KLB is associated with alcohol drinking, and its gene product - Klotho is necessary for FGF21 regulation of alcohol preference

Citation for published version:

Digital Object Identifier (DOI):
10.1073/pnas.1611243113

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Proceedings of the National Academy of Sciences

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 25. Jan. 2020
KLβ is associated with alcohol drinking, and its gene product β-Klotho is necessary for FGF21 regulation of alcohol preference
Excessive alcohol consumption is a major public health problem worldwide. While drinking habits are known to be inherited, few genes have been identified that are robustly linked to alcohol drinking. We conducted a genome-wide association meta-analysis and replication study among >105,000 individuals of European ancestry, and identified β-Klotho (KLB) as a locus associated with alcohol consumption (rs11940694; P=9.2×10⁻¹²). β-Klotho is an obligate co-receptor for the hormone FGF21, which is secreted from the liver and implicated in macronutrient preference in man. We show that brain-specific β-Klotho knock-out mice have an increased alcohol preference and that FGF21 inhibits alcohol drinking by acting on the brain. These data suggest that a liver-brain endocrine axis may play an important role in the regulation of alcohol drinking behavior and provide a unique pharmacologic target for reducing alcohol consumption.

alcohol consumption | β-Klotho | FGF21 | mouse model | human

Introduction

Excessive alcohol consumption is a major public health problem worldwide causing an estimated 3.3 million deaths in 2012 (1). Much of the behavioral research associated with alcohol has focused on alcohol-dependent patients. However, the burden of alcohol-associated disease largely reflects the amount of alcohol consumption in a population, not alcohol dependence (2). It has long been recognized that small shifts in the mean of a continuously distributed behavior such as alcohol drinking can have major public health benefits (3). For example, a shift from heavy to moderate drinking could have beneficial effects on cardiovascular disease risk (4).

Alcohol drinking is a heritable complex trait (5). Genetic variants in the alcohol and aldehyde dehydrogenase gene family can result in alcohol intolerance caused by altering peripheral alcohol metabolism, and may thus influence alcohol consumption and dependence (6). However, genetic influences on brain functions affecting drinking behavior have been more difficult to detect because, as for many complex traits, the effect of individual genes is small, so large sample sizes are required to detect the genetic signal (7).

Here we report a genome-wide association (GWAS) and replication study of over 100,000 individuals of European descent. We identify a gene variant in β-Klotho (KLB) that associates with alcohol consumption. β-Klotho is a single-pass transmembrane protein that complexes with FGF receptors to form cell surface receptors for the hormones FGF19 and FGF21 (8, 9). FGF19 is induced by bile acids in the small intestine to regulate bile acid homeostasis and metabolism in the liver (9). FGF21 is induced in liver and released into the blood in response to various metabolic stresses, including high carbohydrate diets and alcohol (10-12). Notably, FGF21 was recently associated in a human study to date (>105,000 individuals) and identified a new genetic basis for alcohol consumption during non-addictive drinking. We found a locus in the gene encoding β-Klotho (KLB) is associated with alcohol consumption. β-Klotho is an essential receptor component for the endocrine fibroblast growth factors (FGFs) 19 and 21. Using mouse models and pharmacologic administration of FGF21, we demonstrate that β-Klotho in the brain controls alcohol drinking. These findings reveal a mechanism regulating alcohol consumption in humans that may be pharmacologically tractable for reducing alcohol intake.

Significance

Alcohol is a widely consumed drug in western societies that can lead to addiction. A small shift in consumption can have dramatic consequences on public health. We performed the largest genome-wide association meta-analysis and replication study to date (>105,000 individuals) and identified a new genetic basis for alcohol consumption during non-addictive drinking. We found a locus in the gene encoding β-Klotho (KLB) is associated with alcohol consumption. β-Klotho is an essential receptor component for the endocrine fibroblast growth factors (FGFs) 19 and 21. Using mouse models and pharmacologic administration of FGF21, we demonstrate that β-Klotho in the brain controls alcohol drinking. These findings reveal a mechanism regulating alcohol consumption in humans that may be pharmacologically tractable for reducing alcohol intake.
Table 1. Associations of single nucleotide polymorphisms* with alcohol intake (log g/day) in the genome-wide association analysis (GWAS).

