = assert (γ h₀ h₁ s₀. reify (ifc h₀) s₀ = reify (ifc h₁) s₀)

Aside from such relational proofs, with user-defined effects, it is also possible to define monadic, dynamic information-flow control monitors in DM, deferring non-interference checks to runtime, and to reason about monitored programs in F⁺. Here’s a simplified example, inspired by the floating label approach of LIÖ (Stefan et al. 2011). For simplicity, we take the underlying monad to be exnst, where the state is a security label from a two-point lattice that represents the secrecy of data that a computation may have observed so far.

An exception-counting state monad: stexnC. For another combination of state and exceptions, we define stexnC, which in addition to combining state and exceptions (in the familiar way), also introduces an additional piece of integer state to count the number of exceptions that are raised. In DM, (omitting the standard return and bind) we write:

let stexnC a = (s * int) → τ (option a * (s * int))
let raise () = λ (s, n) → None, (s, n + 1)
let lift (f : a) : stexnC a = λ (s, n) → let x, s1 = f s in Some x, (s1, n)

Notice that raise increments a counter. Adding StExnC to F⁺ proceeds as before. But, we need to be a bit careful with how we use reflection. In particular, an implicit invariant of stexnC is that its second state cell monotonically increases and actually counts the number of raised exceptions. If a programmer is allowed to reflect any (s * int) → Pure (option a * (s * int)) wp into an StExnC computation, then this invariant can be broken. Programmers can rely on F⁺’s module system to simply forbid the use of StExnC.reflect in client modules. Depending on the situation, the module providing the effect may still reveal a restricted version of the reflect operator to a client, e.g., we may only provide reflect_increasing to clients, which only supports reflecting computations whose exception counter does not decrease. Of course, this only guarantees that the counter over-approximates the number of exceptions raised, which may or may not be acceptable.

let reflect_increasing (f : (s * int) → Pure (option a * (s * int)) wp) : StExnC a = λ (s₀, n) post → wp s₀ (λ (s₁, n₁) → post (s₁, n₁) ∧ n₁ ≥ n₀)) = reflect f

The standard combination of state and exceptions (i.e., stexn) was already provided primitive in F⁺. The other two combinations shown here were not previously supported, since F⁺ only allowed primitive effects. In the next two subsections, we present encodings of two other user-defined effects: a dynamic information-flow control monitor (§2.6) and continuations (§2.7).

2.6 Information-flow control

Information-flow control (Sabelfeld and Myers 2006) is a paradigm in which programs are deemed secure when one can prove that its behavior observable to an adversary is independent of the secrets the program may manipulate, i.e., they are non-interferent. Monadic reflection allows us to prove non-interference properties directly, by relating multiple runs of an effectful program (Benton 2004). For example, take the simple stateful program below:

let f c h = if h then (incr c) let y = get () in decr (); y else get () + 1

Draft 5 2016/8/24
Following our two-step recipe, we derive the Dijkstra variant of cont, but first we introduce some abbreviations to keep the notation manageable. The type \(kwp a \) is the type of a predicate transformer specifying a continuation \(a \to \tau \) ans; and \(k \) ans is the type of a predicate transformer of the computation that yields the final answer:

\[
\begin{align*}
\text{kwp a} &= a \to \text{kans} = (a \to \tau \text{ans}) \\
\text{kans} &= \text{ans} \to \text{Type} \to \text{Type} = (\tau \text{ans})^\ast
\end{align*}
\]

Using these abbreviations, we show the \(\ast \)-translation of cont, return and bind. Instead of being just a predicate transformer, \((\text{cont a})^\ast \) is a predicate-transformer transformer.

\[
\begin{align*}
(\text{cont a})^\ast &= \text{kwp a} \to \text{kans} \\
\text{return}^\ast &= \lambda (x:a)(wp:kwp a) \to \text{wp.k x} \\
\text{bind}^\ast &= \lambda f(g)(wp:kwp b) \to f(\lambda (x:a) \to g(x \times \text{wp.k})
\end{align*}
\]

For step 2, we show the elaboration of return and bind to \(F^\ast \), using the abbreviation \(kt a \) wp for the type of the elaborated term \(k \), where the DM term \(k \) is a continuation of type \(a \to \tau \) ans and \(wpk k \). As illustrated in \S 2.3, elaborating higher-order functions from DM to \(F^\ast \) introduces additional arguments corresponding to the predicate transformers of abstracted computations.

\[
\begin{align*}
\text{kt a wp} &= x:a \to \text{Pure ans (wp x)} \\
\text{return} : x:a \to w:wp:kwp a \to k:kt a wpk \to \text{Pure ans (return\(^\ast \times \)wpk)} \\
&= \lambda x:wpk k \to k \times x \\
\text{bind} : w:wpf(\text{cont a})^\ast \\
&\to f:w:wp:kwp a \to k:kt a wpk \to \text{Pure ans (wpf wpk))} \\
&\to w:wp(g(a \to (\text{cont b})^\ast)) \\
&\to g(x:a \to w:wp:kwp b \to k:kt b wpk \to \text{Pure ans (wpg wpk)}) \\
&\to w:wp:kwp b \\
&\to k:kt b wpk \\
&\to \text{Pure ans (bind\(^\ast \) wp wpk wpk)} \\
&= \lambda wpf wpg w g wpk k \to f(\lambda x:wpg x \times wpk)(\lambda x:wpg x \times wpk)
\end{align*}
\]

In the case of return, we have one additional argument for the predicate transformer of the continuation \(k \)—the type of the result shows how return relates to return\(^\ast \). The elaboration bind involves many such additional parameters, but the main point to take away is that its specification is given in terms of bind\(^\ast \), using the predicate transformers \(w:wp, w:wp, w:wpk \) in place of the \(f, g, k \) computations. In both cases, the definitions of return and bind match their pre-images in DM aside from abstracting over and passing around the additional WP arguments.

To better see the monadic structure in the types of return and bind we repeat these types, but this time writing cont a wp for the type w:wp:kwp a \to k:kt a wpk \to \text{Pure ans (wp wpk)}:

\[
\begin{align*}
\text{return} : x:a \to \text{cont a (return\(^\ast \times x)} \\
\text{bind} : w:wpf(\text{cont a})^\ast \\
&\to f:w:wp:kwp a \to k:kt a \text{wpk} \to \text{Pure ans (wpf wpk))} \\
&\to w:wp(g(a \to (\text{cont b})^\ast)) \\
&\to g(x:a \to w:wp:kwp b \to k:kt b \text{wpk} \to \text{Pure ans (wpg wpk)}) \\
&\to w:wp:kwp b \\
&\to k:kt b \text{wpk} \\
&\to \text{Pure ans (bind\(^\ast \) wp wpk wpk)} \\
&= \lambda wpf wpg w g wpk k \to f(\lambda x:wpg x \times wpk)(\lambda x:wpg x \times wpk)
\end{align*}
\]

3. Explicitly monadic \(F^\ast \)

We begin our formal development by presenting \(EM^\ast \), an explicitly typed, monadic core calculus intended to serve as a model of \(F^\ast \). As seen above, the \(F^\ast \) implementation includes an inference algorithm (Swamy et al. 2016) so that source programs may omit all explicit uses of the monadic return, bind and lift operators. We do not revisit that inference algorithm here and leave as future work a formal proof that after inference, \(F^\ast \) terms can be elaborated into \(EM^\ast \) (along the lines of the elaboration of Swamy et al. (2011)).

3.1 Syntax

Figure 1 shows the \(EM^\ast \) syntax. We highlight several key features.

Expressions, types, WPs, and formulae are all represented uniformly as terms; however, to evoke their different uses, we often write \(e \) for expressions, \(t \) for types, \(wp \) for WPs, and \(\phi \) for logical

Terms

\[
e.t, wp, \phi := x | T | xt(\phi) | \lambda t.x.t.e | xt \to c | e_1 e_2 | \text{case}_e(e \text{ as } y).x.e_1 e_2 | \text{run } e | \text{refify } e | \text{reflect } e | M.\text{lift}_M t wp e | F.\text{act } \bar{e}]
\]

Computation types

\[
c ::= \text{Tot } t | M.\text{bind } t_1 t_2 wp_1 e_1 wp_2 x.e_2
\]

Signatures of monadic effects and lifts

\[
\begin{align*}
S ::= D | S.D | S.L \quad & \begin{cases}
\text{repr} &= t : wp\text{type} = t \\
\text{bind} &= e : return^\ast = wp \\
\text{act} &= e : act^\ast_j = wp \quad j = x_j f_j \to c_j
\end{cases} \\
D ::= F \quad &\begin{cases}
\text{M.lift}_M = e; M.\text{lift}^\ast_M = wp\end{cases} \\
L ::= \{ M.\text{lift}_M = e; M.\text{lift}^\ast_M = wp \}
\end{align*}
\]

Figure 1. Syntax of \(EM^\ast \)

Terms include variables \(x, y, a, b, w \) etc.; refinement types \(x.t(\phi) \); \(\lambda \) abstractions; dependent products with computation-type co-domains, \(xt \to c \) (with the sugar described in \S 2); and applications. Constants \(T \) include \(Type_e \), \(\tau \) level from a countable hierarchy of predicative universes. We also include constants for non-dependent pairs and disjoint unions; the former are eliminated using \(\text{fst} \) and \(\text{snd} \), while the latter are eliminated using \(\text{case}_e(e \text{ as } y).x.e_1 e_2 \), which is standard dependent pattern matching with an explicit return type \(t \) and a name for the scrutinee \(y \), provided only when the dependency is necessary.

Computation types

\(c \) include \(\text{Tot } t \), the type of total \(t \)-returning terms, and \(M t wp \), the type of a computation with effect \(M \), return type \(t \), and behavior specified by the predicate transformer \(wp \). Let \(M \) range over the Pure effect as well as user-defined effects \(F \).

Explicit monadic returns, binds, actions, lifts, reify, and reflect.

\(M.\text{return} \) and \(M.\text{bind} \) are the monad operations for the effect \(M \), with explicit arguments for the types and predicate transformers. \(M.\text{lift}_M t wp e \) lifts the \(e : M t wp \) to \(M \). A fully applied \(F \) action is written \(F.\text{act } \bar{e} \). The \text{refify} and \text{reflect} operators are for monadic reflection, and \text{run} coerces a Pure computation to \(\text{Tot} \).

