

Edinburgh Research Explorer

A Software Interface Between the Narrative Language and Bio-
PEPA

Citation for published version:
Georgoulas, A & Guerriero, ML 2013, 'A Software Interface Between the Narrative Language and Bio-
PEPA', Electronic Proceedings in Theoretical Computer Science, vol. 293, pp. 51-65.
https://doi.org/10.1016/j.entcs.2013.02.018

Digital Object Identifier (DOI):
10.1016/j.entcs.2013.02.018

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Electronic Proceedings in Theoretical Computer Science

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 28. Nov. 2020

https://www.research.ed.ac.uk/portal/en/persons/anastasis-georgoulas(f4d3ff3c-c7cd-474c-98f3-0c9a4ddb831d).html
https://www.research.ed.ac.uk/portal/en/persons/maria-guerriero(8652781b-a615-4847-b3dc-dfb9d03de237).html
https://www.research.ed.ac.uk/portal/en/publications/a-software-interface-between-the-narrative-language-and-biopepa(f1a56062-ed7e-4e45-b2a3-9b3fa252c2b6).html
https://www.research.ed.ac.uk/portal/en/publications/a-software-interface-between-the-narrative-language-and-biopepa(f1a56062-ed7e-4e45-b2a3-9b3fa252c2b6).html
https://doi.org/10.1016/j.entcs.2013.02.018
https://doi.org/10.1016/j.entcs.2013.02.018
https://www.research.ed.ac.uk/portal/en/publications/a-software-interface-between-the-narrative-language-and-biopepa(f1a56062-ed7e-4e45-b2a3-9b3fa252c2b6).html

A Software Interface Between the
Narrative Language and Bio-PEPA

Anastasis Georgoulas1

SynthSys – Synthetic and Systems Biology, University of Edinburgh, Edinburgh, United Kingdom

Maria Luisa Guerriero2

Sytems Biology Ireland, University College Dublin, Dublin, Ireland

Abstract

We present a software tool for the automatic translation of models from the Narrative Language, a semi-
formal language for biological modelling, into the Bio-PEPA process algebra. This provides biologists with
an easy way to describe systems and at the same time gives them access to the simulation and analysis
techniques provided by Bio-PEPA. We present details of the translation algorithm and its integration into
existing software, and discuss ways in which this idea could be further explored.

Keywords: automatic translation, high level modelling languages, process algebra, Narrative Language,
Bio-PEPA

1 Introduction

The use of formal methods for modelling the behaviour of biological systems has

been a subject of intense research in recent years. In particular, process algebras [6]

have been successfully shown to be a useful formalism for the description of bio-

logical processes and their analysis, using established techniques such as stochastic

simulation [11] and model-checking [14].

Mathematical formalisms such as process algebras are not an easy modelling

language to adopt for non-experts, and in this respect they are in stark contrast to

the textual and graphical descriptions traditionally used in biology, which are often

informal, ambiguous and not amenable to automatic manipulation, but intuitive

and easy to use.

1 Email: anastasis.georgoulas@ed.ac.uk
2 Email: maria.guerriero@ucd.ie

Available online at www.sciencedirect.com

Electronic Notes in Theoretical Computer Science 293 (2013) 51–65

1571-0661 © 2013 Elsevier B.V.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2013.02.018
Open access under CC BY-NC-ND license.

mailto:anastasis.georgoulas@ed.ac.uk
mailto:maria.guerriero@ucd.ie
http://www.elsevier.com/locate/entcs
http://dx.doi.org/10.1016/j.entcs.2013.02.018
http://dx.doi.org/10.1016/j.entcs.2013.02.018
http://www.sciencedirect.com
http://creativecommons.org/licenses/by-nc-nd/3.0/

Biological modelling, especially in the context of systems biology, is increasingly

becoming an interdisciplinary field, and often biologists are directly involved in the

development of models. However, because of the complexity of formal methods,

despite their attractive characteristics and the analysis capabilities, biologists often

prefer to continue describing systems in an informal way and rely on mathematicians

and computer scientists to translate these informal descriptions into computational

models. Unfortunately, this translation process is prone to a number of errors,

including misinterpretation of the informal representations.

In order for scientists with different backgrounds to collaborate efficiently and

to fully take advantage of existing and emerging techniques, they need a common

vocabulary and modelling language and tools that are accessible to all of them. An

ideal modelling platform would be one that combines an interface that is easy to

use by wet-lab biologists with the strong analysis capabilities of formal languages.

Such platform would hide from the user the process of translating the biologists’

intuitive system descriptions into formal computational models.

In this paper we present a tool for translating a semi-formal modelling language

for biology [12] into the process algebra Bio-PEPA [7]. Our tool is implemented as

an extension of the Bio-PEPA Eclipse plugin [5], an existing software platform for

formal modelling and analysis of biological systems.

The remainder of the paper is structured as follows: Section 2 gives some back-

ground information on the two modelling languages involved in the translation we

present; Section 3 describes the translation procedure, while Section 4 contains an

example of its application; details of the implementation of the tool and its integra-

tion with existing software are given in Section 5; finally, Section 6 presents ideas

for further work.

