MACVIA clinical decision algorithm in adolescents and adults with allergic rhinitis

Citation for published version:

Digital Object Identifier (DOI):
10.1016/j.jaci.2016.03.025

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Journal of Allergy and Clinical Immunology

Publisher Rights Statement:
Creative Commons

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
MACVIA clinical decision algorithm in adolescents and adults with allergic rhinitis

Jean Bousquet, MD,a,b,h Helger J. Schunemann, MD,d Peter W. Hellings, MD,a Sylvie Arnaudelie, PhD,f
Claud Battier, MD, Anke Berndt, BSc, Karl-Christian Bergmann, MD, Synthia Bosnic-Anticevich, PhD, Jan Brozek, MD, Moises Calderon, MD, G Walter Canonica, MD, Thomas B. Casale, MD, Niels H. Chavannes, MD, Linda Cox, MD, Henry Chrsytn, PhD, Álvaro A. Cruz, MD, Ronald Dahl, MD, Giuseppe De Carlo, MD, Pascal Demoly, MD, Philippe Devillier, MD, Gérard Dray, PhD, Monica Fletcher, MSc, Wytske J. Fokkens, MD, Joao Fonseca, MD, Sandra N. Gonzalez-Diaz, MD, Lawrence Grouse, MD, Thomas Keil, MD, Piotr Kuna, MD, Désirée Larena-Linnemann, MD, Karin C. Lodrup Carlsen, MD, Eli O. Meltzer, MD, Jaquim Mullol, MD, Antonia Muraro, MD, Robert N. Naclerio, MD, Susanna Palkonen, MD, Nikolaos G. Papadopoulos, MD, Giovanni Passalacqua, MD, David Price, MD, Dermot Ryan, MD, Boleslaw Samolinski, MD, Glenis K. Scadding, MD, Aziz Sheikh, MD, François Spertini, MD, Arunas Valiulis, MD, Erika Valovirta, MD, Samantha Walker, PhD, Magnus Wickman, MD, Arzu Yorgancioglou, MD, Tari Hahtela, MD, and Torsten Zuberbier, MD, on behalf of the MASK study group. Montpellier; Paris; St-Quentin-en-Yvelines, and Alès, France; Hamilton, Ontario, Canada; Leuven, Ghent, and Brussels, Belgium; Berlin and Wuerzburg, Germany; Glebe, Australia; London, Cambridge, Warwick, Manchester, Aberdeen, and Edinburgh, United Kingdom; Genoa and Padua, Italy; Tampa and Davie, Fla; Bahia, Brazil; Leiden and Amsterdam, The Netherlands; Odense, Denmark; Porto, Portugal; Nuevo León and Mexico City, Mexico; Seattle, Wash; Lodz and Warsaw, Poland; Oslo, Norway; San Diego, Calif; Barcelona, Spain; Chicago, Ill; Athens, Greece; Vilnius, Lithuania; Turku, Finland; Stockholm, Sweden; Manisa, Turkey; and Lausanne, Switzerland.

The selection of pharmacotherapy for patients with allergic rhinitis (AR) depends on several factors, including age, prominent symptoms, symptom severity, control of AR, patient preferences, and cost. Allergen exposure and the resulting symptoms vary, and treatment adjustment is required. Clinical decision support systems (CDSSs) might be beneficial for the assessment of disease control. CDSSs should be based on the best evidence and algorithms to aid patients and health care professionals to jointly determine treatment and its step-up or step-down strategy depending on AR control. Contre les