<table>
<thead>
<tr>
<th>SNP</th>
<th>Chr</th>
<th>Position (hg 19)</th>
<th>Nearest gene</th>
<th>Effect / other alleles</th>
<th>Discovery GWAS</th>
<th>Replication</th>
<th>Combined</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Beta (SE)</td>
<td>P-value</td>
<td>Beta (SE)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>P-value</td>
<td></td>
<td></td>
</tr>
<tr>
<td>rs780094</td>
<td>2</td>
<td>27741237</td>
<td>GCKR</td>
<td>T/C 0.40</td>
<td>-0.0155 (0.0026)</td>
<td>3.6x10^-9</td>
<td>-0.0000 (0.0029)</td>
</tr>
<tr>
<td>rs350721</td>
<td>2</td>
<td>52980427</td>
<td>ASB3</td>
<td>C/G 0.18</td>
<td>0.0206 (0.0040)</td>
<td>3.2x10^-10</td>
<td>-0.0058 (0.0028)</td>
</tr>
<tr>
<td>rs197273</td>
<td>2</td>
<td>161894663</td>
<td>TANK</td>
<td>A/G 0.49</td>
<td>-0.0141 (0.0026)</td>
<td>9.8x10^-10</td>
<td>-0.0135 (0.0030)</td>
</tr>
<tr>
<td>rs11940694</td>
<td>4</td>
<td>39414993</td>
<td>KLB</td>
<td>A/G 0.42</td>
<td>-0.0137 (0.0027)</td>
<td>3.2x10^-10</td>
<td>-0.0070 (0.0033)</td>
</tr>
<tr>
<td>rs6943555</td>
<td>7</td>
<td>69806023</td>
<td>AUTS2</td>
<td>A/T 0.29</td>
<td>-0.0115 (0.0030)</td>
<td>1.4x10^-7</td>
<td>-0.0015 (0.0042)</td>
</tr>
<tr>
<td>rs10950202</td>
<td>7</td>
<td>69930098</td>
<td>AUTS2</td>
<td>G/C 0.16</td>
<td>-0.0194 (0.0038)</td>
<td>2.9x10^-7</td>
<td>-0.0015 (0.0042)</td>
</tr>
</tbody>
</table>

* One SNP with smallest P-value taken forward per region

To examine whether β-Klotho affects alcohol drinking in mice, and whether it does so through actions in the brain, we measured alcohol intake and the alcohol preference ratio of brain-specific β-Klotho-knockout (KlbCamk2a) mice and control floxed Klb (Klbfl/fl) mice. We used a voluntary two-bottle drinking assay performed with water and alcohol. Since we previously showed that FGF21-transgenic mice, which express FGF21 at pharmacologic levels, have a reduced alcohol preference (14), we performed these studies while administering either recombinant FGF21 or vehicle by osmotic minipump. Alcohol preference versus water was significantly increased in vehicle-treated KlbCamk2a compared to Klbfl/fl mice at 16 vol. % alcohol (Fig. 2A). FGF21 suppressed alcohol preference in Klbfl/fl mice, but not in KlbCamk2a demonstrating that the effect of FGF21 on alcohol drinking depends on β-Klotho expressed in the brain (Fig. 2A). There was a corresponding decrease in plasma alcohol levels immediately after 16 vol. % alcohol drinking, which reflects the modulation of the drinking behavior (Fig. 2B). However, plasma FGF21 levels were comparable in Klbfl/fl and KlbCamk2a mice administered recombinant FGF21 at the end of the experiment (Fig. 2C). Alcohol bioavailability was not different between FGF21 treated Klbfl/fl and KlbCamk2a mice (Fig. 2D). We have previously shown that FGF21 decreases the sucrose and saccharin preference ratio in Klbfl/fl but not KlbCamk2a mice, and has no effect on the quinine preference ratio (14). To rule out a potential perturbation of our findings as a result of the experimental procedure, we independently measured preference and consumption of 16 vol. % alcohol in Klbfl/fl and KlbCamk2a mice without osmotic minipump implantation. Again, KlbCamk2a mice showed significantly greater alcohol consumption and increased alcohol preference compared to Klbfl/fl mice (Fig. 2E and F), thus replicating our findings above. Alcohol bioavailability after an intraperitoneal injection was not different between Klbfl/fl and KlbCamk2a mice after 1 and 3 hours (Fig. 2G).