Signatures for user-defined effects

\(EM^\ast \) is parameterized by a signature \(S \). A user-defined effect \(F t wp \) is specified using \(D \), the result of translating a DM monad. A definition \(D \) is a record containing several fields: \(\text{repr} \) is the type of an \(F \) computation reified as a pure term, \(wp\text{type} \) is the type of the wp argument to \(F \); \(\text{return}, \text{bind}, \) and \(\text{act} \) are \(EM^\ast \) expressions, and \(return^\ast \), \(bind^\ast \), and \(act^\ast_j \) are \(EM^\ast \) WPs (\(act^\ast_j \) is the \(j^\ast \) action of \(F \)). We use \(S.F.\text{return} \) to denote the lookup of the \text{return} field from \(F \)’s definition in the signature \(S \), and similar notation for the other fields.

2 We have yet to model \(F^\ast \)’s universe polymorphism, making the universes in \(EM^\ast \) less useful than the ones in \(F^\ast \). Lacking universes polymorphism, we restrict computation to have results in \(Type_e \). A simple remediation would be replicate the monad definitions across the universe levels.
3.2 Static semantics

The expression typing judgment in EMF* has the form $S:\Gamma \vdash e : c$, where S is the list of bindings $x : t$ as usual. Selected rules for the judgments are shown in Figure 2. In the rules, we sometimes write $S:\Gamma \vdash e : T$: Tot for $x : t$ as an abbreviation for $S:\Gamma \vdash e : c$.

Monadic returns, binds, lifts, and actions. Rules T-RETURN, T-BIND, and T-LIFT simply use the corresponding wp specification.

Monadic reflection and reification. Rules T-REFILE and T-REFLECT are dual, coercing between a computation type and its underlying pure representation. Rule T-RUN coerces e from type Pure t wp to t. However, since the t type is unconditionally total, the second premise of the rule checks that the wp is satisfiable.

Refinements, computations types, and proof irrelevance. EMF*'s refinement and computation types include a form of proof irrelevance. In T-REFILE, the universe of $\{\} : \Phi$ is determined by the universe of t alone, since a witness for the proposition Φ is never materialized. Refinement formulas ϕ and wps are manipulated using an entailment relation, $S:\Gamma \vdash \phi$, for a proof-irrelevant, classical logic where all the connectives are "squashed" (Nogin 2002), e.g., $p \land q$ and $p \equiv q$ from §2, are encoded as $x:unit(p \land q)$ and $x:unit(p \equiv q)$, and reside in $Type_0$. Similar to T-REFILE, in C-PURE, the universe of a computation type is determined only by the result type. Since the wp is proof irrelevant, the use of $Type_0$ in the type of wp is quite natural, because its proof content is always squashed.

Subsumption and typing judgment. T-SUB is a subsumption rule for computations, which makes use of the two judgments $S:\Gamma \vdash e : c$ and $S:\Gamma \vdash t : c'$, shown (selectively) in Figure 3. Rule S-PURE checks that $t' \vdash t$, and makes use of the $S:\Gamma \vdash \phi$ relation to check that wp is stronger than wp', i.e., for all postconditions, the precondition computed by wp implies the precondition computed by wp'.

For user-defined monads F, the subtyping check delegates to their underlying representation $S.F.repr$. Rule S-PROD is the standard dependent function subtyping. Rule S-REFINE permits dropping the refinement from the subtype, and rule S-REFINE allows subtyping to a refinement type, if we can prove the formula ϕ for an arbitrary x. Finally, rule S-CONV states that the beta-convertible types are subtypes of each other ($S:\Gamma \vdash t \rightarrow t'$ is the small-step evaluation judgment, introduced in the next section).

Figure 2. Selected typing rules for EMF*

<table>
<thead>
<tr>
<th>Rule</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-RETURN</td>
<td>$S;\Gamma \vdash e : \text{Tot } t$</td>
</tr>
<tr>
<td>T-BIND</td>
<td>$S;\Gamma \vdash t_2 : Type_0$</td>
</tr>
<tr>
<td>T-LIFT</td>
<td>$S;\Gamma \vdash e : M \rightarrow wp t_2$</td>
</tr>
<tr>
<td>T-REFILE</td>
<td>$S;\Gamma \vdash \text{refy } e : \text{Tot } (S.F.repr t wp)$</td>
</tr>
<tr>
<td>T-REFLECT</td>
<td>$S;\Gamma \vdash \text{reflect } e : F \rightarrow wp t$</td>
</tr>
<tr>
<td>T-RUN</td>
<td>$S;\Gamma \vdash e : \text{Pure } t \rightarrow wp\ p$, $S;\Gamma \vdash e : c'$</td>
</tr>
<tr>
<td>T-SUB</td>
<td>$S;\Gamma \vdash e : c'$</td>
</tr>
<tr>
<td>T-REFINE</td>
<td>$S;\Gamma \vdash t : Type_j$, $S;\Gamma \vdash x: \Phi \rightarrow Type_j$</td>
</tr>
<tr>
<td>C-PURE</td>
<td>$S;\Gamma \vdash t : Type_0$, $S;\Gamma \vdash x: \Phi \rightarrow Type_0$</td>
</tr>
</tbody>
</table>

where (as described in §2.3) return : $a \rightarrow x a \rightarrow \text{repr } a (\text{return } a) x$; and similarly for bind, get, and put.

In addition to the monad definitions D, the signature S contains the definitions of lifts that contain an EMF* expression and an EMF* WP. We use notations $S.M.lift_a^{M}$ and $S.M.lift_a^{M'}$ to look these up in S. Finally, the signature always includes a fixed partial definition for the Pure monad, only containing the following definitions:

- $\text{Pure } \{wp _type = \lambda a:Type_0. (a \rightarrow Type_0) \rightarrow Type_0$}
- $\text{return }^* = \lambda a:Type_0, \lambda x.a. \lambda p:(a \rightarrow Type_0), p x$}
- $\text{bind }^* = \lambda a.\lambda b.b.bind^*$
- $\text{get }^* = \text{get}$
- $\text{put }^* = \text{put}$
- $\text{put }^* = \text{put }^*$

The other fields are not defined, since Pure is handled primitively in the EMF* dynamic semantics (§3.3).

3.3 EMF* dynamic semantics

We now turn to the dynamic semantics of EMF*, which is formalized as a strong small-step evaluation relation. Evaluation context are defined as follows:

$$E ::= \bullet | \lambda x : E | E e | E | run E | \text{refy } E | \text{reflect } E | M \text{ bind } t_1 t_2 wp \ E | E wp \ E | M \text{ return } t E | M \text{ lift } t wp E | F \text{ act } \bar{e} E \bar{e}' | \text{case}(E \text{ as } a) x_e1 x_e2 | \text{case}(e \text{ as } a) x_1 x_2 E_1 x_e2 E_2$$
We prove several metatheoretical results for \(EMF^\star\). For runs of the form \(S \vdash e \rightarrow e'\), we show that the semantics first evaluates \(e\) to \(S.F.run\ t\ e\), and then \(S.F.run\ t\ e\) reduces to \(e\). We show that this reduction preserves the underlying implementation in the signature.

Semantics for pure terms. Rule R-PUREBIND reduces similarly to the usual \(\beta\)-reduction. For run \(e\), the semantics first evaluates \(e\) to \(S.F.run\ t\ e\), and then \(S.F.run\ t\ e\) reduces to \(e\). Note that in this case, we don’t need to reify \(e\) (as we did in bind), because \(e\) is already a Pure term.

Semantics for monadic lifts and actions. Rules R-REIFYACT and R-REIFYLIFT also look up the underlying implementations of the lifts and actions in the signature and use them. Rule R-REIFYLIFT in addition reifies the computation \(e\). For lifts, the arguments \(\vec{x}\) are already \(\text{Tot}\) terms.

3.4 \(EMF^\star\) metatheory

We prove several metatheoretical results for \(EMF^\star\). First, we prove strong normalization for \(EMF^\star\) via a translation to the calculus of inductive constructions (CIC) (Paulin-Mohring 2015).

Theorem 1 (Strong normalization). If \(S;\Gamma \vdash e : c\) and CiC is strongly normalizing, then \(e\) is strongly normalizing.

Proof. (sketch) The proof proceeds by defining a translation from \(EMF^\star\) to CiC, erasing refinements and WPs, inlining the pure implementations of each monad, and removing the reify and reflect operators. We show that this translation is a type-preserving, forward simulation. If CiC is strongly normalizing, then \(EMF^\star\) must also be, since otherwise an infinite reduction sequence in \(EMF^\star\) could not be matched by CiC, contradicting the forward simulation.

Theorem 2 (Subject Reduction). If \(S;\Gamma \vdash e : c\) and \(S;\Gamma \vdash e \rightarrow e'\), then \(S;\Gamma \vdash e' : c\).

This allows us to derive a total correctness property for the Pure monad saying that run-\(ing\) a Pure computation produces a value which satisfies all the postconditions that are consistent with the \(wp\) of the Pure computation.

Corollary 3 (Total Correctness of Pure). If \(S;\Gamma \vdash e : Pure\ t\ wp\), then \(wp\ S;\Gamma \vdash p : t \rightarrow Type_p\) and \(S;\Gamma \vdash e \rightarrow v\) such that \(S;\Gamma \vdash p v\).

For the user-defined monads \(F\), we can derive their total correctness property by appealing to the total correctness of the Pure monad. For instance, for the ST monad from §2.3, we can derive the following corollary simply by using the typing of reify and Corollary 3.

Corollary 4 (Total Correctness of \(ST\)). If \(S;\Gamma \vdash e : ST\ t\ wp\), then \(wp\ S;\Gamma \vdash p : t \rightarrow Type_p\) and \(S;\Gamma \vdash e \rightarrow v\) such that \(S;\Gamma \vdash p v\).

3.5 Implementation in \(F^\star\)

The implementation of \(F^\star\) was relatively easy to adapt to \(EMF^\star\). In fact, \(EMF^\star\) and \(DM\) and the translation between them were designed to match \(F^\star\)’s existing type system, as much as possible. We describe the main changes that were made.

User-defined non-primitive effects are, of course, the main new feature. Effect configurations closely match the \(D\) form from Figure 1, the main delta being that non-primitive effects include pure implementation of \(M.bind, M.return, M.lift\) etc.