From University Hospital, Montpellier; MACVIA-LR, Contre les MAladies Chroniques pour un BioLiSSime Actif en Languedoc-Roussillon, European Innovation Partnership on Active and Healthy Ageing Reference Site, Montpellier; INSERM, VIMA: Ageing and Chronic Diseases, Epidemiological and Public Health approaches, Paris, and Université Versailles St-Quentin-en-Yvelines; the Departments of Clinical Epidemiology and Biostatistics and Medicine, McMaster University, Hamilton; the Laboratory of Clinical Immunology, Department of Microbiology and Immunology, KU Leuven; Kyomed, Montpellier; the Upper Airways Research Laboratory, ENT Department, Ghent University Hospital; Allergy-Centre-Charité at the Department of Dermatology, Charité-Universitätsmedizin Berlin, and Secretary General of the Global Allergy and Asthma European Network (GA2LEN); the Woodcock Institute of Medical Research, University of Sydney and Sydney Local Health District, Glebe; Imperial College London–National Heart and Lung Institute, Royal Brompton Hospital NHS, London; the Allergy and Respiratory Diseases Clinic, DIMI, University of Genoa, IRCCS AOI San Martino-IST, Genoa; the Division of Allergy/Immunology, University of South Florida, Tampa; the Department of Public Health and Primary Care, Leiden University Medical Center; the Department of Medicine, Nova Southeastern University, Davie; RRRL, Cambridge; ProAR-Nucleo de Excelencia en Asma, Federal University of Bahia, and GARD Executive Committee; the Department of Dermatology and Allergy Centre, Odense University Hospital, Odense; the European Federation of Allergy and Airways Diseases Patients’ Associations, Brussels; ERAP U707 INSERM, Paris and ERAP UMR-S UPMC, Paris VI, Paris; the Department of Respiratory Diseases, Montpellier University Hospital; the Laboratory of Pharmacology Respiratoire UFRES EA220, Hôpital Foch, Suresnes University Versailles Saint-Quentin; l’Ecole des Mines, Alès; the Education for Health, Warwick; the Department of Otorhinolaryngology, Academic Medical Centre, Amsterdam; the Center for Research in Health Technologies and Information Systems-CINTESIS, Universidade do Porto; the Allergy Unit, Instituto CUF Porto e Hospital CUF Porto; the Health Information and Decision Sciences Department-CIDES, Faculdade de Medicina, Universidade do Porto; the University of Washington School of Medicine, Faculty of the Department of Neurology, Seattle; the Institute of Social Medicine, Epidemiology and Health Economics, Charité–Universitätsmedizin Berlin, and the Institute for Clinical Epidemiology and Biometry, University of Wuerzburg; the Division of Internal Medicine, Asthma and Allergy, Barlicki University Hospital, Medical University of Lodz; Clinica de Alergia, Asma y Pediatria, Hospital Medica Sur, Mexico City; the Department of Paediatrics, Oslo University Hospital, Oslo, and the Faculty of Medicine, Institute of Clinical Medicine, University of Oslo; the Allergy and Asthma Medical Group and Research Center, San Diego; Unitat de Rinologia i Clínica de l’Oftal·l·lice, Servei d’ORL, Hospital Clinic, Clinical & Experimental Respiratory Immunology, IDIBAPS, Barcelona; Food Allergy Reference Centre Veneto Region, Department of Women and Child Health, Padua General University Hospital; the Section of Otolaryngology-Head and Neck Surgery, University of Chicago Medical Center and Pritzker School of Medicine, University of Chicago; the Center for Pediatrics and Child Health, Institute of Human Development, Royal Manchester Children’s Hospital, University of Manchester, and the Allergy Department, 2nd Pediatric Clinic, Athens General Children’s Hospital “P&A Kryiakou,” University of Athens; the Academic Centre of Primary Care, University of Aberdeen, and Research in Real-Life, Cambridge; Honorary Clinical Research Fellow, Allergy and Respiratory Research Group, University of Edinburgh; the Department of Prevention of Environmental Hazards and Allergology, Medical University of Warsaw; Royal National TNE Hospital, University College London; the Asthma and Respiratory Research Group, Centre for Population Health Sciences, University of Edinburgh; the Service d’Immuno- logie et Allergie, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne; Vilnius University Clinic of Children’s Diseases, Vilnius; the Department of Lung Diseases and Clinical Allergology, University of Turku; Asthma UK, London; Sachs Children’s Hospital, Stockholm, and the Institute of Environmental Medicine, Karolinska Institute, Stockholm; the Department of Pulmonology, Celal Bayar University Manisa, Turkey, and GARD Executive Committee; and Skin and Allergy Hospital, Helsinki University Hospital, Helsinki.
Impacting Asthma, MACVIA-LR, information and communication technology, clinical decision support system