β-Klotho in brain does not regulate emotional behavior in mice

Increased alcohol drinking in humans and mice may be motivated by its reward properties or as a means to relieve anxiety...
FGF21 reduces alcohol preference in mice by acting on β-Klotho in brain. (A) Alcohol preference ratios determined by two-bottle preference assays with water and the indicated ethanol concentrations for control (Klb^{fl/fl}) and brain-specific β-Klotho knockout (KlbCamk2a) mice administered either FGF21 (0.7 mg/kg/day) or vehicle (n=10/group). (B) Plasma ethanol and (C) FGF21 concentrations at the end of the 16% ethanol step of the two-bottle assay. (D) Plasma ethanol concentrations 1 and 3 hours after i.p. injection of 2 g/kg alcohol (n=4/each group). (E) Consumption of 16% ethanol (g/kg/d) and (F) alcohol preference ratios in two-bottle preference assays performed with control (Klb^{fl/fl}) and brain-specific β-Klotho-knockout (KlbCamk2a) mice. Alcohol preference was measured by volume of ethanol/total volume of fluid consumed (n=13/group). (G) Plasma ethanol concentrations 1 and 3 hours after i.p. injection of 2 g/kg alcohol (n=5/group). Values are means ± S.E.M. For (A-C), *p<0.05; ***p<0.001 for Klb^{fl/fl} + vehicle versus Klb^{fl/fl} + FGF21 groups; and ##p<0.01; ###p<0.001 for Klb^{fl/fl} + FGF21 versus Klb^{Camk2a} + FGF21 groups as determined by one-way ANOVA followed by Tukey’s post-tests. For (E, F), *p<0.05 and **p<0.01.

Fig. 3. Behavior tests in brain-specific β-Klotho knockout mice. Results from (A) novelty suppressed feeding, (B) elevated plus maze and (C) open field activity assays performed with control (Klb^{fl/fl}) and brain-specific β-Klotho-knockout (KlbCamk2a) mice (n=15/each group). Values are the time (seconds) spent for each step of the assay.

and stress (17). In mice, FGF21 increases corticotropin-releasing hormone expression in hypothalamus, circulating glucocorticoid concentrations and sympathetic outflow (18-20), which are linked to heightened anxiety. We therefore tested Klb^{ββ} and Klb^{Camk2a} mice in behavioral paradigms measuring anxiety, including novelty suppressed feeding (Fig. 3A), elevated plus maze (Fig. 3B),
and open field activity tests (Fig. 3C). However, we did not find differences between Klbfl/fl and Klb-Cam2a mice in any of these anxiety measures or in general locomotor activity. Our finding of increased alcohol preference in Klb-Cam2a mice may thus be caused by alteration of alcohol-associated reward mechanisms. While this notion is consistent with our previous results showing Klb expression in areas important for alcohol reinforcement, specifically the nucleus accumbens and the ventral tegmental area (14), additional studies will be required to determine precisely where in the brain and how β-Klotho affects alcohol drinking.

Discussion

Here we report that in a GWAS performed in over 100,000 individuals, SNP rs11940694 in KLB associates with alcohol consumption in non-addicts. We further show that mice lacking β-Klotho in the brain have increased alcohol consumption and are refractory to the inhibitory effect of FGF21 on alcohol consumption. These findings reveal a previously unrecognized brain pathway regulating alcohol consumption in humans that may prove pharmacologically tractable for suppressing alcohol drinking.

FGF21 is induced in liver by simple sugars through a mechanism involving the transcription factor carbohydrate response element binding protein (18). FGF21 in turn acts on brain to suppress sweet preference (14, 15). Thus, FGF21 is part of a liver-brain feedback loop that limits the consumption of simple sugars. Notably, FGF21 is also strongly induced in liver by alcohol and contributes to alcohol-induced adipose tissue lipolysis in a mouse model of chronic binge alcohol consumption (12). Our present data suggest the existence of an analogous feedback loop wherein liver-derived FGF21 acts on brain to limit the consumption of alcohol. However, additional studies will be required to establish the existence of this FGF21 pathway in vivo.