2 Background

The ideas laid out in the previous section were the reasoning behind the introduction

of the Narrative Language (NL) [13]. The NL describes the events that can occur in

a system using a syntax that, although constrained, approximates natural language

descriptions. It also provides a predefined vocabulary of biochemical terms (such as

“binds” or “phosphorylates”) that are similar to those normally used by biologists

and allow one to model a variety of biological interactions. As demonstrated in [12],

the model essentially takes the form of a few tables, each containing information

about the locations, species and reactions of the system. In the original work, this

semi-formal description was translated into the Beta-Binders process algebra [15].

One can thus enjoy the benefits of formal modelling without having to express the

model in a language that is potentially not approachable by biologists.

Bio-PEPA [7] is a stochastic process algebra introduced for the purpose of being

applied to biochemical systems. It adopts a reagent-centric view in which each

biochemical species is abstracted as a process. A model is then composed in a

modular way through the interactions between the processes.

Although a translation to Beta-Binders already exists, the translation to Bio-

A. Georgoulas, M.L. Guerriero / Electronic Notes in Theoretical Computer Science 293 (2013) 51–6552

PEPA is worthwhile for a number of reasons. Firstly, having another target language

was a motivation to re-evaluate and extend the syntax of the NL (as described in

the next section). Additionally, the new translation has been integrated into an

existing actively-maintained software platform, the Bio-PEPA Eclipse plugin, which

provides modellers with a number of interesting simulation and analysis methods.

For example, one can perform static analysis of a model’s invariants or export it to

a format suitable for model-checking.

3 Translation

Because of the various conceptual differences between Beta-Binders and Bio-PEPA,

the algorithm we propose is not a modification on the original translation to Beta-

Binders. Rather, it is designed with Bio-PEPA in mind as the target language and

tailored to the specific features of that formalism.

3.1 Input language

The fact that the NL was designed having in mind that it would be translated to

Beta-Binders influenced its original syntax and characteristics. Since our target

language is different, we took this opportunity to introduce some new language

features that expand the expressive capabilities of the NL, which were not supported

by Beta-Binders.

One of the features of Bio-PEPA is that it supports the use of arbitrary kinetic

laws, whereas in Beta-Binders (and, accordingly, in the initial version of the NL),

only mass-action kinetics were supported. In the input language for our translation,

a reaction can be defined as occurring at a constant rate or following mass-action,

Michaelis-Menten or Hill kinetics, with a corresponding set of parameters.

An additional change is the ability to define constants, which can then be used in

the model whenever an explicit numerical value is expected, e.g. as kinetic parame-

ters or initial concentrations. Despite being a trivial change, this greatly simplifies

the process of specifying and modifying models.

A description of the full language syntax can be found in Appendix C.

3.2 Preprocessing

Before the translation itself begins, a series of checks are performed to ascertain

whether the model is valid. These consist mainly in “sanity checks” in order to

ensure the internal consistency of the model, i.e. that the definitions of its elements

are not contradicted by their subsequent use. For example, if an event states “if

A is active then A relocates to 2”, then the definition of component A must state

at least two things: that A can exist in an active or inactive state; and that A is

(potentially) found in compartment 2.

A. Georgoulas, M.L. Guerriero / Electronic Notes in Theoretical Computer Science 293 (2013) 51–65 53

3.3 The algorithm

Generally speaking, the NL follows a rule-based modelling style, so the emphasis is

on the description of events. On the other hand, Bio-PEPA is reagent-centric, with

the building block being the definitions of species. Therefore our work is mainly

to process each NL event to collect the reactions in which each species participates

and its role in them. We will now briefly describe how each event is processed.

Identifying the participating components

The first step is to find the components that take part in the event, which can

happen in two ways: a component can be either affected if it undergoes some change

as a result of the event, or simply involved if it facilitates such a change without

changing itself. We make this distinction to differentiate between the roles a species

can have in a reaction in Bio-PEPA: affected components correspond to reactants

and products, while involved ones to modifiers (enzymes or inhibitors).

Consider for example the following event: “if A is inactive then B activates

A”. In this bimolecular reaction, A undergoes a change (i.e. becomes active) and

is therefore an affected component, while B does not undergo any change and is

therefore an involved component.

Getting the variants of the components

A crucial difference between the NL and Bio-PEPA is that in the NL a com-

ponent is associated with a number of binary states (e.g. (un)phosphorylated,

(in)active), whereas Bio-PEPA species have no internal state. This means that

a NL component with n states can correspond, in the translation, to 2n Bio-PEPA

species. In practice, the number of these variants is constrained by the conditions of

each event, which can impose restrictions on the state of components. We will de-

note by var(a, C) the set of variants of component a that satisfy the set of conditions

C.

Continuing the previous example, let us assume that B has no internal

states while A has two: it can be phosphorylated or not, and active or not.