Key words: Allergic rhinitis, conjunctivitis, Allergic Rhinitis and its Impact on Asthma, MACVIA-LR, information and communication technology, clinical decision support system

The selection of pharmacotherapy for patients with allergic rhinitis (AR) depends on several factors, such as age, prominent symptoms, symptom severity, control of AR, patient preferences, availability of treatment, and cost. With allergen exposure and the resulting symptoms varying daily, patients with AR would benefit from regular monitoring of their symptoms to facilitate treatment adjustment. Clinical decision support systems (CDSSs) might be beneficial for the accomplishment of this task by assessing disease control, such as in response to treatment. A CDSS is a health information technology system designed to assist health care professionals and patients with clinical decision-making.
tasks. Knowledge-based CDSSs consist of 3 parts: the knowledge base, an inference engine, and a mechanism to communicate. The knowledge base contains the rules and associations of compiled data. The inference engine combines the rules from the knowledge base with the patient’s data. The communication mechanism allows the system to show the results to the user, as well as have input into the system. CDSSs should be based on the best evidence and algorithms to aid patients and health care professionals to jointly determine the treatment and its step-up or step-down strategy depending on AR control. Thus CDSSs should help optimize treatment.

Contre les MAadies Chroniques pour un Vlieissement Actif en Languedoc-Roussillon (MACVIA-LR [fighting chronic diseases for active and healthy ageing], http://macvia.cr-langue.docroussillon.fr) is one of the reference sites of the European Innovation Partnership on Active and Healthy Ageing. It initiated the project Integrated Care Pathways for Airway diseases (AIRWAYS ICPs) and the allergy sentinel network MACVIA-ARIA Sentinel NetworK (MASK). A knowledge-based CDSS is currently being developed to optimize AR control. The communication mechanism of MASK uses interconnected tablets and cell phones. The proposed algorithm of the MACVIA-CDSS is presented in this article.

CONTROL OF AR AND RHIINOCONJUNCTIVITIS

In asthmatic patients, the treatment strategy is based on disease control and current treatment. The variability in symptom control is challenging and necessitates careful monitoring, as well as the step up/step down of individualized therapeutic regimens over time. Both long- and short-term maintenance and reliever approaches have been proposed, including the combination of an inhaled corticosteroid and fast-onset long-acting β-agonist inhaler as maintenance and reliever therapy.