In murine brain, there is evidence that FGF21 suppresses sweet preference through effects on the paraventricular nucleus in the hypothalamus (15). Among its actions in the hypothalamus, FGF21 induces corticotropin-releasing hormone (18), which is a strong modulator of alcohol consumption (23). Notably, β-Klotho is also present in mesolimbic regions of the brain that regulate reward behavior, including the ventral tegmental area and nucleus accumbens, and FGF21 administration reduced tissue levels of dopamine and its metabolites in the nucleus accumbens (14). Thus, FGF21 may act coordinately on multiple brain regions to regulate the consumption of both simple sugars and alcohol.

In closing, our data linking β-Klotho to alcohol consumption together with previous GWAS data linking FGF21 to macronutrient preference raise the intriguing possibility of a liver-brain endocrine axis that plays an important role in the regulation of complex adaptive behaviors, including alcohol drinking. While our findings support an important role for the KLB gene in the regulation of alcohol drinking, we cannot rule out the possibility that KLB rs11940694 affects by affecting neighboring genes. Therefore, additional genetic and mechanistic studies are warranted. Finally, it will be important to follow up on our findings in more severe forms of alcohol drinking, since our results suggest that this pathway could be targeted pharmacologically for reducing the desire for alcohol.

Methods

Alcohol phenotypes

Alcohol intake in grams of alcohol per day was estimated by each cohort based on information about drinking frequency and type of alcohol consumed. For cohorts that collected data in ‘drinks per week,’ standard ethanol drink sizes were used as the standard. For cohorts that collected alcohol use in grams of ethanol per week, the numbers were divided by 7 directly into ‘grams per day.’ Cohorts with only a categorical response to the question for drinks per week used mid-points of each category for the calculation. Non-drinkers (individuals reporting zero drinks per week)

were removed from the analysis. The ‘grams per day’ variable was then transformed prior to the analysis. Sex-specific residuals were derived by regressing alcohol in log\textsubscript{10} (grams per day) in a linear model on age, age-squared, weight, and if applicable, study site and principal components to account for population structure. The sex-specific residuals were pooled and used as the main phenotype for subsequent analyses. Sex-specific residuals were defined if male participants had <14 drinks per week, or female participants had <7 drinks per week. Drinkers having >14 to <21 drinks for men, or >7 to <14 drinks for women were excluded. Where information was available, current-once per week drinkers who were former drinker of >14 per week in men, and >7 drinks per week in women, as well as current non-drinker who was a former drinker of unknown amount were excluded; whereas current non-drinkers who were former drinkers of <14 for men or <7 for women were included. Further exclusion was made if there were missing data on alcohol consumption or on the covariates.

The analyses only included participants of European origin and were performed in accordance with the principles expressed in the Declaration of Helsinki. Each cohort’s study protocol was reviewed and approved by their respective institutional review board and informed consent was obtained from all study subjects.

Discovery GWASs in AlcGen and CHARGE+ and replication analyses

Genotyping methods are summarized in Dataset S1B, S1C and S1F. SNPs were excluded if: HWE P < 1x10-6 or based on cohort-specific criteria; MAF < 1%; inflation correction score < 0.5; if results were only available from 2 or fewer cohorts, or total N < 10,000. Population structure was accounted for within cohorts via principal components analysis (PCA). Linkage disequilibrium (LD) score was used to select a single SNP best representing multiple SNPs by examining the degree of inflation in test statistics, and genomic control correction was considered unnecessary (λ(GC) = 1.06 and intercept=1.00, λ(GC) = 1.06 for individual cohorts, Dataset S1B and S1C). SNPs were taken forward for replication from discovery GWAS if they passed the above criteria and if they had P < 1x10-6 (one SNP with the smallest P taken forward in each region, except for AUTS2 for which two SNPs were taken forward based on previous results (7)). Meta-analyses were performed by METAL (25) or R (v3.2.2).