This implies that B can only have one variant, also denoted B. A can

have four variants, denoted A active phosphorylated, A active unphosphorylated,

A inactive phosphorylated and A inactive unphosphorylated. However, the event

imposes a condition c1 on A, which limits the applicable variants to two; i.e. for-

mally, we have that this event can only be applied to the set var(A, {c1}) =

{A inactive phosphorylated,A inactive unphosphorylated}.

Adding the reactions

Each combination of variants of the participating components can give rise to a

different reaction. Let A = {ak} and I = {ik} be the set of affected and involved

components, respectively. Then the output model will contain one reaction for each

A. Georgoulas, M.L. Guerriero / Electronic Notes in Theoretical Computer Science 293 (2013) 51–6554

element of R, where

R =
∏

{var(a, C)|a ∈ A} ×
∏

{var(i, C)|i ∈ I} .

The products of every such reaction depend on the affected variants and the type

of the event (e.g. activation, binding, etc.). Let the product species be denoted by

out(A′, e), where e is a type of event and A′ is a tuple of variants of the affected

species, i.e.

A′ ∈
∏

{var(a, C)|a ∈ A} .

In summary, for every element of R, we add one Bio-PEPA reaction for which the

reactants are A′, the activators are I ′ (defined similarly to A′) and the products are

out(A′, e). It is obvious that the resulting model will in general have more species

and reactions than the number of NL components and events, respectively. For a

single event, in the worst case the increase could be exponential in the number of

states of the participating components. This is an unavoidable consequence of the

nature of Bio-PEPA, specifically its lack of internal state for species, as mentioned

above.

In the example, there are two combinations between var(A, {c1}) and

var(B, {c1}), so

R = {(A inactive phosphorylated,B), (A inactive unphosphorylated,B)} .

This event will therefore be translated into two reactions, r1 and r2, one for each

combination. For r1,

A′ = A inactive phosphorylated, I ′ = B

and out(A′, activation) = {A active phosphorylated}. Reaction r2 is defined simi-

larly.

After the event is translated, we will have the following roles for the relevant

species.

A inactive phosphorylated = r1 ↓
A active phosphorylated = r1 ↑

A inactive unphosphorylated = r2 ↓
A active unphosphorylated = r2 ↑

B = r1⊕ + r2⊕

4 Example and effect on model size

As a further simple example, we consider a molecule B with four activation sites

which can be activated in any order. Another molecule A can bind to B regardless

of B’s activation state. The description of this system in the NL contains two

components and five reactions (four activations and one binding). The full model

can be found in Appendix A.

A. Georgoulas, M.L. Guerriero / Electronic Notes in Theoretical Computer Science 293 (2013) 51–65 55

Fig. 1. The translated model opened in the Bio-PEPA plugin with some analysis results.

Appendix B contains the result of the translation, and Figure 1 shows the file

as displayed in the Bio-PEPA plugin. The resulting model has 33 species and

48 reactions, in contrast to the compact size of the original one. This increase

in size is a consequence of the inability to express internal states in Bio-PEPA:

the complexity held by the existence of sites and states in the NL model leads

directly to this combinatorial explosion during the translation. In the worst case, the

number of Bio-PEPA species corresponding to a NL component can be exponential

in the number of the component’s sites, with the number of reactions growing

accordingly. This example shows another reason why developing models in the NL

and automatically translating them into Bio-PEPA can be advantageous compared

to developing them in Bio-PEPA directly.

While this increase in model complexity is inevitable in the translation, there

may be ways of alleviating its effect by exploiting the structure of the system. For

instance, some combinations of states might be implicitly prohibited by the sequence

of events or the initial state, and we can thus remove the corresponding species from

the final model through a reachability analysis. Additionally, we can lump together

species with identical behaviour; for instance, in the above example, if all activation

sites are indistinguishable, we can treat all variants that have exactly one active

site as equivalent, thus reducing the number of resulting species.

5 Implementation and software integration

Our translation procedure has been implemented as an extension of the existing

Bio-PEPA plugin [5] for the Eclipse IDE [1] (the code can be found at [3] and will

be included in the next major release of the Bio-PEPA plugin). Specifically, we

have added a new menu item that prompts the user to select an input file and an

output location and then performs the translation. If the translation is completed

A. Georgoulas, M.L. Guerriero / Electronic Notes in Theoretical Computer Science 293 (2013) 51–6556

successfully without any errors, the user then has the choice to open the newly

created Bio-PEPA file in the editor, from where they can use the analysis methods

available for any standard Bio-PEPA file.

In the case of errors being found during the validation procedure, the course

of action depends on their severity. If the translation cannot continue, e.g. if the

parsing has failed because an essential element is missing, the process is aborted.

If, however, the problems are less severe, the user has the choice of continuing,

although the resulting file may not be valid in its entirety.

The tool is written in Java, using packages from the standard library, with two

exceptions. Parsing of the model is performed using Xtext [4], a tool for speci-

fying and handling domain-specific languages. To use Xtext, we specify the rules

describing the NL grammar in a format similar to EBNF. Xtext then produces an

object-oriented model of the grammar, automatically generating classes for each

term defined, and also provides classes for parsing a file according to the grammar.