Novartis, and Teva. W. J. Pokkems has received research support from Meda and has received payment for developing a webcast on treatment of rhinitis for general practitioners. J. P. Fokkens is on the Boehringer Ingelheim, Mundipharma, and Novartis advisory boards; has a patent with AKL Ltd; has received consultancy fees from Novartis; has received research support from Fundação Ciência e Tecnologia and Fundação Calouste Gulbenkian; has received lecture fees from AstraZeneca, Aerocine, Menarini, GlaxoSmithKline, MSD, and Vitoria; and has received travel support from AstraZeneca and Novartis. T. Keil has received research support from the European Union projects MedDALL and iPAAM. P. Kuna has received lecture fees from Adamed, Allergopharma, Almirall, AstraZeneca, GlaxoSmithKline, Hal, Meda, Pfizer, Polpharma, Stallergenes, Lekam, and Bayer and has received lecture fees and is on the advisory board by Boehringer Ingelheim, Celon Pharma, Chiesi, FAES, MSD, Novartis, Polpharma, and Teva. D. Larenas-Linnemann has received consultancy fees from Boehringer Ingelheim, Meda, Pfizer, Mit Pharma, and Chiesi; has received research support from AstraZeneca, MSD, Novartis, Sanofi, UCB, GlaxoSmithKline, Pfizer, MEDA, TEVA, Sensonius, Cardot; has received lecture fees from AstraZeneca, MSD, Novartis, Sanofi, Pfizer, and Meda; and has received payment for development of educational presentations from Glenmark; and has received travel support from ALK-Abelló. K. C. Lodrup Carlsen has received research and travel support from EU MedDALL, is on the Sanofi advisory board, has received research support from National and regional public funding applications. E. O. Meltzer has received consultancy fees from AstraZeneca, Boehringer Ingelheim, Church & Dwight, GlaxoSmithKline, Greer, Johnson & Johnson, Meda, Mylan, Regeneron/Sanofi, and Teva; has been employed has received royalties from Green, Meda, Merek, Meda, Mylan, Takeda, and Teva; and has received payment for developing educational presentations from Glendenk. J. Mullol is on the boards for Uriacli, Meda, FAES, GLA-Abelló, and Sanofi; has received research support from GlaxoSmithKline, Uriacli, FAES, and Meda; and has received lecture fees from Uriacli, Hartington Pharmaceuticals, Novartis, FAES, Menarini, MSD, Pierre-Fabre, and UCB. A. Muraro has received consultancy fees from Meda. R. N. Nacelero is on the Merck and Sanofi allergy advisory boards, has received consultancy fees from Teva, is employed by the University of Chicago, and has received research support from Meda. S. Palkonen is on the GlaxoSmithKline European Health Advisory Board; has received research support from Air Liquide Sante International, ALK-Abelló, Almirall, Boehringer Ingelheim, GlaxoSmithKline, Novartis, Chiesi, Mundipharma, Sanofi-Pasteur, and Stallergenes; has received travel support from Novartis; and declares that she regularly has dialogue with the funding partners listed above, who give unrestricted educational grants to the patient organization, EFA, for which she works as a Director. N. Papadopoulos has received research support from GlaxoSmithKline, Nestle, and Merck; has received payment for developing educational presentations from Abbvie, Sanofi, Menarini, and Meda; has received consultancy fees from GlaxoSmithKline, Abbvie, Novartis, Menarini, Meda, and ALK-Abelló; and has received lecture fees from Allergopharma, Uriacli, GlaxoSmithKline, Stallergenes, and MSD. D. Price is on the boards for Aerocine, Almirall, Amgen, AstraZeneca, Boehringer Ingelheim, Chiesi, Meda, Mundipharma, Napp, Novartis, and Teva; has received consultancy fees from Almirall, Amgen, AstraZeneca, Boehringer Ingelheim, Chiesi, Eli Lily, GlaxoSmithKline, Meda, Merck, Mundipharma, Napp, Novartis, Oricon, Pfizer, Respiratory Effectiveness Group, Takeda, Teva, Zentiva; has received lecture fees from Almirall, AstraZeneca, Boehringer Ingelheim, Chiesi, Cipla, GlaxoSmithKline, Kyorin, Meda, Merck, Mundipharma, Novartis, Pfizer, SkyePharma, Takeda, and Teva; has received payment for research support from Eli Lilly, Novartis, and Novartis; and has a patent with AKL Ltd; has received payment for developing educational presentations from GlaxoSmithKline and Novartis; has stock in AKL Ltd; has received travel support from Aerocine, Boehringer Ingelheim, Mundipharma, Napp, Novartis, and Teva; has received funding for patient enrolment or completion of research from Almirall, Chiesi, Teva, and Zentiva; has served as a peer reviewer for grant committees for the Medical Research Council, Efficacy and Mechanism Evaluation Programme, and HTA; and is 80% owner of Research in Real Life, which receives unrestricted funding for investigator-initiated studies from Aerocine, AKL Ltd, Almirall, Boehringer Ingelheim, Chiesi, Meda, Mundipharma, Napp, Novartis, Orison, Takeda, Teva, and Zentiva. D. Ryan is on the Boards for Stallergenes and Uriach; has received consultancy fees from Meda; is employed by Optimum Patient Care and University of Edinburgh; has received lecture fees from Meda, Chiesi, Teva, AstraZeneca, and Boehringer Ingelheim; has received payment for developing educational presentation from Meda; and is Chairman of the European Academy of Allergy and Clinical Immunology (EAACI) Primary Care Interest Group. A. Valaulis is a board member without financial interest of the nonprofit organizations the European Academy of Paediatrics, European Paediatric Association, European Confederation of Primary Care Paediatricians, Lithuanian Paediatric Society, and Lithuanian Paediatric Respiratory Society; has received research support from European Union Social Fund and Lithuanian Ministry of Health; has received travel support from the European Pediatric Academy of Pediatrics; is Chairman of Executive Board of IPOKrATES Lithuania Fund; E. Valvorti has received travel support from Stallergenes. M. Wickman has received research support and lecture fees from Thermo Fisher, has received consultancy fees from Thermo Fisher and Microtest Ds, and has received payment for developing educational presentations from Stallergenes. T. Zuberbier has received consultancy fees from Ansell, Bayer Schering, DST, FAES, Fujisawa, HAL, Henkel, Keyolan, Leti, Menarini, Merck, MSD, Novartis, Procter & Gamble, Ranbaxy, Sanofi-Aventis, Schering Plough, Stallergenes, Takeda, and UCB; is on the German Society for Allergy and Clinical Immunology Scientific Advisory Board; is head of the European Centre for Allergy Research Foundation; is a World Health Organization Initiative Allergic Rhinitis and its Impact on Asthma committee member; is a member of the World Allergy Organization Communications Council; and is Secretary General of the Global Allergy and Asthma European Network. The rest of the authors declare that they have no relevant conflicts of interest. Received for publication October 30, 2015; revised February 5, 2016; accepted for publication March 15, 2016. Available online April 23, 2016. Corresponding author: Jean Bousquet, MD, CHRU Arnaud de Villeneuve, Département de Pneumologie, 371 Avenue du Doyen Gaston Gisard, 34295 Montpellier Cedex 5, France. E-mail: jean.bousquet@orange.fr.