Gene expression profiling in Framingham study

In the Framingham study, gene expression profiling was undertaken for the blood samples of a total of 5,626 participants from the Offspring (N = 2,446) at examination eight and the Third Generation (N = 3,180) at examination two. Fasting peripheral whole blood samples (2.5ml) were collected in PAXgene™ tubes (PreAnalytiX, Hombrechtshorn, Switzerland). All participants provided informed consent. RNA expression profiling was conducted using the Affymetrix Human Exon Array ST 1.0 (Affymetrix, Inc., Santa Clara, CA) for samples that passed RNA quality control. The expression values for 18,000 transcripts were obtained from the total 1.2 million core probe sets. Quality control procedures for transcripts have been described previously. All data used herein are available online in dbGaP (http://www.ncbi.nlm.nih.gov/gap; accession number phs000007). The cis-expression quantitative trait loci analysis in the Framingham study.

To investigate possible effects of rs11940694 in KLB on gene expression, we performed a gene set enrichment analysis (GSEA) analysis. The "enrichment score" variable in association analysis with the transcript of KLB measured using whole blood samples in the FHS (N=5,236). Affymetrix probe 2724308 was used to represent the KLB transcript. Age, sex, BMI, and hospital effects and blood cell differentials were included as covariates in the association analysis. Linear model mixed model was used to account for familial correlation in association analysis.

Mouse studies

All mouse experiments were approved by the Institutional Animal Care and Research Advisory Committee of the University of Texas Southwestern Medical Center. Male littermates (2 to 4-month-old) maintained on a 12 hr light/dark cycle with ad libitum access to chow diet (Harlan Teklad TD2916) were used for all experiments. The Klb gene was deleted from brain by crossing Klbfloxed mice with Camk2a-Cre mice on a mixed C57BL/6J:129sv background as described (26).

Alcohol drinking in mice

For voluntary two-bottle preference experiments, male mice (n=9-13 per group) were given access to two bottles, one containing water and the other containing 2% ethanol (v/v) in water. After acclimation to the two-bottle paradigm, mice were exposed to each concentration of ethanol for 4 days. Total fluid intake (water + ethanol-containing water), food intake and body weight were measured each day. Alcohol consumption (g) was calculated based on EOH density (0.789 g/ml). To obtain accurate alcohol intake that corrected for individual differences in littermate size, alcohol consumption in g was divided by body weight in grams. Two-tailed t-tests were performed with succrease(0.5 and 5%) and non-quer- (2 ≤ t ≤ 20 mg/dl) predictions. Fora-
experiments, the positions of the two bottles were changed every two days to exclude position effects.

Mouse experiments with FGFR21

For FGFR21 administration studies, recombinant human FGFR21 protein provided by Novo Nordisk was administered at a dose of 0.7 mg/kg/day by subcutaneous osmotic mini-pumps (Alzet 1004A). Student’s t test was used to compare the following mini-pump surgery, which was conducted under isoflurane anesthesia and 24 hour buprenorphine analgesia. Mice were allowed to recover from mini-pump surgery for 4 days prior to alcohol drinking tests. After experiments, mice were sacrificed by decapitation and plasma was collected using EDTA or heparin after centrifugation for 15 minutes at 3000 rpm. Plasma FGFR21 concentrations were measured using the Biodoveron FGFR21 ELISA Kit according to manufacturer’s protocol.

Plasma ethanol concentration and clearance

For alcohol bioavailability tests, mice (n=4-5 per group) were injected i.p. with alcohol (2.0 g/kg, 20% w/vol) in saline, and tail vein blood was collected after 1 and 3 hours. Plasma alcohol concentrations were measured using the EnzyChrom™ Ethanol Assay Kit.

Emotional behavior in mice

For open field activity assays, naive mice were placed in an open arena (44 x 44 cm, with the center defined as the middle 14 x 14 cm and the periphery defined as the area 5 cm from the wall), and the amount of time spent in the center versus along the walls and total distance traveled were measured. For elevated plus maze activity assays, mice were placed in the center of a plus maze with 2 dark enclosed arms and 2 open arms. Mice were allowed to move freely around the maze, and the total duration of time in each arm and the frequency to enter both the closed and open arms was measured. For novelty suppression of feeding assays, mice fasted for 24 hours were placed in a novel environment and the time to approach and eat a known food was measured.

Statistical analysis

All data are expressed as means ± S.E.M. Statistical analysis between two groups was performed by unpaired two-tailed Student's t test using SPSS.

Acknowledgments

Footnote Author