Handling reify and reflect in the type-checker involved implementing the two relatively simple rules for them in Figure 2. A more significant change was made to \(F^\star\)’s normalization machinery, extending it to support rules that trigger evaluation for reified, effectful programs. In contrast, before our changes, \(F^\star\) would never reduce effectful terms. The change to the normalizer is exploited by \(F^\star\)’s encoding of proof obligations to an SMT solver—now it can encode the semantics of effectful terms to the solver, after using the normalizer to partially evaluate a reified effectful term to its pure form.

Running programs with user-defined effects is achieved by extracting it to OCaml, as is usual for \(F^\star\), except we now inline the definitions of the underlying pure terms. Effects marked as primitive are extracted as before while making use of primitive effects in OCaml—this is formally justified in §5.

4. Dijkstra monads for free

This section presently forms DM, a language for defining effects by giving monads with their actions and lifts between them. Via a pair of translations, we export such definitions to \(EMF^\star\) as effect configurations. The first translation of a term \(e\), a CPS, written \(e^\star\), produces a predicate-transformer from \(DM\) term; the second one is an elaboration, \(\varepsilon_p\), which produces an \(EMF^\star\) implementation of a \(DM\) term. The main result shows that for any \(DM\) term the result of the \(\varepsilon\)-translation is in a suitable logical relation to the elaboration of the term, and thus a valid specification for this elaboration. We also show that the \(\varepsilon\)-translation always produces monotonic and conjunctive predicates, properties that should always hold for WPs. Finally, we show that the \(\varepsilon\)-translation preserves all equalities in \(DM\), and thus translates \(DM\) monads into \(EMF^\star\) Dijkstra monads.

4.1 Source: \(DM\) effect definition language

The source language \(DM\) is a simply-typed lambda calculus augmented with an abstract monad \(\tau\), as in §2.3. The language is essentially that of Filinski (1994) with certain restrictions on allowed types to ensure the correctness of elaboration.

There are two effect symbols: \(n\) (non-effectual) and \(\tau\). The typing judgment is split accordingly, and \(\tau\) ranges over both of them. Every
monadic term needs to be bound via \(\text{bind}_e \) to be used.\(^4\) Functions can only take non-effectful terms as arguments, but may return a monadic result.

The set of DM types is divided into \(A \) types, \(H \) types, and \(C \) types, ranged over by \(A, C, \) and \(H, \) respectively. They are given by the grammar:

\[
\begin{align*}
A & ::= X | b | A \to A | A + A | A \times A \\
H & ::= A | C \\
C & ::= H \to A | H \to C | C \times C
\end{align*}
\]

Here \(X \) ranges over type variables (needed to define monads) and \(b \) are base types. The \(\tau \)-arrows represent functions with a monadic result, and our translations will provide WPs for these arrows. \(A \) types are referred to as “\(\tau \)-free”, since they contain no monadic operations. \(C \) types are inherently computational in the sense that they cannot be eliminated into an \(A \) type: every possible elimination will lead to a monadic term. They are referred to as “computational types”. \(H \) types are the union of both, and are called “hypothetical” types, as they represent the types of possible functional arguments. As an example, the state monad is represented as the type \(S \to (X \times S) \), where \(X \) is a type variable and \(S \) is some type representing the state.

DM types do not include “mixed” \(A \times C \) pairs, computational sums \(C + H \), functions of type \(C \to A \), or types with right-nested \(\tau \)-arrows. We do allow nesting \(\tau \)-arrows to the left, providing the generality needed for the continuation monad; and others. These restrictions are crafted to carefully match EMF*. Without them, our translations, would generate ill-typed or logically unrelated EMF* terms, and they do not appear to be severe in practice, as evidenced by the examples in \(\S 2 \).

The syntax for terms is (\(\kappa \) standing for constants):

\[
e ::= x | e | e \times \lambda x. H \times e | \kappa(x, \ldots, e) \\
| (e, e) | \text{fst}(e) | \text{snd}(e) | \text{inl}(e) | \text{inr}(e) | \text{case} e \text{ in } A . e | \text{inr } y . A . e \\
| \text{return}_e e | \text{bind}_e e \text{ to } x \text{ in } e
\]

Typing judgments have the forms \(\Delta \vdash e : H ! n \) and \(\Delta \vdash e : A ! \tau \), where \(\Delta \) is a finite sequence of type variables and \(\Gamma \) is a normal typing context, whose types only use type variables from \(\Delta \). Here are some example rules:

\[
\begin{align*}
\Delta \vdash \text{return}_e e & : A ! \tau \\
\Delta \vdash \text{bind}_e e \text{ to } x \text{ in } e & : A ! \tau
\end{align*}
\]

In these rules we implicitly assume that all appearing types are well-formed with respect to the grammar, e.g., one cannot form a function of type \(C \to A \) by the abstraction rule.

As an example, \(\text{return}_x \) maps \(\lambda x : X . \lambda x : S . \text{return}_x (x, s) \) type \(X \to S \to (X \times S) \), using these rules.

When defining effects and actions, one deals (at a top level) with non-effectful \(C \) types (\(C ! n \)). We present our main results (Theorem 5 and Theorem 6) for terms typed in an empty \(\Gamma \) as these are the most interesting cases; of course to show them, we prove more general results.

4.2 The \(\ast \)-translation

The essence of the \(\ast \)-translation is to translate \(\text{return}_e e \) and \(\text{bind}_e e_1 \text{ to } x \text{ in } e_2 \) to the returns and binds of the continuation

\[\text{return}_e e = \lambda p . (A^* \to Type_0) . p e^* \begin{array}{l}\text{where } e \vdash e : A ! \end{array}\]

\[\text{bind}_e e_1 \text{ to } x \text{ in } e_2 = \lambda e' . (\lambda x : A . e') \begin{array}{l}e_1 \text{ in } x : A \vdash e_2 : A ! \tau\end{array}\]

\[\Delta \vdash e : C ! n \implies \Delta \vdash e^* : C^* ! n\]

\[\Delta \vdash e : C ! n \implies \Delta \vdash e^* : C^* ! n\]

\[\begin{array}{l}
\text{Definition} \quad \text{F}_{\text{zer}} wp \begin{array}{l} = \text{def} \quad \text{F}_{\text{zer}} wp \begin{array}{l}(\text{fst } wp) \times \text{F}_{\text{zer}} wp \end{array}\end{array}
\end{array}\]

\[\begin{array}{l}
\text{Definition} \quad \text{F}_{\text{zer}} wp \begin{array}{l} = \text{def} \quad \text{F}_{\text{zer}} wp \begin{array}{l}(\text{snd } wp) \times \text{F}_{\text{zer}} wp \end{array}\end{array}
\end{array}\]

\[\begin{array}{l}
\text{Definition} \quad \text{F}_{\text{zer}} wp \begin{array}{l} = \text{def} \quad \text{F}_{\text{zer}} wp \begin{array}{l}(\text{snd } wp) \times \text{F}_{\text{zer}} wp \end{array}\end{array}
\end{array}\]

\[\begin{array}{l}
\text{Definition} \quad \text{F}_{\text{zer}} wp \begin{array}{l} = \text{def} \quad \text{F}_{\text{zer}} wp \begin{array}{l}x : A \vdash gp_{H!}(wp x)\end{array}\end{array}
\end{array}\]

\[\begin{array}{l}
\text{Definition} \quad \text{F}_{\text{zer}} wp \begin{array}{l} = \text{def} \quad \text{F}_{\text{zer}} wp \begin{array}{l}(\text{fst } wp) \times \text{F}_{\text{zer}} wp \end{array}\end{array}
\end{array}\]

\[\begin{array}{l}
\text{Definition} \quad \text{F}_{\text{zer}} wp \begin{array}{l} = \text{def} \quad \text{F}_{\text{zer}} wp \begin{array}{l}(\text{snd } wp) \times \text{F}_{\text{zer}} wp \end{array}\end{array}
\end{array}\]
(1) $\kappa(e_1, \ldots, e_n)$ = x
(2) $\lambda x A . e$ = $\kappa e_1 \ldots e_n$
(3) $\lambda x A . e$ = $\kappa e_1 \ldots e_n$
(4) $\lambda x C . e$ = $\lambda x^w C . \lambda x F C . x^w . e$
(5) $\text{fst}(e)$ = e_1
(6) $\text{snd}(e)$ = e_2
(7) $\text{inl}(e)$ = $\text{inl} e$
(8) $\text{inr}(e)$ = $\text{inr} e$

We first require their specification in order to be able to reason about the WP of e_i related to e. This is naturally extended to pairs by the definition, defining the specification for a pair as a pair of proper specifications, as shown by case (1) above. In case (2), the $w : C^*$ arguments introduced by F are relevant for the higher-order cases, and serve the following purpose, as illustrated in §2.3 (for the translation of bind for the ST monad, and in §2.7 for the continuation monad): when taking computations as arguments, we first require their specification in order to be able to reason about them at the type level. Taking these specification arguments is also the only way for being WP-polymorphic in EMF^*. Note that, according to the dependencies, the C^* argument is only used in the specifications, while we shall see in elaboration that only the FC wp is used in the expressions. When elaborating terms, we pass this specification as an extra argument where needed.

In case (3), when elaborating functions taking an argument of A type there is no need to take a specification, since the argument is completely non-effectual and can be used at both expression- and type-levels. Informally, a non-effectual term is its own specification.

Returning to our state monad example, the result of $F_C \rightarrow (\lambda x . (s \inl x)) wp$ is $s : \rightarrow Pure (X \times S) (wp s)$, i.e., the type of a function f which for any p, if one can prove $wp p$, then f satisfies p.

Elaboration of terms is defined in Figure 5 and is, as expected, mostly determined by the translation of types. The translation is formally defined over typing derivations, however, for brevity, we present each translation rule simply on the terms, with the important side-conditions we rely on from the derivation shown in parenthesis. We describe only the most interesting cases.

Computational abstractions and applications (cases 4 and 10)
Case (4) translates a function with a computational argument $x : A$ to a function that expects two arguments, a $WP x^w C$ and x itself, related to x^w at a suitably translated type. We track the association between x and x^w using a substitution st, which maps every computational hypothesis $x : C$ in Γ to x^w of type C^* in Γ. In case (10), when passing a computation argument e_2, we need to eliminate the double abstraction introduced in case (4), passing both $e_2^r st$, i.e., the WP of e_2 (substituting free computation variables), and e_2^r itself.