The CrossMark symbol notifies online readers when updates have been made to the article such as errata or minor corrections 0901-6749 © 2016 The Authors. Published by Elsevier Inc. on behalf of the American Academy of Allergy, Asthma & Immunology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
The symptoms of AR can cause considerable morbidity in physical and emotional comfort, as well as in functional capacity and quality of life (QOL). The control and severity of AR have been defined in a similar manner to asthma. Measures of AR control include symptom scores, patients’ self-administered visual analog scales (VASs), objective measures of nasal obstruction, a recent modification of the Allergic Rhinitis and its Impact on Asthma severity classification, and patients’ reported outcomes, such as QOL or scores with several items. However, the challenges of managing AR are increased by the fact that patients do not often recognize their AR symptoms or confuse them with those of asthma. Therefore it is important for patients to be able to use an AR symptom scoring system that is simple to use and rapidly responsive to change.

As is the case for asthma, the best control of AR should be achieved as early as possible to (1) improve patient satisfaction and concordance to treatment and (2) reduce the consequences of AR, including symptoms, reduced QOL, and school and work absenteeism. Untreated AR can impair driving ability and put patients at risk. The ultimate goal of AR control is to reduce the costs incurred by AR.

A step-up/step-down approach to AR pharmacotherapy based on patient response might hold potential for optimal AR control and cost of treatment. MASK has proposed that electronic daily monitoring with VASs might help patients achieve optimal control of AR symptoms. Well-controlled AR is defined as a VAS score of 2 or less of 10. VAS cutoff values to step up or down treatment were proposed by comparison with pain VAS scores and step-up schemes or from the literature in the field of allergy (see the additional material in this article’s Online Repository at www.jacionline.org).