This greatly simplifies the low-level work needed to retrieve the model described.

Secondly, the graphical interface is built using the Eclipse API [2] for its various

elements.

6 Future work

We are interested in continuing this work and believe there is room for further

improvement, at both a theoretical and practical level. For the former, we plan to

explore possible optimisations of the translation algorithm that would result in a

reduced output model. This could be done by analysing the Bio-PEPA model once

it is generated and using existing theoretical results concerning bisimilarity in the

language, e.g. [10], or approaches like symmetry detection [9]. Translations could

also be developed for other target languages, in particular rule-based languages such

as Kappa [8].

On the practical side, we believe that our tool would benefit from a graphical

interface that makes the NL even easier to access. One idea, for instance, would

be to use Xtext to implement a text editor for the Narrative Language, which

could be integrated into the Bio-PEPA plugin. Another option would be to have a

more elaborate and user-friendly GUI for specifying NL models, using forms or a

spreadsheet-like application. This could be either standalone or part of the plugin.

One could even hide the Bio-PEPA model altogether: a user could describe the

model and choose an analysis method using a purpose-built GUI, then the tool would

silently perform the translation and run the desired analysis, before presenting the

user with the results.

Acknowledgement

The authors would like to thank Jane Hillston, Stephen Gilmore and Allan Clark

for their help and advice. SynthSys (formerly “Centre for Systems Biology at Ed-

inburgh”) is a Centre for Synthetic and Systems Biology funded by BBSRC and

A. Georgoulas, M.L. Guerriero / Electronic Notes in Theoretical Computer Science 293 (2013) 51–65 57

EPSRC, ref. BB/D019621/1.

References

[1] Bio-PEPA, http://www.biopepa.org/.

[2] Eclipse Platform API Specification, http://help.eclipse.org/helios/topic/org.eclipse.platform.
doc.isv/reference/api/overview-summary.html.

[3] GitHub, https://github.com/ageorgou/Bio-PEPA.

[4] Xtext, http://www.eclipse.org/Xtext/.

[5] Ciocchetta, F., A. Duguid, S. Gilmore, M. L. Guerriero and J. Hillston, The Bio-PEPA Tool Suite,
in: Sixth International Conference on the Quantitative Evaluation of Systems, QEST’09, 2009, pp.
309–310.

[6] Ciocchetta, F. and J. Hillston, Process Algebras in Systems Biology, in: SFM’08, Lecture Notes in
Computer Science 5016, Springer-Verlag, 2008 pp. 265–312.

[7] Ciocchetta, F. and J. Hillston, Bio-PEPA: A framework for the modelling and analysis of biological
systems, Theoretical Computer Science 410 (2009), pp. 3065–3084.

[8] Danos, V., J. Feret, W. Fontana, R. Harmer and J. Krivine, Rule-Based Modelling of Cellular
Signalling, in: CONCUR 2007 - Concurrency Theory, Lecture Notes in Computer Science 4703,
Springer Berlin/Heidelberg, 2007 pp. 17–41.

[9] Donaldson, A. and A. Miller, Automatic symmetry detection for model checking using computational
group theory, in: FM 2005: Formal Methods, Lecture Notes in Computer Science 3582, Springer
Berlin/Heidelberg, 2005 .

[10] Galpin, V., Equivalences for a biological process algebra, Theoretical Computer Science 412 (2011),
pp. 6058–6082.

[11] Gillespie, D. T., Exact stochastic simulation of coupled chemical reactions, Journal of Physical
Chemistry 81 (1977), pp. 2340–2361.

[12] Guerriero, M. L., A. Dudka, N. Underhill-Day, J. K. Heath and C. Priami, Narrative-based
computational modelling of the Gp130/JAK/STAT signalling pathway, BMC Systems Biology 3 (2009),
p. 40.

[13] Guerriero, M. L., J. K. Heath and C. Priami, An Automated Translation from a Narrative Language
for Biological Modelling into Process Algebra, in: Proceedings of Computational Methods in Systems
Biology (CMSB’07), Lecture Notes in Computer Science 4695 (2007), pp. 136–151.

[14] Kwiatkowska, M., G. Norman and D. Parker, Using probabilistic model checking in systems biology,
ACM SIGMETRICS Performance Evaluation Review 35 (2008), pp. 14–21.

[15] Priami, C. and P. Quaglia, Operational patterns in Beta-binders, Transactions on Computational
Systems Biology 1 (2005), pp. 50–65.

