Determinants of morbidity and mortality following emergency abdominal surgery in children in low-income and middle-income countries

Citation for published version:
GlobalSurg Collaborative, Harrison, E & Kennedy, ED 2016, 'Determinants of morbidity and mortality following emergency abdominal surgery in children in low-income and middle-income countries' BMJ Global Health, vol. 1, no. 4, e000091. DOI: 10.1136/bmjgh-2016-000091

Digital Object Identifier (DOI):
10.1136/bmjgh-2016-000091

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
BMJ Global Health

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Determinants of morbidity and mortality following emergency abdominal surgery in children in low-income and middle-income countries

GlobalSurg Collaborative

ABSTRACT

Background: Child health is a key priority on the global health agenda, yet the provision of essential and emergency surgery in children is patchy in resource-poor regions. This study was aimed to determine the mortality risk for emergency abdominal paediatric surgery in low-income countries globally.

Methods: Multicentre, international, prospective, cohort study. Self-selected surgical units performing emergency abdominal surgery submitted prespecified data for consecutive children aged <16 years during a 2-week period between July and December 2014. The United Nation’s Human Development Index (HDI) was used to stratify countries. The main outcome measure was 30-day postoperative mortality, analysed by multilevel logistic regression.

Results: This study included 1409 patients from 253 centres in 43 countries; 282 children were under 2 years of age. Among them, 265 (18.8%) were from low-HDI, 450 (31.9%) from middle-HDI and 694 (49.3%) from high-HDI countries. The most common operations performed were appendectomy, small bowel resection, pyloromyotomy and correction of intussusception. After adjustment for patient and hospital risk factors, child mortality at 30 days was significantly higher in low-HDI (adjusted OR 7.14 (95% CI 2.52 to 20.23), p<0.001) and middle-HDI (4.42 (1.44 to 13.56), p=0.009) countries compared with high-HDI countries, translating to 40 excess deaths per 1000 procedures performed.

Conclusions: Adjusted mortality in children following emergency abdominal surgery may be as high as 7 times greater in low-income countries compared with high-income countries globally.

INTRODUCTION

Little data are available addressing the safety profile and risk factors affecting morbidity and mortality in children undergoing surgery globally. Most studies have been in adults and almost invariably were performed in high-resource countries.1-3 Although it is estimated that about 234 million surgical procedures are performed annually worldwide, the percentage of these involving children remains unknown.4 Studies from low- and middle-income countries (LMICs) have shown that in the neonatal period, mortality is associated with sepsis, multiple exposures to anaesthesia (reoperation), postoperative bleeding and complex congenital anomalies.5-8 Other risk factors include non-availability of trained personnel, delayed presentation, childbirth outside a hospital and financial constraints of the caregivers.9-11

Emergency surgery generally carries a higher morbidity and mortality compared with elective procedures.12 13 An estimated 33 000 emergency laparotomies in all ages are performed annually in the UK with a 15–20%
mortality, which is 10-fold higher than that of elective cardiac surgery. Reasons for this high mortality are multifactorial; as well as patient-related factors, these may include staffing issues, access to operating theatres or access to diagnostic investigations. Unfortunately, most of these evidences have been derived from adult populations.

To date, no prospective, multicentre, international investigation has evaluated the determinants of morbidity or mortality after emergency abdominal surgery in children on a global scale. The aim of the current study was to evaluate the mortality and morbidity of emergency abdominal surgery in children across countries of different human development indices (HDI).

METHODS

Study design

This was a cohort study of children under the age of 16 years recruited from multiple hospitals performing emergency abdominal surgery. Predefined data items were collected according to a previously published protocol (ClinicalTrials.gov identifier: NCT02179112) using the Research Electronic Data Capture (REDCap) which is an online data capture system. While the UK National Health Service Research Ethics review considered this study exempt from formal research registration (South East Scotland Research Ethics Service, reference: NR/1404AB12), individual centres obtained their own audit, ethical or institutional approval as appropriate.

The collaborative model used has previously been described elsewhere. Investigators from self-selected surgical units identified consecutive patients within 2-week time intervals between 1 July 2014 and 31 December 2014. An open invitation for participation was disseminated through social media, personal contacts, email to authors of published emergency surgery studies and national/international surgical organisations. Short intensive data collection allowed surgical teams within these units to contribute meaningful numbers of patients without requiring additional resources. Multiple 2-week data collection periods within institutions was allowed.

Patients and procedures

Any hospital performing emergency abdominal surgery, which included paediatric patients, could choose to be included (self-selecting). Consecutive patients under age of 16 years undergoing emergency abdominal surgery during a chosen 2-week period between 1 July 2014 and 31 December 2014 were included. Emergency abdominal surgery was defined as any unplanned, non-elective operation, including reoperation after a previous procedure. Abdominal surgery was defined as any open, laparoscopic or laparoscopic-converted procedure that entered the peritoneal cavity. Elective (planned) or semielective procedures (where a patient initially admitted as an emergency was then discharged from hospital and readmitted at a later time for surgery) were excluded.

Data

Data were selected to be objective, standardised, easily transcribed and internationally relevant, in order to maximise record completion and accuracy. Recruited patients were followed up to day 30 after surgery or for the length of their inpatient stay where follow-up was not feasible. Records were uploaded by local investigators to the secure online REDCap website. The lead investigator at each site validated all cases prior to data submission. The submitted data were then checked centrally and where missing data were identified, the local lead investigator was contacted and requested to complete the record. Once vetted, the record was accepted into the data set for analysis.