RECOMMENDATIONS FOR THE TREATMENT OF AR AND RHINOCONJUNCTIVITIS

The treatment of AR also requires the consideration of (1) the type (rhinitis, conjunctivitis, and/or asthma) and severity of symptoms, (2) the relative efficacy of the treatment, (3) the speed of onset of action of treatment, (4) current treatment, (5) historic response to treatment, (6) patient’s preference, (7) interest to self-manage, and (8) resource use. Guidelines and various statements by experts for AR pharmacotherapy usually propose the approach summarized in Box 1.

Allergen immunotherapy appears to be as effective as pharmacotherapy but is also regarded as a disease modifier intervention with the potential of altering the natural history of allergic diseases. Nonpharmacologic interventions, such as nasal filters or saline, have been found to be effective.

PATIENTS’ VIEWS

Many patients with AR are not satisfied with their current treatment, and this results in frequent nonadherence to therapy. In some studies, most patients were satisfied with their treatment, but full control was rarely achieved. Despite the vast availability of treatment options, most patients are “very interested” in finding a new medication, and around 25% are “constantly” trying different medications to find one that “works.” Patients want more effective treatments that can control all their symptoms, including ocular ones, and a more rapid onset of action.

Some patients believe that their health care provider does not understand their allergy treatment needs or does not take their allergy symptoms seriously. Many patients self-medicate with over-the-counter drugs for a long period of time and usually only consult a physician when their treatment is ineffective. Over-the-counter drugs for a long period of time and usually only consult a physician when their treatment is ineffective. In one study, patients chose a step-down therapy to speed up the control of symptoms.

A patient’s individual preference for an oral or intranasal route treatment needs to be considered. In addition, health care professionals need to inform the patient of the relative benefits and harms of each prescribed treatment to support their decision making.
ALGORITHM DECISION AID

A step-up/step-down individualized approach to AR pharmacotherapy might hold the potential for optimal control of AR symptoms while minimizing side effects and costs. However, the following should be considered:

- as in asthmatic patients, treated and untreated patients should be considered differently (Figs 1 and 2);
- most patients have received a previous treatment that should guide health care professionals with regard to the current prescription; and
- patterns of medication use in previously treated patients should be evaluated when future treatment is initiated.

The step-up or step-down strategy should be discussed with the patient and should consider the following:

- efficacy of previous treatments;
- adherence to treatment;
- the patient’s preference (route of administration, fear of side effects, and experience of the patient regarding the treatment);
- possible side effects or harms; and
- costs.

The step-up approach consists of the following:

- **Step 1**: For mild symptoms, use intranasal or oral nonsedating H₁-antihistamines.
- **Step 2**: For moderate-to-severe symptoms and/or persistent AR, use intranasal corticosteroids. The dose of some intranasal corticosteroids can be increased according to the package insert.
- **Step 3**: For patients with uncontrolled symptoms at step 2 (current or historical), use a combination of intranasal corticosteroids and intranasal H₁-antihistamines. However, depending on the physicians’s experience, other therapeutic strategies can be used.
- **Step 4**: It is possible that an additional short course of oral steroids might help to establish control and continue control by step 3. Intraocular cromones or H₁-antihistamines can be added to improve the control of ocular symptoms.
- Treatment should be reassessed quickly (eg, 1-7 days) to confirm control by using a step-up approach.
- Patients whose symptoms are uncontrolled at step 3 should be considered as having severe chronic upper airway disease and might benefit from specialist referral and assessment for allergy workup and nasal examination. For example, specialist referral should be considered if there is failure to reduce the VAS score to less than 5 of 10 after 10 to 14 days, assuming the patient is adherent to therapy.
- At all times, patient adherence and intranasal device technique mastery should be regarded as potential for lack of treatment effect.

Alternatively, a step-down approach can be used, and step 3 treatment should be considered as the first option in patients with a previous treatment failure or resistance to monotherapy. After a few days of achieving complete control, consideration could be given to treatment reduction. However, the step-down approach is based on consensus, and more data are needed.