Return and bind (cases 14 and 15) The last two rules show the translation of return and bind for τ to return and bind for Pure in EMF^*. This is one of the key points: in the elaboration, we interpret the τ as the identity monad in EMF^*, whereas in the τ-translation, we interpret τ as the continuation monad. Theorem 6, our main theorem, shows that EMF^*’s WP computation in the Pure monad for e produces a WP that is logically related to the τ-translation of e, i.e., WPs and the CPS coincide formally, at arbitrary order.

Theorem 6 (Logical relations lemma). $\vdash e : A \tau$ implies $\vdash e : FC e^\tau$

4.4 Monotonicity and conjunctivity
A key property of WPs is monotonicity: weaker postconditions should map to weaker preconditions. This is also an important F^* invariant that allows for logical optimizations of WPs. Similarly, WPs are conjunctive: they distribute over conjunction and universal quantification in the postcondition. We show that any EMF^* term obtained from the τ-translation is monotonic and conjunctive, for higher-order generalizations of the usual definitions of these properties (Dijkstra 1997).

We first define a logical relation between EMF^* terms $t_1 \preceq t_2$, read "t_1 stronger than $t_2"$ at type τ^n and producing an EMF^* formula in $Type_{P_0}$, by recursion on the structure of r:

$x \preceq_{Type_0} y \overset{\text{def}}{=} x = y$
$x \preceq_{Type} y \overset{\text{def}}{=} x = y$
$f \preceq_{\Gamma_0} g \overset{\text{def}}{=} \forall x_1, x_2 : \vdash x_1 \preceq_{\Gamma_1} x_2 \Rightarrow f x_1 \preceq_{\Gamma_2} g x_2$
$f \preceq_{\Gamma_0} g \overset{\text{def}}{=} \text{fst } x \preceq_{\Gamma_0} \text{fst } y \text{ and } x \preceq_{\Gamma_0} y$

where b represents any EMF^* base type and X any variable.6

For any type τ that doesn’t mention $Type_{P_0}$, the relation reduces to extensional equality. The relation is only defined for the subset of EMF^* types that are all-Tot and non-dependent. All types resulting from the τ-translation will be in this subset, so this not a limitation for our purposes.

The \preceq relation is not reflexive. We say that a closed EMF^* expression e for which $\vdash e : \text{Tot } t$ is monotonic when $\vdash e \preceq e$. For the first-order WPs this coincides with the standard definition, and for higher-order predicates it gives a reasonable extension. For a first-order example, let’s take the type of WPs for ST programs: $\vdash (S \rightarrow (S \rightarrow Type_0)) \rightarrow Type_{P_0}$:

$\vdash f \preceq_{S \rightarrow (S \rightarrow Type_0)} \rightarrow Type_{P_0}$

6 We can get a stronger result if we don’t restrict the relation on type variables to equality and treat it abstractly instead. For our purposes this is not needed as we plan to instantiate type variables with predicate-free types.
This is exactly the usual notion of monotonicity for imperative programs (Dijkstra 1997): \(\mu p_2 \) is weaker than \(\mu p_1 \), then \(f \mu s p_2 \) is weaker than \(f \mu s p_1 \) for any \(x \).

Since the \(\leq \) relation is trivially preserved by application, monotonicity is too. Also, first-order predicates on base types (such as first-order pre-/postconditions) are always monotonic according to this definition.

We proved that the \(\star \)-translation of any well-typed source term \(e : C \mid n \) gives a monotonic \(e^* \) at the type \(C^* \). This result is more general than it appears at first glance: not only does it mean that WPs obtained by any defined return and bind are monotonic, but also for any action or function. Also, lifts between monads and other higher-level computations will preserve this monotonicity. Furthermore, the relation \(\vDash \) in the conclusion of the theorem is EMF\(^*\)'s validity judgment, i.e., we prove that these properties are actually provable within F\(^*\) without needing to rely on some meta-level reasoning.

Theorem 7 (Monotonicity of \(\star \)-translation).

For any \(e \) and \(C, \Delta \mid n e : C \mid n \) implies \(\Delta \vDash e \leq C^* e^* \).

We give a similar higher-order definition of conjunctivity, and prove similar results ensuring the \(\star \)-translation provides conjunctivity. The definition for conjunctivity is given by the following, where \(a \) describes the predicate-free types (including variables).

\[
\begin{align*}
\mathbb{C}_{\omega \rightarrow \text{Type}}(w) & \triangleq \forall \text{type } w. P \land P \rightarrow w = \lambda \text{x.p}. \text{x} \land p \text{ x}.
\mathbb{C}_w(x) & \triangleq \text{true}
\mathbb{C}_{\rightarrow \text{Type}}(f) & \triangleq \forall \text{x.x.} : C_0(x) \rightarrow C_{\star} (f x)
\mathbb{C}_{\rightarrow \text{Type}}(p) & \triangleq \forall \text{x.(fst p) \land C_{\star} (snd p)}
\end{align*}
\]

Again, the relation is not defined on all types, but it does include the image of the type-level \(\star \)-translation, so it is enough for our purposes. This relation is also trivially preserved by application. We then prove:

Theorem 8 (Conjunctivity of \(\star \)-translation).

For any \(e \) and \(C, \Delta \mid n e : C \mid n \) implies \(\Delta \vDash \mathbb{C}_C(e^*) \)

4.5 The \(\star \)-translation preserves equality and monad laws

We define an equality judgment on source terms that is basically \(\approx \) equivalence, augmented with the monad laws for the abstract \(\tau \) monad. We show that the \(\star \)-translation preserves this equality.

Theorem 9 (Preservation of equality by CPS).

If \(\Delta \mid n e = e_2 : \tau \mid n H ! e \) then \(\Delta \vDash e_1 = e_2 \).

Since the monad laws are equalities themselves, any source monad will be translated to a specification-level monad of WPs. This also applies to lifts: source monad morphisms are mapped to monad morphisms between Dijkstra monads.

4.6 Implementing the translations in F\(^*\)

We devised a prototype implementation of the two translations in F\(^*\). Users define their monadic effects as F\(^*\) terms in direct style, as done in §2, and these definitions get automatically rewritten into DM. As explained in §2, instead of \(\tau \)-arrows (\(H \rightarrow A \)), we use a distinguished \(F^* \) effect \(\tau \) to indicate where the CPS should occur. The effect \(\tau \) is defined to be an alias for F\(^*\)’s TOT effect, which allows the programmer to reason extrinsically about the definitions and prove that they satisfy various properties within F\(^*\), e.g., the monad laws. Once the definitions have been type-checked in F\(^*\), another minimalistic type-checker kicks in, which has a twofold role. First, it ensures that the definitions indeed belong to DM, e.g., distinguishing A types from C types. Second, it performs bidirectional inference to distinguish monadic computations from pure computations, starting from top-level annotations, and uses this type information to automatically introduce return\(_{\star}\) and bind\(_{\star}\) as needed. For instance, in the st example from §2.3, the type-checker rewrites \(x, s \circ \rightarrow \text{return}_{\star} (x, s_0) ; \) and let \(x. s_1 = f \circ s_0 \rightarrow \text{bind}_{\star} \) into bind\(_{\star} f s_0 \rightarrow \text{to} \rightarrow x, s_1 \rightarrow \ldots ; \) and \(g \times s_1 \rightarrow \text{return}_{\star} (g x s_1) \).

The elaboration maps let-bindings in DM to let-bindings in F\(^*\); the general inference mechanism in F\(^*\) takes care of synthesizing the WPs, meaning that the elaboration, really, is only concerned about extra arguments for abstractions and applications.

Once the effect definition is rewritten to DM, our tool uses the \(\star \)-translation and elaboration to generate the WP transformers for the Dijkstra monad, which previously would be written by hand. Moreover, using the \(\leq \) relation from §4.4, several other WP combinators are derived to be used internally by the F\(^*\) type-checker; again previously these had to be written by hand.

5. EMF\(^*\) with primitive state

As we have seen in §3, EMF\(^*\) encodes all its effects using pure functions. However, one would like to be able to run F\(^*\) programs efficiently using primitive effects. In this section, we show how EMF\(^*\)'s pure monads apply to F\(^*\)'s existing compilation strategy, which provides primitive support for state via compilation to OCaml, which, of course, has state natively.\(^7\) The main theorem of §5.1 states that well-typed EMF\(^*\) programs using the state monad abstractly (i.e., not breaking the abstraction of the state monad with arbitrary uses of reify and reflect) are related by a simulation to EMF\(^*\)\(_{ST}\) programs that execute with a primitive notion of state. This result exposes a basic tension: although very useful for proofs, reify and reflect can break the abstractions needed for efficient compilation. In §5.2, we show how to get the best of both worlds by relying on F\(^*\)’s Ghost effect—by restricting reify and reflect to computationally irrelevant code (e.g., proofs), we can use them freely for proving and then erase them before compilation for efficient execution.

5.1 EMF\(^*\)\(_{ST}\): A sub-language of EMF\(^*\) with primitive state

The syntax of EMF\(^*\)\(_{ST}\) corresponds to EMF\(^*\), except, we configure it to just use the ST monad. Other effects that may be added to EMF\(^*\) can already be expanded into their encodings in its primitive Pure monad—as such, we think of EMF\(^*\)\(_{ST}\) as modeling a compiler target for EMF\(^*\) programs extended with ST implemented primitives, and other arbitrary effects implemented purely. We thus exclude from EMF\(^*\)\(_{ST}\) the reify and reflect operators and drop type and WP arguments of return, bind and lift operators, since these are no longer relevant here.

The operational semantics of EMF\(^*\)\(_{ST}\) is a small-step, call-by-value reduction relation between pairs \((s, e) \) of a state \(s \) and a term \(e \). The relation includes the pure reduction steps of EMF\(^*\) simply carrying the state along (we only show ST-beta), and three primitive reduction rules for ST, shown below. The only irreducible ST computation is ST.return v. The term ST.bind e x.e' reduces even without an enclosing reify, since the state is primitive.

\[
\begin{align*}
(s, (\lambda t.e)v) & \rightarrow (s, e[v/x]) & \text{ST-beta}
(s, \text{ST.bind (ST.return v) x.e}) & \rightarrow (s, e[v/x]) & \text{ST-bind}
(s, \text{ST.get ()}) & \rightarrow (s, \text{ST.return s}) & \text{ST-get}
(s, \text{ST.put s'}) & \rightarrow (s, \text{ST.return ()}) & \text{ST-put}
\end{align*}
\]

Relating EMF\(^*\) to EMF\(^*\)\(_{ST}\) We define a (partial) translation from EMF\(^*\) to EMF\(^*\)\(_{ST}\), and show that one or more steps of reduction in EMF\(^*\)\(_{ST}\) are matched by one or more steps in EMF\(^*\). This result guarantees that it is sound to verify a program in EMF\(^*\) and execute it in EMF\(^*\)\(_{ST}\), since the verification holds for all EMF\(^*\)\(_{ST}\) reduction sequences, and EMF\(^*\)\(_{ST}\) evaluation corresponds to one such reduction.