A NL model of the example system

Constants
(N,5)

Compartments
(1, cytosol, 1.0, , 3,)

Components
(1, A, , , bound:FALSE, 1:(100, 100), (N, 100), (0,0), (0,0))
(2, B, , s1:active:FALSE;s2:active:FALSE;s3:active:FALSE;s4:active:FALSE, bound:FALSE,1:(100, 100),
(10, 100), (0,0), (0,0))

Reactions
(1, activation, “single site activation”, (fMA(0.05), 50), (1.0, 50))
(2, binding, “binding A-B”, (fMA(0.05),100),(1.0,100))

Narrative

A. Georgoulas, M.L. Guerriero / Electronic Notes in Theoretical Computer Science 293 (2013) 51–6558

http://www.biopepa.org/
http://help.eclipse.org/helios/topic/org.eclipse.platform.doc.isv/reference/api/overview-summary.html
http://help.eclipse.org/helios/topic/org.eclipse.platform.doc.isv/reference/api/overview-summary.html
https://github.com/ageorgou/Bio-PEPA
http://www.eclipse.org/Xtext/

Process “activation of B”
(1, if A is bound and B is bound and B.s1 is not active then A activates B on s1, “”, 1, ,)
(2, if A is bound and B is bound and B.s2 is not active then A activates B on s2, “”, 1, ,)
(3, if A is bound and B is bound and B.s3 is not active then A activates B on s3, “”, 1, ,)
(4, if A is bound and B is bound and B.s4 is not active then A activates B on s4, “”, 1, ,)
(5, if A is not bound and B is not bound then A binds B, “”,2, ,)

B Bio-PEPA translation of example system

//Constants:

N = 5;

//Compartments:

location cytosol : size = 1.0, type = compartment;

//Kinetic rate laws:

kineticLawOf r1 1 : fMA(0.05);

kineticLawOf r1 2 : fMA(0.05);

kineticLawOf r1 3 : fMA(0.05);

kineticLawOf r1 4 : fMA(0.05);

kineticLawOf r1 5 : fMA(0.05);

kineticLawOf r1 6 : fMA(0.05);

kineticLawOf r1 7 : fMA(0.05);

kineticLawOf r1 8 : fMA(0.05);

kineticLawOf r1 9 : fMA(0.05);

kineticLawOf r1 10 : fMA(0.05);

kineticLawOf r1 11 : fMA(0.05);

kineticLawOf r1 12 : fMA(0.05);

kineticLawOf r1 13 : fMA(0.05);

kineticLawOf r1 14 : fMA(0.05);

kineticLawOf r1 15 : fMA(0.05);

kineticLawOf r1 16 : fMA(0.05);

kineticLawOf r1 17 : fMA(0.05);

kineticLawOf r1 18 : fMA(0.05);

kineticLawOf r1 19 : fMA(0.05);

kineticLawOf r1 20 : fMA(0.05);

kineticLawOf r1 21 : fMA(0.05);

kineticLawOf r1 22 : fMA(0.05);

kineticLawOf r1 23 : fMA(0.05);

kineticLawOf r1 24 : fMA(0.05);

kineticLawOf r1 25 : fMA(0.05);

kineticLawOf r1 26 : fMA(0.05);

kineticLawOf r1 27 : fMA(0.05);

kineticLawOf r1 28 : fMA(0.05);

kineticLawOf r1 29 : fMA(0.05);

kineticLawOf r1 30 : fMA(0.05);

kineticLawOf r1 31 : fMA(0.05);

A. Georgoulas, M.L. Guerriero / Electronic Notes in Theoretical Computer Science 293 (2013) 51–65 59

kineticLawOf r1 32 : fMA(0.05);

kineticLawOf r2 1 : fMA(0.05);

kineticLawOf r2 2 : fMA(0.05);

kineticLawOf r2 3 : fMA(0.05);

kineticLawOf r2 4 : fMA(0.05);

kineticLawOf r2 5 : fMA(0.05);

kineticLawOf r2 6 : fMA(0.05);

kineticLawOf r2 7 : fMA(0.05);

kineticLawOf r2 8 : fMA(0.05);

kineticLawOf r2 9 : fMA(0.05);

kineticLawOf r2 10 : fMA(0.05);

kineticLawOf r2 11 : fMA(0.05);

kineticLawOf r2 12 : fMA(0.05);

kineticLawOf r2 13 : fMA(0.05);

kineticLawOf r2 14 : fMA(0.05);

kineticLawOf r2 15 : fMA(0.05);

kineticLawOf r2 16 : fMA(0.05);

//Species definitions:

B s1:inactive s2:inactive s3:active s4:active =

r2 13<<B s1:inactive s2:inactive s3:active s4:active@cytosol;

A::B s1:active s2:inactive s3:active s4:inactive =

r1 6>>+ r1 10<<+ r1 20>>+ r1 27<<+ r2 6>>A::B s1:active s2:inactive s3:active s4:inactive@cytosol;

A =

r2 1<<A@cytosol + r2 2<<A@cytosol + r2 3<<A@cytosol + r2 4<<A@cytosol + r2 5<<A@cytosol +

r2 6<<A@cytosol + r2 7<<A@cytosol + r2 8<<A@cytosol + r2 9<<A@cytosol + r2 10<<A@cytosol

+ r2 11<<A@cytosol + r2 12<<A@cytosol + r2 13<<A@cytosol + r2 14<<A@cytosol +

r2 15<<A@cytosol + r2 16<<A@cytosol;