The duration of treatment is determined by the type of rhinitis (intermittent or persistent). In the patient with intermittent rhinitis, treatment should be continued daily for 2 weeks or for the duration of the pollen season or other specific allergen exposure. In the patient with persistent rhinitis, a longer course

Assessment of control in untreated symptomatic patient

![Diagram](attachment:algorithm.png)
Assessment of control in treated symptomatic patient

![Algorithm Diagram]

CONCLUSION

We propose a simple algorithm to step up or step down AR treatment globally. However, its use varies depending on the availability of medications in different countries and depending on resources. These issues have not been approached in the present article because of their variability between countries. Inherently, algorithms are a combination of individual decision nodes that represent separate recommendations. They require testing as a complete algorithm and comparison with alternative strategies to explore whether the combination of these separate recommendations leads to more benefit than harm when applied in practice. Thus this algorithm, as with other algorithms, requires testing in large-scale trials to provide the necessary certainty in available evidence. The current algorithm is being developed by MASK² for a CDSS that will be available on Apple and Android and that will provide opportunities for evaluation.

REFERENCES

RATIONALE FOR USING A VAS IN THE ALGORITHM

Certain differences between groups in their VAS scores or changes in scores might have no clinical relevance, even if they achieve statistical significance. A wide range of minimal clinically important differences (MCIDs) in change scores on the pain VAS have been reported by using different methods. MCIDs ranged from 9 to 30 mm (of 100 mm) in emergency departments. In other settings, changes of 33% and 31 mm have been shown to be clinically meaningful. In patients with endometriosis, the pain MCID was set at 10 mm. The MCID for the fatigue VAS was around 10 mm in a large rheumatoid arthritis clinical practice and similar to that seen in clinical trials. The MCID in the VAS pain score does not differ with sex, age, and cause-of-pain groups or with the severity of pain being experienced. However, the linearity of the pain VAS is found in some but not all studies. Pain VAS measurement error has been reported to be up to 20 mm. Consequently, change scores and the calculations of aspects, such as MCIDs, can be carefully considered by the potential lack of interval scaling of the VAS and further compromised by the magnitude of measurement error. Repeated pain VAS data meet the strict requirements of the Rasch model, including unidimensionality, and they were internally valid. However, the pain VAS does not behave linearly, and the MCID can underestimate or overestimate true change during repeated pain VAS.

In patients with AR, to our knowledge, there is a single study that has estimated MCIDs in the VAS during treatment. By using receiver operating characteristic curve analysis, an appropriate method for estimation of MCIDs, the established cutoff variation of 23 mm for the VAS was associated with a cutoff variation of 0.5 for the Rhinoconjunctivitis Quality of Life Questionnaire (RQLQ). Sensitivity analysis with RQLQ and Total Symptom Score 6 scales confirmed the aptitude of the cutoff value (23 mm) to discriminate changes in symptoms and QOL. The MCID was the same whatever the baseline VAS level. A level of more than 23 mm appears to be a relevant cutoff. VAS changes appear to encompass both symptoms and disease-specific QOL. Another study, the Control of Allergic Rhinitis and Asthma Test, approximated the VAS MCID. In CARAT, the MCID is 4 (range, 0-30). The real-life study of Demoloy et al. in primary care used the same methods as a cluster randomized trial carried out in specialist practices. Both studies, which were carried out in France in large populations, showed a very similar change in VAS levels during treatment depending on total symptom scores and RQLQ scores. These studies suggest that the cutoff of 23 mm is appropriate to find a clinically significant difference.

VAS levels appear to be similar in different countries in patients with severe intermittent or persistent rhinitis. A VAS can be used in all age groups, including preschool children (guardian evaluation) and the elderly. Furthermore, it can be used in a wide variety of languages. VAS levels vary with the Allergic Rhinitis and its Impact on Asthma classification in many languages. A VAS level of 50 (>100 mm) is suggestive of moderate-to-severe AR, although in some studies the cutoff was greater than 60 mm. AVAS was used to define severe chronic upper airway disease. Thus the MCDI found in 2 large French populations can be generalized to other countries with different languages and cultures across the lifecycle. However, future studies should refine this cutoff level.

REFERENCES