The main intuition behind our proof is that the reduction of reflect-free EMF\(^*\) programs maintains terms in a very specific structure—a stateful redex reduces in a context structured like

\(^7 \) F\(^*\) also compiles exceptions natively to OCaml, however we focus only on state here, leaving a formalization of primitive exceptions to the future—we expect it to be similar to the development here.
a telescope of binds, with the state threaded sequentially as the
telecope evolves. We describe this invariant structure as an EMF* context, K, parameterized by a state s, where E is a single-hole, reify-and-reflect-free EMF* context, a refinement of the evaluation contexts of §3, to be filled by a reify-and-reflect free EMF* term, f. Additionally, we separate the E contexts by their effects into
different sorts; \hat{E}: Tot and \check{E}: Pure are contexts which when filled by a suitably typed term produce in EMF* a Tot or Pure term, respectively; the case \hat{E}: Inert is for an un-refined stateful EMF* term. The last two cases are the most interesting, representing the base and inductive case of the telescope of a stateful term “caught in the act” of reducing—we refer to them as the Active contexts. We omit the sort of a context when it is irrelevant.

$K s \ ::= \hat{E} : \text{Tot} \mid \check{E} : \text{Pure} \mid \text{Inert} \mid \text{reify} \hat{E} s : \text{Active} \mid \text{Pure.bind} (K s) p.((\lambda x.\text{reify} f) (\text{fst} p) (\text{snd} p)) : \text{Active}$

Next, we define a simple translation \mathcal{T} from contexts $K s$ to EMF$_{ST}^*$.

$\mathcal{T}(E) \ = \hat{E}$

$\mathcal{T}(\text{reify} \hat{E} s) = \hat{E}$

$\mathcal{T}(\text{Pure.bind} (K s) p.((\lambda x.\text{reify} f) (\text{fst} p) (\text{snd} p))) = \text{ST.bind}[K s].x.f$

Theorem 10 (Simulation). For all well-typed closed, filled contexts $K s f$, either $K s f$ is Inert, or one of the following is true:

1. $\exists x'. f' (s, (K x') f') \cdot \cdot \cdot (x', (K' x') f')$ and $K s f \cdot \cdot \cdot K' s' s' f' \cdot \cdot \cdot$ and sort $(K s) = \text{sort}(K' s')$ and if $K' s'$ is not Active then $s = s'$.
2. $K s$ is Active and $\exists x'. (s, (K[x]) f') \cdot \cdot \cdot (x', \text{ST.return} v)$ and $K s f \cdot \cdot \cdot \text{Pure.return}(v, x')$.
3. $K s$ is Pure and $\exists x'. (K s) f = K s f = \text{Pure.return} v$.
4. $K s$ is Tot and $\exists x'. (K s) f = K s f = v$.

5.2 Restoring reify and reflect for extrinsic proofs

Theorem 10 applies only to programs that lack reflect and use reify
only in a very specific manner, as described by the telescoping
invariant. To apply the theorem to F^*, we make use of its facilities for erasing computationally irrelevant code and its module system.

To justify F^*’s primitive effect implementation, we argue that F^*
programs using the ST monad are free of reify and reflect, after erasure
of computationally irrelevant code, and hence the post-
erasure programs are candidates for Theorem 10. We briefly describe how this works, next.

First, as described in §2.5, we use the module system to hide both
the reify and reflect operators from clients of a module FStar.State
defining the ST effect. We expose to clients only ghost_reify, a
function equivalent to reify, but exposed to clients at the signature
shown below. Notice that the function’s co-domain is marked with the
Ghost effect, meaning that it can only be used within specifications (e.g., WPs and assertions)—any other use will be flagged as a typing error by F^*.

\[
ghost\text{_reify: ST} a \rightarrow \text{Ghost}(s0:s) \rightarrow \text{Pure}(a * s) (wp s0)
\]

Next, within FStar.State, we implement the following combinator,
\text{refine_ST}, a total function that allows a client to augment the
specification of an effectful function f from some wp to a weaker one that additionally records that the value returned by f on any argument
and input state $s0$ corresponds to the computational behavior of the (ghostly) reification of f.

\[
\text{refine_ST: f:(a :\rightarrow ST} b (wp \times)) \rightarrow \text{Tot}(a :\rightarrow ST} b (\lambda s0 \rightarrow \text{post} \rightarrow \text{wp} x \rightarrow (\lambda r \rightarrow r \star \text{ghost_reify}(f(x)) s0 \rightarrow \text{post} r)))
\]

6. Related work

We have already discussed many elements of related work through-
out the paper. Here we focus on a few themes not covered fully
elsewhere.

Representing monads Our work draws a lot from Filinski’s (1994)
monic reflection methodology, for representing and controlling the
abstraction of monads. In particular, our DM monad definition
language is essentially the language of (Filinski 1994) with some
restrictions on the allowed types. Beyond controlling abstraction,
Filinski shows how monadic reflection enables a universal imple-
mentation of monads using composable continuations and a single
mutable cell. We do not (yet) make use of that aspect of his work,
partly because deploying this technique in practice is challenging,
since it requires compiling programs to a runtime system that
provides composable continuations. Filinski’s (1999) work on repre-
senting layered monads generalizes his technique to the setting of
multiple monads. We also support multiple monads, but instead of
layering monads, we define each monad purely, and relate them via
morphisms. This style is better suited to our purpose, since one of
our primary uses of reification is purification, i.e., revealing the pure
representation of an effectful term for reasoning purposes. With
layering, multiple steps of reification may be necessary, which
may be inconvenient for purification. Finally, Filinski (2010) gives
an operational semantics that is extensible with monadic actions, taking
the view of effects as being primitive, rather than encoded purely.
We take a related, but slightly different view: although effects are
encoded purely in EMF*, we see it as language in which to analyze
and describe the semantics of a primitively effectful object language,
EMF$_{ST}^*$, relating the two via a simulation.

Dependent types and effects Nanevski et al. developed Hoare
type theory (HTT) (Nanevski et al. 2008) and Ynot (Chipala et al.
2009) as a way of extending Coq with effects. The strategy there is to
provide an axiomatic extension of Coq with a single catch-all monad
in which to encapsulate imperative code. Being axiomatic, their
approach lacks the ability to reason extrinsically about effectful
terms by computation. However, their approach accommodates effects
like non-termination, which EMF* currently lacks. Interestingly, the
internal semantics of HTT is given using predicate transformers,
similar in spirit to EMF*’s WP semantics. It would be interesting
to explore whether or not our free proofs of monotonicity and
concurrency simplify the proof burden on HTT’s semantics.

Zombie (Casinghino et al. 2014) is a dependently typed language
with general recursion, which supports reasoning extrinsically about
potentially divergent code—this approach may be fruitful to apply to
EMF* to extend its extrinsic reasoning to divergent code.

Another point in the spectrum between extrinsic and intrinsic
reasoning is Charguéraud’s (2011) characteristic formulae, which
provide a precise formula in higher-order logic capturing the seman-
tics of a term, similar in spirit to our WPs. However, as opposed to
WPs, characteristic formulae are used interactively to prove pro-
gram properties after definition, although not via computation, but
via logical reasoning. Interesting enough, characteristic formulae
are structured in a way that almost gives the illusion that they are
the terms themselves. CFML is tool in Coq based on these ideas,
providing special tactics to manipulate formulas structured this way.

Brady (2013) encodes algebraic effects with pre- and postcondi-
tions in Idris in the style of Atkey’s (2009) parameterized monads.
Rather than speaking about the computations themselves, the pre-
and postconditions refer to some implicit state of the world, e.g.,
whether or not a file is closed. In contrast, F*’s WPs give a full
logical characterization of a computation. Additionally, the WP
style is better suited to computing verification conditions, instead of
explicitly chaining indices in the parameterized monad.
It would be interesting, and possibly clarifying, to link up with recent work on the denotational semantics of effectful languages with dependent types (Ahman et al. 2016); in our case one would investigate the semantics of EMF^\star and $\text{EMF}^\star_{\text{ST}}$, which has state, but extended with recursion (and so with nontermination).

Continuations and predicate transformers We are not the first to study the connection between continuations and predicate transformers. For example, Jensen (1978) and Audebaud and Zucca (1999) both derive WPs from a continuation semantics of first-order imperative programs. While they only consider several primitive effects, we allow arbitrary monadic definitions of effects. Also while their work is limited to the first-order case, we formalize the connection between WPs and CPS also for higher-order. The connection between WPs and the continuation monad also appears in Keimel (2015); Keimel and Plotkin (2016).

7. **Looking back, looking ahead**

While our work has yielded the pleasant combination of both a significant simplification and boost in expressiveness for F^\star, we believe it can also provide a useful foundation on which to add user-defined effects to other dependently typed languages. All that is required is the Pure monad upon which everything else can be built, mostly for free.

On the practical side, going forward, we hope to make use of the new extrinsic proving capabilities in F^\star to simplify specifications and proofs in several ongoing program verification efforts that use F^\star. We are particularly interested in furthering the relational verification style, sketched in §2.6. We also hope to scale EMF^\star to be a definitive semantics of all of F^\star—the main missing ingredients are recursion and its semantic termination check, inductive types, universe polymorphism, and the extensional treatment of equality.

Along another axis, we have already mentioned our plans to add non-termination (§2.4) to DM and EMF^\star, and to investigate translations of effect handlers (§2.5). We also hope to enhance DM in other ways, e.g., relaxing the stratification of types and adding inductive types which will allow us to define monads for some forms of nondeterminism and many forms of I/O. Enriching DM further, one could also add dependent types, reducing the gap between it and F^\star, and bringing within reach examples like Ahman and Uustalu’s (2013) dependently typed update monads.