B s1:inactive s2:inactive s3:inactive s4:inactive =

r2 16<<B s1:inactive s2:inactive s3:inactive s4:inactive@cytosol;

B s1:inactive s2:active s3:inactive s4:inactive =

r2 12<<B s1:inactive s2:active s3:inactive s4:inactive@cytosol;

A::B s1:active s2:active s3:inactive s4:active =

r1 3>>+ r1 11>>+ r1 17<<+ r1 26>>+ r2 3>>A::B s1:active s2:active s3:inactive s4:active@cytosol;

B s1:active s2:active s3:active s4:active =

r2 1<<B s1:active s2:active s3:active s4:active@cytosol;

B s1:inactive s2:active s3:active s4:active =

r2 9<<B s1:inactive s2:active s3:active s4:active@cytosol;

A::B s1:inactive s2:active s3:inactive s4:inactive =

r1 4<<+ r1 16>>+ r1 22<<+ r1 30<<+ r2 12>>A::B s1:inactive s2:active s3:inactive s4:inactive@cytosol;

A::B s1:inactive s2:inactive s3:inactive s4:inactive =

r1 8<<+ r1 16<<+ r1 24<<+ r1 32<<+ r2 16>>A::B s1:inactive s2:inactive s3:inactive s4:inactive@cytosol;

A::B s1:inactive s2:inactive s3:active s4:active =

A. Georgoulas, M.L. Guerriero / Electronic Notes in Theoretical Computer Science 293 (2013) 51–6560

r1 5<<+ r1 13<<+ r1 23>>+ r1 31>>+ r2 13>>A::B s1:inactive s2:inactive s3:active s4:active@cytosol;

A::B s1:active s2:inactive s3:inactive s4:active =

r1 7>>+ r1 11<<+ r1 19<<+ r1 28>>+ r2 7>>A::B s1:active s2:inactive s3:inactive s4:active@cytosol;

A::B s1:active s2:inactive s3:inactive s4:inactive =

r1 8>>+ r1 12<<+ r1 20<<+ r1 28<<+ r2 8>>A::B s1:active s2:inactive s3:inactive s4:inactive@cytosol;

B s1:inactive s2:active s3:inactive s4:active =

r2 11<<B s1:inactive s2:active s3:inactive s4:active@cytosol;

B s1:active s2:inactive s3:active s4:inactive =

r2 6<<B s1:active s2:inactive s3:active s4:inactive@cytosol;

B s1:inactive s2:active s3:active s4:inactive =

r2 10<<B s1:inactive s2:active s3:active s4:inactive@cytosol;

A::B s1:inactive s2:active s3:inactive s4:active =

r1 3<<+ r1 15>>+ r1 21<<+ r1 30>>+ r2 11>>A::B s1:inactive s2:active s3:inactive s4:active@cytosol;

A::B s1:active s2:active s3:active s4:inactive =

r1 2>>+ r1 10>>+ r1 18>>+ r1 25<<+ r2 2>>A::B s1:active s2:active s3:active s4:inactive@cytosol;

A::B s1:inactive s2:active s3:active s4:active =

r1 1<<+ r1 13>>+ r1 21>>+ r1 29>>+ r2 9>>A::B s1:inactive s2:active s3:active s4:active@cytosol;

B s1:active s2:inactive s3:inactive s4:active =

r2 7<<B s1:active s2:inactive s3:inactive s4:active@cytosol;

A::B s1:active s2:inactive s3:active s4:active =

r1 5>>+ r1 9<<+ r1 19>>+ r1 27>>+ r2 5>>A::B s1:active s2:inactive s3:active s4:active@cytosol;

A::B s1:inactive s2:inactive s3:inactive s4:active =

r1 7<<+ r1 15<<+ r1 23<<+ r1 32>>+ r2 15>>A::B s1:inactive s2:inactive s3:inactive s4:active@cytosol;

A::B s1:active s2:active s3:inactive s4:inactive =

r1 4>>+ r1 12>>+ r1 18<<+ r1 26<<+ r2 4>>A::B s1:active s2:active s3:inactive s4:inactive@cytosol;

B s1:active s2:active s3:active s4:inactive =

r2 2<<B s1:active s2:active s3:active s4:inactive@cytosol;

B s1:active s2:inactive s3:inactive s4:inactive =

r2 8<<B s1:active s2:inactive s3:inactive s4:inactive@cytosol;

B s1:active s2:active s3:inactive s4:inactive =

r2 4<<B s1:active s2:active s3:inactive s4:inactive@cytosol;

B s1:inactive s2:inactive s3:inactive s4:active =

r2 15<<B s1:inactive s2:inactive s3:inactive s4:active@cytosol;

B s1:inactive s2:inactive s3:active s4:inactive =

r2 14<<B s1:inactive s2:inactive s3:active s4:inactive@cytosol;

A::B s1:active s2:active s3:active s4:active =

r1 1>>+ r1 9>>+ r1 17>>+ r1 25>>+ r2 1>>A::B s1:active s2:active s3:active s4:active@cytosol;

B s1:active s2:active s3:inactive s4:active =

r2 3<<B s1:active s2:active s3:inactive s4:active@cytosol;

A. Georgoulas, M.L. Guerriero / Electronic Notes in Theoretical Computer Science 293 (2013) 51–65 61

B s1:active s2:inactive s3:active s4:active =

r2 5<<B s1:active s2:inactive s3:active s4:active@cytosol;

A::B s1:inactive s2:inactive s3:active s4:inactive =

r1 6<<+ r1 14<<+ r1 24>>+ r1 31<<+ r2 14>>A::B s1:inactive s2:inactive s3:active s4:inactive@cytosol;

A::B s1:inactive s2:active s3:active s4:inactive =

r1 2<<+ r1 14>>+ r1 22>>+ r1 29<<+ r2 10>>A::B s1:inactive s2:active s3:active s4:inactive@cytosol;

//Model component:

B sub ::=

B s1:inactive s2:inactive s3:inactive s4:inactive@cytosol[10] <*>

B s1:active s2:active s3:active s4:active@cytosol[0] <*>

B s1:active s2:active s3:active s4:inactive@cytosol[0] <*>

B s1:active s2:active s3:inactive s4:active@cytosol[0] <*>

B s1:active s2:active s3:inactive s4:inactive@cytosol[0] <*>

B s1:active s2:inactive s3:active s4:active@cytosol[0] <*>

B s1:active s2:inactive s3:active s4:inactive@cytosol[0] <*>

B s1:active s2:inactive s3:inactive s4:active@cytosol[0] <*>

B s1:active s2:inactive s3:inactive s4:inactive@cytosol[0] <*>

B s1:inactive s2:active s3:active s4:active@cytosol[0] <*>

B s1:inactive s2:active s3:active s4:inactive@cytosol[0] <*>

B s1:inactive s2:active s3:inactive s4:active@cytosol[0] <*>

B s1:inactive s2:active s3:inactive s4:inactive@cytosol[0] <*>

B s1:inactive s2:inactive s3:active s4:active@cytosol[0] <*>

B s1:inactive s2:inactive s3:active s4:inactive@cytosol[0] <*>

B s1:inactive s2:inactive s3:inactive s4:active@cytosol[0];

A sub ::= A@cytosol[5];

Complexes sub ::=

A::B s1:active s2:inactive s3:active s4:inactive@cytosol[0] <*>

A::B s1:active s2:active s3:inactive s4:active@cytosol[0] <*>

A::B s1:inactive s2:active s3:inactive s4:inactive@cytosol[0] <*>

A::B s1:inactive s2:inactive s3:inactive s4:inactive@cytosol[0] <*>

A::B s1:inactive s2:inactive s3:active s4:active@cytosol[0] <*>

A::B s1:active s2:inactive s3:inactive s4:active@cytosol[0] <*>

A::B s1:active s2:inactive s3:inactive s4:inactive@cytosol[0] <*>

A::B s1:inactive s2:active s3:inactive s4:active@cytosol[0] <*>

A::B s1:active s2:active s3:active s4:inactive@cytosol[0] <*>

A::B s1:inactive s2:active s3:active s4:active@cytosol[0] <*>

A::B s1:active s2:inactive s3:active s4:active@cytosol[0] <*>

A::B s1:inactive s2:inactive s3:inactive s4:active@cytosol[0] <*>

A::B s1:active s2:active s3:inactive s4:inactive@cytosol[0] <*>

A::B s1:active s2:active s3:active s4:active@cytosol[0] <*>

A::B s1:inactive s2:inactive s3:active s4:inactive@cytosol[0] <*>

A::B s1:inactive s2:active s3:active s4:inactive@cytosol[0];

B sub <*>A sub <*>Complexes sub

A. Georgoulas, M.L. Guerriero / Electronic Notes in Theoretical Computer Science 293 (2013) 51–6562

C Narrative Language grammar

〈model〉 ::= 〈constants decl〉〈comparts decl〉〈compons decl〉〈reacts decl〉〈procs decl〉

〈constants decl〉 ::= Constants 〈constants list〉
〈comparts decl〉 ::= Compartments 〈comparts list〉
〈compons decl〉 ::= Components 〈compons list〉
〈reacts decl〉 ::= Reactions 〈reacts list〉
〈procs decl〉 ::= Narrative 〈procs list〉

〈constants list〉 ::= 〈constant〉
| 〈constant〉〈constants list〉

〈comparts list〉 ::= 〈compartment〉
| 〈compartment〉〈comparts list〉

〈compons list〉 ::= 〈component〉
| 〈component〉〈compons list〉

〈reacts list〉 ::= 〈reaction〉
| 〈reaction〉〈reacts list〉

〈procs list〉 ::= 〈proc〉
| 〈proc〉〈procs list〉

〈constant〉 ::= (〈const〉, 〈quantity〉)
〈compartment〉 ::= (〈id〉, 〈compart name〉, 〈opt size〉, 〈opt unit〉, 〈opt dim〉)
〈component〉 ::= (〈name〉, 〈opt inform descr〉, 〈opt sites def〉,