Acknowledgments We are grateful to Pierre-Evariste Dagand, Michael Hicks, and Kenji Maillard for interesting discussions. We also thank the anonymous reviewers for their helpful feedback.
A. Appendix

In this appendix we provide proofs and auxiliary results for the theorems that appear in the body of the paper. We also show the full type system for the source language.

A.1 The definitional language DM

In the typing judgment, the metavariable Δ represents a set of type variables that remains fixed throughout typing. It is used to introduce top-level let-polymorphism on all CPS’d/elaborated terms. A type is well-formed in the context Δ if all of its variables are in Δ. In rigor, all judgments from here onwards are subject to that constraint, which we do not write down. A context Γ is well-formed if either (1) all of its types are well-formed according to Δ (2) no variable names are repeated. This last condition simplifies reasoning about substitution and does not limit the language in any way.

We assume that every base type in DM is also a base type in EMF (or that there exists a mapping from them, formally), and that source constants are also present and with the same type (formally, also a mapping for constants that respects the previous one). The typing judgment for DM is given in Figure 6. We assume that the types appearing in the rules are well-formed. For example, in the (ST-PAIR) rule, either both H and H' are in Δ or both are in Γ.

A.2 CPS translation (WP generation)

The full π-translation for DM expressions is given in Figure 7. The one for types was previously defined. We define translation on environments in the following way:

$$\Delta = X_1, \ldots, X_n$$

$$\Delta^* = X_1 : \text{Type}_0, \ldots, X_n : \text{Type}_0$$

$$\Gamma = x_1 : H_1, \ldots, x_n : H_1$$

$$\Gamma^* = x_1 : H_1^*, \ldots, x_n : H_1^*$$

One can then prove the following:

Lemma 11 (Well-typing of π-translation). For any Γ, e, A and H:

$$\Delta | \Gamma \vdash e : H \Rightarrow \Delta^*, \Gamma^* \vdash e^* : H^*$$

Proof: By induction on the typing derivation. \square

In this lemma statement, and in those that follow, when writing e^* we refer to the translation of e using the typing derivation from the premise.

A.3 Elaboration

The definitions of Δ and the F relation were previously given. For elaboration, we also translate environments, in the following manner:

$$\Delta = X_1, \ldots, X_n$$

$$\Delta^* = X_1 : \text{Type}_0, \ldots, X_n : \text{Type}_0$$

$$\Gamma = x_1 : H_1, \ldots, x_n : H_1$$

$$\Gamma^* = x_1 : H_1^*, \ldots, x_n : H_1^*$$

Note that for any computational variable in the context, we introduce two variables: one for its WP and one for its actual expression. The x^w variable, which is assumed to be fresh, is used only at the WP level. Also note that $\Delta = \Delta^*$.

For any Γ, we define the substitution s^r as $[x^w_i/x_i, \ldots, x^w_j/x_j]$, for the computational variables $x_i, \ldots, x_j \in \Gamma$.

Similarly to Lemma 11 we show that:

Lemma 12 (Well-typing of π-translation — elaboration contexts). For any Δ, e, A and C we have:

$$\Delta | \Gamma \vdash e : H \Rightarrow \Delta^* \vdash e^* : H^*$$

$$\Delta | \Gamma \vdash e : A \Rightarrow \Delta^* \vdash (A^* \Rightarrow \text{Type}_0) \Rightarrow \text{Type}_0$$

For expression elaboration we aim to show that:

$$\Delta | \Gamma \vdash e : A \Rightarrow \Delta^* \vdash e : C \Rightarrow \Delta^* \vdash (C^* \Rightarrow \text{Type}_0) \Rightarrow \text{Type}_0$$

A.4 Statement of the logical relations lemma

Our main theorem is the fact the π-translation of a term is properly related, via the F relation, to its elaboration. This means it provides an adequate logical representation of the term.

Theorem 13 (Logical relations lemma). For any Δ, Γ, e, C, A:

$$\Delta | \Gamma \vdash e : C \Rightarrow \Delta^* \vdash e : C^*$$

Proof. By induction on the typing derivation. The cases for (ST-RET) and (ST-BIND) do not apply.

1. (ST-VAR) Our goal is to show $e = x$ s^r. Since the type of x is A the substitution does not affect x, thus they’re trivially both x.

2. (ST-CONST) Say $\Delta | \Gamma \vdash k(b_1, \ldots, b_n) : b!n$. By the induction hypothesis we know that $b_i = b_i^s$ for each i. We thus trivially get our goal by substitution of the arguments.

3. (ST-ABS) Say we concluded $\Delta | \Gamma \vdash \lambda x : A. e : A \Rightarrow A!n$. Our premise is (note the substitution from the IH does not affect x, as it has an A-type) the fact that $e = e^* s^r$. We need to show that:

$$\lambda x : A. e = (\lambda x : A. e)^*$$

which is just

$$\lambda x : A. e = \lambda x : A^*. e^*$$

which is trivial from our hypothesis and since $\lambda = \text{def} A^*$.

4. (ST-APP) Say we concluded $\Delta | \Gamma \vdash f : A \Rightarrow A!n$ by the premises

$$\Delta | \Gamma \vdash f : A \Rightarrow A!n$$

(it cannot be the case that e has some C type, because of the type restrictions). From the inductive hypotheses we have:

$$f = f^* s^r \Rightarrow f^* e = (f^* e)^* s^r \Rightarrow f^* e = (f e)^* s^r$$

As required.

(5) (ST-FST), (ST-SND), (ST-PAIR), (ST-INL), (ST-INR) All of these are trivial by applying the IH. For (ST-PAIR) one needs to show that the type of the pair will be an A-type.

Draft 14 2016/8/24
(6) (ST-CASE)

Say we concluded $\Delta \vdash \text{case } e \text{ inl } x : A_0, e_1; \text{ inr } y : A_1, e_2 : A_2 ! n$. As inductive hypothesis we have:

\[
\begin{align*}
&\xi = e^* s r \\
&\xi_0 = e_1^* s r \\
&\xi_2 = e_2^* s r \\
\end{align*}
\]

(\e_1 and e_2 are typed in the context extended with x and y respectively, however since they are A-types the substitution is the same)

The goal is:

\[
\begin{align*}
&\text{case}(e) x e_1 y e_2 = \text{case}(e^* s r) x e_1^* s r y e_2^* s r \\
\end{align*}
\]

From the IHs, and since $\Delta \vdash \text{def } A^*$ we get our goal.

(3) (ST-FST), (ST-SND), (ST-PAIR), (ST-INL), (ST-INR)

Trivial by using IH.

(4) (ST-CASE)

Say we concluded $\Delta \vdash \text{case } e \text{ inl } x : A_0, e_1; \text{ inr } y : A_1, e_2 : A_2 ! n$ by (ST-CASE). Our IHs give us

\[
\begin{align*}
&\Delta \vdash e : A_0 + A_1 \\
&\Delta \vdash e_1 : A_0 \\
&\Delta \vdash e_2 : A_1 \\
\end{align*}
\]

By a non-dependent application of T-CaseTot we get

\[
\Delta \vdash \text{case}(e) x e_1 y e_2 : A_2
\]

Which is our goal.

(5) (ST-ABS), (ST-APP)

Both trivial from IHs.

\[\square\]

Before jumping into the logical relation lemma, we will require the following auxiliary lemma, of which we make heavy use.

Lemma 16 (Invariance of $F_C w$). If $\Gamma \vdash v_1 = v_2$, then $\Gamma \vdash F_C v_1 : F_C v_2$.

Proof. By induction on C.

(1) $C \twoheadrightarrow A$

We need to show that $\Gamma \vdash F_{C \twoheadrightarrow A} v_1 : F_{C \twoheadrightarrow A} v_2$

Which is

\[
\Gamma \vdash \text{case } e^* : C^* \rightarrow F_C e^* : F_C e^* \rightarrow \text{Pure } \Delta (w_1 x^w) < : \text{Pure } \Delta (w_2 x^w)
\]

After two applications of (ST-PROD) (and some trivial reflexivity discharges), the required premise to show is:

\[
\Gamma, x^w : C^*, F_C x^w : \text{Pure } \Delta (w_1 x^w) < : \text{Pure } \Delta (w_2 x^w)
\]
By (S-PURE) we're required to show that \(A \) is a subtype of itself (which is trivial by reflexivity of subtyping (S-CONV)) and that \(w_2 \) is stronger than \(w_1 \), which can be easily proven as they are equal.

(2) \(A \sqsubseteq A \)
True similar to the previous case, but simpler.

(3) \(C \sqsubseteq C' \)

We need to show that
\[
\Gamma \vdash F_{C\negrightarrow C} \; w_1 \ll C_{C\negrightarrow C} \; w_2
\]
Which is
\[
\Gamma \vdash x^n : C^* \to C_{C\negrightarrow C} \; w_1 \ll C_{C\negrightarrow C} \; w_1 \ll x^n : C^* \to C_{C\negrightarrow C} \; w_1 \ll x^n
\]

After two applications of (ST-PROD) (and some trivial reflexivity discharges), the required premise to show is:
\[
\Gamma, x^n : C^* \land C_{C\negrightarrow C} \; w_1 \ll C_{C\negrightarrow C} \; w_2 \ll x^n
\]
As in this context we can show \(w_1 x^n = w_2 x^n \) we apply our IH to the type \(C' \) and are done.

(4) \(A \sqsubseteq C' \)

Also very similar to the previous case, but simpler.

(5) \(C \times C' \)

Trivial by IHs and concluding that \(\text{fst} \; w_1 = \text{fst} \; w_2 \), and similarly for \(\text{snd} \).

\(\square \)

Proof of Theorem 13 (Logical relations lemma)

Proof. The two parts are proved by a joint structural induction.

(1) (ST-VAR)
We have \(\Delta \land \Gamma \vdash x : C \land n \), with \(x \in \Gamma \). By the translation for environments, we have \(x^n : C^* \land x : F_{C\times C} \) in \(\Gamma \). Since \(x \) is covered by the substitution \(\varsigma \), what we need to prove is \(\Delta, \Gamma \vdash x : F_{C\times C} \), which is exactly what we have in the environment.

(2) (ST-PAIR)
Suppose we proved \((e_1, e_2) : C_1 \times C_2 \) by (ST-PAIR). We want to show: \(\Delta, \Gamma \vdash (e_1, e_2) : C_1 \times C_2 \) i.e., that (after reduction inside \(F \)):
\[
\Delta, \Gamma \vdash (e_1, e_2) : C_1 \times C_2 \left(e_1^* \varsigma, e_2^* \varsigma \right)
\]
This is trivial by applying both IHs.

(3) (ST-FST), (ST-SND)
Suppose we proved \(\Delta \land \Gamma \vdash \text{fst}(e) : C_1 \) by (ST-FST). We need to then show
\[
\Delta, \Gamma \vdash \text{fst}(e) : F_{C_1} \left(e^* \varsigma \right)
\]
By our induction hypothesis we have \(\Delta, \Gamma \vdash e : F_{C_1 \times C_2} \left(e^* \varsigma \right) \), which is
\[
\Delta, \Gamma \vdash e : F_{C_1} \left(e^* \varsigma \right) \times F_{C_2} \left(e^* \varsigma \right)
\]
It is therefore easy to see that we have our goal.

(4) (ST-ABS)
There are two cases:

- \(A \sqsubseteq H \)

Suppose we concluded \(\Delta \land \Gamma \vdash \lambda x : A, e : A \to H \land n \). Then we have \(\Delta \land \Gamma, x : A \vdash e : H \land e \) and so, by the induction hypothesis, in both cases for \(e \) we have
\[
\Delta, \Gamma \vdash \lambda x : A, e : G_H^e (e^* \varsigma)
\]
And we have to show:
\[
\Delta, \Gamma \vdash \lambda x : A, e : F_{A \to H} (\lambda x : A^*, e^*) \land \text{snd} \left(e^* \varsigma \right)
\]
Which is
\[
\Delta, \Gamma \vdash \lambda x : A, e : x : A \to G_H^e (\lambda x : A^*, e^*) \land \text{snd} \left(e^* \varsigma \right)
\]
Since the substitution does not cover \(x \), the argument to \(G \) is just \(e^* \varsigma \), thus we use our IH to conclude this easily.

- \(C \sqsubseteq H \)

Suppose we concluded \(\Delta \land \Gamma \vdash \lambda x : C, e : C \to H \land n \). Then we have \(\Delta \land \Gamma, x : C \vdash e : H \land e \) and so, by the induction hypothesis we have, in either case for \(e \):
\[
\Delta, \Gamma \vdash x^n : C^* \land x : F_{C \times H} (\lambda x : C^*, e^*) \land \text{snd} \left(e^* \varsigma \right)
\]
And we have to show:
\[
\Delta, \Gamma \vdash \lambda x : C, e : F_{C \times H} (\lambda x : C^*, e^*) \land \text{snd} \left(e^* \varsigma \right)
\]
Which is
\[
\Delta, \Gamma \vdash \lambda x : C, e : x : C \to F_{C \times H} (\lambda x : C^*, e^*) \land \text{snd} \left(e^* \varsigma \right)
\]
Using T-Abs twice we can conclude this via
\[
\Delta, \Gamma \vdash x^n : C^* \land x : F_{C \times H} (\lambda x : C^*, e^*) \land \text{snd} \left(e^* \varsigma \right)
\]
Since the substitution does not cover \(x \), the argument to \(F \) reduces to \(e^* \varsigma \), thus we use our IH to conclude this easily.

(5) (ST-APP)

Again, there are two possible cases:

- \(A \sqsubseteq H \)

We concluded \(\Delta \land \Gamma \vdash f : G \to H \land n \). Our premises are \(\Delta \land \Gamma \vdash f : A \to H \land n \). The IH for \(f \) is, expanding \(F \):
\[
\Delta, \Gamma \vdash f : x : A \to G_H^e (f^* \varsigma)
\]
By T-App, and since \(e : A \land n \), this is just:
\[
\Delta, \Gamma \vdash f : e : G_H^e (f^* \varsigma)
\]
Since from a previous theorem we know we have \(e = e^* \varsigma \) (syntactically), we can conclude:
\[
\Delta, \Gamma \vdash f : e : G_H^e (f^* \varsigma) (e^* \varsigma)
\]
This is exactly:
\[
\Delta, \Gamma \vdash f : e : G_H^e (f^* \varsigma)
\]
which is our goal, in either the \(C \land n \) or the \(A \land n \) case.

- \(C \sqsubseteq H \)

We concluded \(\Delta \land \Gamma \vdash e : H \land n \). Our premises are \(\Delta \land \Gamma \vdash f : C \to H \land n \) and \(\Delta \land \Gamma \vdash e : C \land n \). The IHs are, expanding \(F \):
\[
\Delta, \Gamma \vdash e : x^n : C^* \to F_{C \times H} (\lambda x : C^*, e^*) \land \text{snd} \left(e^* \varsigma \right)
\]
Thus by two uses of T-App (noting that it's well typed by our IH for \(e \)), we can conclude:
\[
\Delta, \Gamma \vdash e : G_C^e (f^* \varsigma) (e^* \varsigma)
\]
This is just, syntactically:
\[
\Delta, \Gamma \vdash e : G_C^e (f^* \varsigma) (e^* \varsigma)
\]
which is our goal, in either the \(C \land n \) or the \(A \land n \) case.

(6) (ST-CASE)

There are two cases depending on whether we eliminate into \(C \land n \) or \(A \land n \). Both of these cases are quite dull, and deal mostly with the typing judgment on the target. This may be skipped without hindering any of the main ideas.

- \(C \land n \)

Suppose that \(\Delta \land \Gamma \vdash e : A \to \lambda x : A \land n, \Delta \land \Gamma, x : A \vdash e_1 : C \land n \), and \(\Delta \land \Gamma \vdash e_2 : C \land n \), so that \(\Delta \land \Gamma \vdash \text{case } e \ln_1 x : A \to e_1 ; \ln_2 y : A \land n \). We will go into detail only for \(e_1 \)
as the typing and reasoning for e_2 is exactly analogous. As
inductive hypothesis for e_1 we have

$$
\Delta, x : A \vdash e_1 : F_C e_1^* \sigma_T
$$

We wish to show:

$$
\Delta \vdash \text{case}_{F_C} (e) x e_1 y e_2 : F_C (\text{case}(e') x e_1^* y e_2^*) \sigma_T
$$

Which is

$$
\Delta \vdash \text{case}_{F_C} (e) x e_1 y e_2 : F_C \text{case}(e') x e_1^* y e_2^* \sigma_T
$$

Since $e = e_\sigma \sigma_T$ we will prove this has type $F_C \text{case}(e) x e_1^* y e_2^* \sigma_T$.

By T-CaseTot, we should show:

$$
\Delta \vdash e : A + A' \vdash e_1 : F_C \text{case}(\text{inl} x) x e_1^* y e_2^* \sigma_T
$$

(And the one for e_2). We get the first one trivially by theorem 15. The second is by reduction equivalent to:

$$
\Delta, x : A \vdash e_1 : F_C e_1^* \sigma_T
$$

Which is exactly our IH for e_1, so we’re done.

- $A \vdash \sigma$

Our hypotheses are:

$$
\Delta, x : A_0 + A_1 \vdash e_0 + e_1 : \text{Pure } A_0 (e_0^* \sigma_T) \\
\Delta, x : A_0 + A_1 \vdash e_1 : \text{Pure } A_0 (e_1^* \sigma_T)
$$

Applying T-Case (non-dependently) we get:

$$
\Delta, x : A_0 + A_1 \vdash \text{case}_{e_0 + e_1} x e_0 x e_1 : \text{Pure } A_0 (\text{case}(e_0') x e_0^* y e_1^* \sigma_T)
$$

Since we know $e = e_\sigma^* \sigma_T$ and since $\Delta = \text{def } A^*$ this exactly:

$$
\Delta, x : A_0 + A_1 \vdash \text{case}_{e_0} x e_0 x e_1 : \text{Pure } A_0 (\text{case}(e_0') x e_0^* y e_1^* \sigma_T)
$$

Which is our goal.

(7) (ST-RET)

We have $\Delta, x : A \vdash e : A \sigma_T$, so we need to show:

$$
\Delta \vdash \text{return}_e e : \text{Pure } A (\text{return}_e e^* \sigma_T)
$$

i.e.

$$
\Delta \vdash \text{Pure } \text{return}_e e : \text{Pure } A (\lambda p : A^* \rightarrow \text{Type}_{0_1} (e^* \sigma_T))
$$

This is a trivial consequence of Theorem 14 by using the T-Ret rule of EMF*, and the fact that $A = \text{def } A^*$.

(8) (ST-BIND)

Suppose we have $\Delta, x : A \vdash e : A^* \tau$, and $\Delta, x : A \vdash e_1 : A' \tau$, and so $\Delta, x : A \vdash \text{bind}_e e_1 : A \text{in } e_2 : A' \tau$. We have to show:

$$
\Delta, x : A \vdash \text{bind}_e e_1 \text{ to } x \text{ in } e_2 : \text{Pure } A' ((\text{bind}_e e_1 \text{ to } x \text{ in } e_2) \ast \sigma_T)
$$

that is:

$$
\Delta, x : A \vdash \text{Pure } \text{bind}_e A' (e_1) \ast e_2 : (\lambda x : A : e_1, e_2 : A \ast \sigma_T) \vdash \text{Pure } A' ((\text{bind}_e e_1 \text{ to } x \text{ in } e_2) \ast \sigma_T)
$$

By our IHs we have:

$$
\Delta \vdash e_1 : \text{Pure } A (e_1^* \sigma_T) \\
\Delta, x : A \vdash e_2 : \text{Pure } A (e_2^* \sigma_T)
$$

So we get:

$$
\Delta \vdash \lambda x : A e_1 : A' (e_2^* \sigma_T)
$$

By the T-Bind rule we can conclude:

$$
\Delta \vdash \text{Pure } \text{bind}_e A' (e_1) \ast e_2 : (\lambda x : A : e_1, e_2 : A \ast \sigma_T) \vdash \text{Pure } A' ((\text{bind}_e e_1 \text{ to } x \text{ in } e_2) \ast \sigma_T)
$$

Since $A = A^*$ and $A' = A''$ this is exactly our goal.

Note: in this proof, we didn’t use any specific fact about Pure, except the relation between monad operations and their WPs, so this is all generalizable to another target monad that’s already defined and satisfies the base conditions for return and bind.

A.6 Equality preservation

We want to show that any source monad will give rise to specification-level monads in the target. This will be a consequence on the fact that equality is preserved by the \ast-translation. From equality preservation we also get the property that lifts are monad morphisms without further effort.