〈opt states def〉, 〈opt comparts def〉, 〈initial quantity〉)
〈reaction〉 ::= (〈id〉, 〈react type〉, 〈rate〉)

〈proc〉 ::= Process 〈opt inform descr〉〈events list〉
〈events list〉 ::= 〈event〉

| 〈event〉〈events list〉
〈event〉 ::= (〈id〉, 〈form descr〉, 〈react id〉, 〈opt altern event〉)

〈opt sites def〉 ::=

| 〈sites def〉
〈sites def〉 ::= 〈site def〉

| 〈site def〉; 〈sites def〉
〈site def〉 ::= 〈name〉 : 〈state name〉 : 〈is active〉

〈opt states def〉 ::=

| 〈states def〉
〈states def〉 ::= 〈state def〉

| 〈state def〉; 〈states def〉
〈state def〉 ::= 〈state name〉 : 〈is active〉

〈opt comparts def〉 ::=

| 〈comparts def〉
〈comparts def〉 ::= 〈compart def〉

| 〈compart def〉; 〈comparts def〉
〈compart def〉 ::= 〈id〉 : 〈is active〉

〈initial quantity〉 ::= (〈quantity〉, 〈opt reliability〉)

A. Georgoulas, M.L. Guerriero / Electronic Notes in Theoretical Computer Science 293 (2013) 51–65 63

〈rate〉 ::= rate const

| rate law

〈rate const〉 ::= (〈rate value〉, 〈opt unit〉, 〈opt reliability〉)
〈rate law〉 ::= fMA(quantity)

| fMM(quantity, quantity)

| fH(quantity, quantity, Int)

〈form descr〉 ::= 〈event descr〉
| if 〈conds〉 then 〈event descr〉

〈conds〉 ::= 〈cond〉
| 〈cond〉 and 〈conds〉

〈cond〉 ::= 〈names〉 is 〈state name〉
| 〈names〉 is not 〈state name〉
| 〈names〉 is in 〈id〉
| 〈names〉 is not in 〈id〉

〈names〉 ::= 〈name〉
| 〈name〉.〈name〉
| 〈name〉; 〈names〉
| 〈name〉.〈name〉; 〈names〉

〈sites〉 ::= 〈name〉
| 〈name〉; 〈sites〉

〈event descr〉 ::= 〈complex name〉〈bimol react〉〈complex name〉 on 〈sites〉
| 〈complex name〉〈bimol react〉〈complex name〉
| 〈complex name〉〈monomol react〉 on 〈sites〉
| 〈complex name〉〈monomol react〉
| 〈complex name〉 relocates to 〈id〉
| 〈complex name〉 degrades

| 〈complex name〉 degrades 〈complex name〉
| 〈complex name〉 synthesises 〈complex name〉
| 〈complex name〉 homodimerizes

| 〈complex name〉 dehomodimerizes

| 〈complex name〉 dimerizes with 〈complex name〉
| 〈complex name〉 dedimerizes from 〈complex name〉

〈complex name〉 ::= 〈name〉
| 〈name〉 : 〈complex name〉

〈id〉 ::= Int

〈opt size〉 ::=

| Int|const
〈opt unit〉 ::=

| Str

〈opt dim〉 ::=

| Int

〈name〉 ::= Ide

〈opt inform descr〉 ::=

| Str

A. Georgoulas, M.L. Guerriero / Electronic Notes in Theoretical Computer Science 293 (2013) 51–6564

〈quantity〉 ::= value | const
〈value〉 ::= Int | Real

〈const〉 ::= Ide

〈opt reliability〉 ::=

| Int

〈rate value〉 ::= quantity

〈react id〉 ::= Int

〈opt altern event〉 ::=

| alternative to 〈id〉
〈is active〉 ::= Bool

〈compart name〉 ::= nucleus | cytosol | exosol
| cellMembrane | nucleusMembrane | Ide

〈react type〉 ::= phosphorylation | dephosphorylation
| binding | unbinding
| homodimerization | dehomodimerization

| dimerization | dedimerization

| activation | deactivation
| hydrolysis | dehydrolysis
| degradation | synthesis | relocation

〈state name〉 ::= phosphorylated | bound | active | hydrolysed | dimer

〈bimol react〉 ::= phosphorylates | dephosphorylates | binds | unbinds
| activates | deactivates | hydrolyses | dehydrolyses

〈monomol react〉 ::= phosphorylates | dephosphorylates | hydrolyses | dehydrolyses

A. Georgoulas, M.L. Guerriero / Electronic Notes in Theoretical Computer Science 293 (2013) 51–65 65

	Introduction
	Background
	Translation
	Input language
	Preprocessing
	The algorithm

	Example and effect on model size
	Implementation and software integration
	Future work
	Acknowledgement
	References
	NL model of the example system
	Bio-PEPA translation of example system
	Narrative Language grammar