First we define equality for the source language. It is basically standard $\beta \eta$-equivalence adding the monad laws for the base monad T. We keep the type and effect of each equality. It is an invariant that if we can derive an equality, both sides are well-typed at the specified type and effect.

The definition of the equality judgment is in Figure 8. Besides those rules, there is a congruence rule for every source construct, as expected.

We then prove that:

$$
\Delta, \Delta \vdash e_1 = e_2 : \text{H! } e
$$

where \vdash is meant the validity judgment of EMF*.

Theorem 17 (Preservation of equality by CPS). If $\Delta, \Delta \vdash e_1 = e_2 : \text{H! } e$ for any $\Delta, \Gamma, e_1, e_2, \text{H, } \epsilon, \text{ then one has } \Delta, \Delta \vdash e_1^* \ast \sigma_T = e_2^* \ast \sigma_T$.

Proof. By induction on the equality derivation. Most of the cases are trivial, since EMF* has very similar rules for equality. The interesting cases are the monadic equalities, which we show here:

1. (EQ-M1)

We concluded:

$$
\Delta, \Delta \vdash \text{bind}_e m \text{ to } x \text{ in } (\text{return}_e x) = m : A! \tau
$$

So we need to show that:

$$
\Delta, \Delta \vdash (\text{bind}_e m \text{ to } x \text{ in } (\text{return}_e x)) \ast \sigma_T = m^* \ast \sigma_T
$$

That is:

$$
\Delta, \Delta \vdash (\lambda p. (m^* \ast \sigma_T) (\lambda x. (\lambda p'. (p' x) p)) = m^* \ast \sigma_T
$$

This is trivially provable by $\beta \eta$-reduction.

2. (EQ-M2)

We concluded:

$$
\Delta, \Delta \vdash \text{bind}_e (\text{return}_e e) \text{ to } x \in f x = f e : A'! \tau
$$

thus we need to show that:

$$
\Delta, \Delta \vdash (\text{bind}_e (\text{return}_e e) \text{ to } x \in f x)^* \ast \sigma_T = (f e)^* \ast \sigma_T
$$

That is:

$$
\Delta, \Delta \vdash (\lambda p. (\lambda x. (\lambda p'. (p' x) p)) \ast \sigma_T = (f e)^* \ast \sigma_T
$$

Note that since $x \notin FV(f) \implies x \notin FV(f^* \ast \sigma_T)$, this is easily shown by $\beta \eta$-reduction as well.

3. (EQ-M3)

We concluded:

$$
\Delta, \Delta \vdash \text{bind}_e (\text{bind}_e m \text{ to } x \text{ in } e_1) \text{ to } y \text{ in } e_2 = \text{bind}_e m \text{ to } x \text{ in } (\text{bind}_e e_1 \text{ to } y \text{ in } e_2) : A''! \tau
$$

thus we need to show that:

$$
\Delta, \Delta \vdash (\text{bind}_e (\text{bind}_e m \text{ to } x \text{ in } e_1) \text{ to } y \text{ in } e_2)^* \ast \sigma_T = (\text{bind}_e m \text{ to } x \text{ in } (\text{bind}_e e_1 \text{ to } y \text{ in } e_2))^* \ast \sigma_T
$$
The proof above is easy, and that should not be surprising, as we are translating our abstract monadic operations into a concrete monad (continuations), thus our source equalities should be trivially satisfied after translation.

\[\Delta \vdash \Gamma \vdash m \to x \in (\text{return}_e, x) = m : A !\tau\]

\[\Delta \vdash \Gamma \vdash \text{bind}_e m \to x \in (\text{return}_e, x) = m : A !\tau\]

\[\Delta \vdash \Gamma \vdash \text{bind}_e (\text{bind}_e m \to x \in e_1) \to y \in e_2 = \text{bind}_e m \to x \in (\text{bind}_e e_1 \to y \in e_2) : A' !\tau\]

\textbf{Figure 8.} Equality rules for DM

\[\Delta \vdash \Gamma \vdash e : H \to H'!e \quad \Delta \vdash \Gamma \vdash e_2 : H!n\]

\[\Delta \vdash \Gamma \vdash (\lambda x : H : e) e_2 = e_1[e_2/x] : H'!e\]

\[\Delta \vdash \Gamma \vdash e : H \to H'!e \quad \Delta \vdash \Gamma \vdash e_2 : H!n\]

\[\Delta \vdash \Gamma \vdash (\lambda x : H : e) e_2 = e_1[e_2/x] : H'!e\]

\textbf{A.7 Monotonicity}

We’re interested in the monotonicity of WPs. Firstly, we need a higher-order definition for this property. Throughout this section we mostly ignore the image of our *-translation and work with a larger subset of EMF* language. This gives us a stronger result than strictly necessary.

The types where the translation is defined are those non-dependent and monad-free (meaning every arrow in them is a Tot-arrow). No occurrence of Pure is allowed. The types of specifications are always of this shape, so this is not a limitation.

For non-empty environments the theorem states:

\textbf{Theorem 18} (Monotonicity of *-translation—environments). For any \(\Delta, \Gamma, e, H, A\) one has:

1. \(\Delta \vdash \Gamma \vdash e : H!n\) \[\implies\] \(\Delta \vdash \Gamma \vdash e \equiv 1 \cap \Delta \vdash e^2 \in 2\)

2. \(\Delta \vdash \Gamma \vdash e : A !\tau\) \[\implies\] \(\Delta \vdash \Gamma \vdash e \equiv 1 \cap \Delta \vdash (e \to \text{Typo}) = \text{Typo} \cap \Delta \vdash e^2 \in 2\)

Where if \(\Gamma = x_1 : t_1, \ldots, x_n : t_n\) we define \(\text{G}^{12} = x_1^{t_1} : t_1^{t_1} \times x_1^{t_1} : t_1^{t_1}, \ldots, \text{essentially duplicating each variable and introducing a strengthening hypothesis between them} (\phi) \text{ is notation for} h : \phi, \text{ where } h \text{ does not appear free in the RHS). We then define the *11* substitution as \(\text{x}_1/x_1, \ldots, \text{x}_n/x_n\) and similarly for *22*. This trivially implies both previous monotonicity theorems.

\textbf{Proof.} We prove these two propositions by induction on the typing derivation for \(e\). Throughout the proof \(\Delta\) plays no special role, so we just drop it from the reasoning, keeping in mind that it has to be there for having well-formed types (but nothing else).

Note that during the proof we treat \(\preceq_x\) abstractly, so any instantiation with a proper type (not necessarily those where \(\preceq\) reduces to equality) would be OK.

Throughout this proof we sometimes skip the subindices for \(\preceq\) in favor of compactness. Hopefully, they should be clear from the context.

1. (ST-VA)

 We need to show \(x_1^{t_1} \preceq_x x_1^{t_1}\). This is trivial from the context and by using the (V-ASSUME) rule.

2. (ST-CONST)

 The constants only deal with base types, so all inductive hypotheses for the arguments reduce to an equality, as does our goal. Our goal is then trivially provable by applications of (V-EqP).

3. (ST-ABS)

 Say we concluded \(\Gamma, x : t \vdash e : s ! e\) As IH we have:

 \[\Gamma^{12} : t_1^{t_1} \to s^{t_1} \to s \vdash e^1[x^1/x] \leq_{e^1} e^2[x^2/x]\]

 Where \(s'\) is either \(s\) or (\(s' : \text{Typo}\) depending on \(e\).

 The proof is independent of this. What we need to prove is:

 \[\Gamma^{12} : (\lambda x : t_1^{s'). e^1) \leq_{e^1} (\lambda x : t_1^{s}). e^2\]

 Which by definition is:

 \[\Gamma^{12} : \forall x_1.x_1.x_1 \leq_{e^1} x_1 \leq_{e^1} (\lambda x : t_1^{s'). e^1) x_1 \leq_{e^1} (\lambda x : t_1^{s}). e^2 x_1\]

 By reduction ((V-EqRED) + (V-EqS)), this is equivalent to:

 \[\Gamma^{12} : \forall x_1.x_1 \leq_{e^1} x_1 \leq_{e^1} (\lambda x : t_1^{s'). e^1) x_1 \leq_{e^1} (\lambda x : t_1^{s}). e^2 x_1\]

 Which we can conclude from our IH and three applications on (V-∀1).

4. (ST-APP)
Having this proof implies that any well-typed term will be given a monotonic specification. And, as a consequence, functions preserve monotonicity.
By the IH for e_2 we know $\forall x. e_2^1 (\lambda x. p_1 x \land p_2 x) = e_2^2 p_1 \land e_2^2 p_2$. By reduction and (V-Ext) this means $(\lambda x. e_2^1 (\lambda x. p_1 x \land p_2 x)) = (\lambda x. e_2^2 p_1 \land e_2^2 p_2)$ Thus we replace on the RHS (via (V-SUB)) and get:

$$
\Gamma_\Sigma \vdash \forall p_1, p_2. \ e_1^1 (\lambda x. e_2^1 p_1) \land e_1^1 (\lambda x. e_2^1 p_2) = e_1^1 (\lambda x. e_2^1 p_1 \land e_2^1 p_2)
$$

By some η-expansion and the IH for e_1 we can turn this to:

$$
\Gamma_\Sigma \vdash \forall p_1, p_2. \ e_1^1 (\lambda x. e_2^1 p_1) \land e_1^1 (\lambda x. e_2^1 p_2) = e_1^1 (\lambda x. e_2^1 p_1 \land e_2^1 p_2)
$$

which is trivially provable by (V-REFL).

(7) (ST-PAIR), (ST-FST)
All trivial by IHs.

(8) (ST-INL)
Does not apply for the cases we consider.

(9) (ST-CASE)
Trivial by (V-SUMIND) and the IHs.

Thus, any term obtained by the \star-translation (return, bind, actions, lifts, ...) will be conjunctive in this sense, which means they also preserve the property through application.

With a completely analogous definition and proof we get the expected result of conjunctivity over (non-empty) universal quantification. The non-empty requirement is not actually stressed during that proof, but it’s the wanted result as WPs (which can be taken as arguments) might not distribute over empty universals.

References

E. Brady. Programming and reasoning with algebraic effects and dependent types. ICFP, 2013.

A. Charguéraud. Characteristic formulae for the verification of imperative programs. ICFP, 2011.