![Figure 1](image-url) World map showing participating countries and number of enrolled patients.
Outcome measures
The primary outcome measure was 30-day postoperative mortality, defined as the number of patients in the cohort who died within 30 days of surgery. In the event where 30-day follow-up was unavailable, outcome status at the point of discharge from hospital was recorded. A ‘30-day postoperative mortality/death during hospital stay’, is shortened to ‘30-day mortality’ to aid readability. The secondary outcome measures were 24-hour mortality, major and minor complication, and surgical site infection (SSI). Complications were defined on the Clavien-Dindo scale: minor complications as grade I/II (any deviation from the normal postoperative course with or without a need for pharmacological treatment but without requirement for surgical, endoscopic and radiological interventions or critical care admission); re-intervention as grade III (surgical, endoscopic or radiological re-intervention, without requirement for critical care admission); and major complication as grade IV (complication requiring critical care admission).

Table 1 Patient characteristics

<table>
<thead>
<tr>
<th>HDI tertile</th>
<th>High</th>
<th>Middle</th>
<th>Low</th>
<th>p Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age in completed years</td>
<td>Mean (SD)</td>
<td>8.9 (5.1)</td>
<td>9.1 (5.0)</td>
<td>7.0 (5.6)</td>
</tr>
<tr>
<td>Gender</td>
<td>Male</td>
<td>388 (55.9)</td>
<td>275 (61.1)</td>
<td>152 (57.4)</td>
</tr>
<tr>
<td></td>
<td>Female</td>
<td>306 (44.1)</td>
<td>175 (38.9)</td>
<td>113 (42.6)</td>
</tr>
<tr>
<td></td>
<td>Missing</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>ASA grade</td>
<td>1</td>
<td>507 (73.1)</td>
<td>354 (78.7)</td>
<td>154 (58.1)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>105 (15.1)</td>
<td>65 (14.4)</td>
<td>58 (21.9)</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>51 (7.3)</td>
<td>12 (2.7)</td>
<td>37 (14.0)</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>23 (3.3)</td>
<td>6 (1.3)</td>
<td>12 (4.5)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>8 (1.2)</td>
<td>13 (2.9)</td>
<td>4 (1.5)</td>
</tr>
<tr>
<td></td>
<td>Missing</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Surgical safety checklist used</td>
<td>No, not available in this hospital</td>
<td>35 (5.0)</td>
<td>192 (42.7)</td>
<td>95 (35.8)</td>
</tr>
<tr>
<td></td>
<td>No, but available in this hospital</td>
<td>6 (0.9)</td>
<td>39 (8.7)</td>
<td>74 (27.9)</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>653 (94.1)</td>
<td>217 (48.2)</td>
<td>96 (36.2)</td>
</tr>
<tr>
<td></td>
<td>Missing</td>
<td>0 (0.0)</td>
<td>2 (0.4)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td>Perforated viscus</td>
<td>No</td>
<td>596 (85.9)</td>
<td>399 (88.7)</td>
<td>190 (71.7)</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>97 (14.0)</td>
<td>49 (10.9)</td>
<td>68 (25.7)</td>
</tr>
<tr>
<td></td>
<td>Missing</td>
<td>1 (0.1)</td>
<td>2 (0.4)</td>
<td>7 (2.6)</td>
</tr>
<tr>
<td>Prophylactic antibiotics</td>
<td>No, not available</td>
<td>6 (0.9)</td>
<td>16 (3.6)</td>
<td>0 (0.0)</td>
</tr>
<tr>
<td></td>
<td>No, but available</td>
<td>90 (13.0)</td>
<td>55 (12.2)</td>
<td>36 (13.6)</td>
</tr>
<tr>
<td></td>
<td>Yes</td>
<td>598 (86.2)</td>
<td>377 (83.8)</td>
<td>228 (86.0)</td>
</tr>
<tr>
<td></td>
<td>Missing</td>
<td>0 (0.0)</td>
<td>2 (0.4)</td>
<td>1 (0.4)</td>
</tr>
<tr>
<td>Whole blood/products</td>
<td>No, but available in this hospital</td>
<td>661 (95.2)</td>
<td>385 (85.6)</td>
<td>201 (75.8)</td>
</tr>
<tr>
<td></td>
<td>No, not available in this hospital</td>
<td>8 (1.2)</td>
<td>7 (1.6)</td>
<td>1 (0.4)</td>
</tr>
<tr>
<td></td>
<td>Yes, whole blood</td>
<td>2 (0.3)</td>
<td>30 (6.7)</td>
<td>54 (20.4)</td>
</tr>
<tr>
<td></td>
<td>Yes, blood products</td>
<td>23 (3.3)</td>
<td>26 (5.8)</td>
<td>9 (3.4)</td>
</tr>
<tr>
<td></td>
<td>Missing</td>
<td>0 (0.0)</td>
<td>2 (0.4)</td>
<td>0 (0.0)</td>
</tr>
</tbody>
</table>

*χ² test is for yes versus no.
ASA, American Society of Anesthesiologists; HDI, Human Development Index.
Variation across different international health settings was assessed by stratifying participating centres by country into three tertiles according to the Human Development Index (HDI) rank. This is a composite statistic of life expectancy, education and income indices published by the United Nations (http://hdr.undp.org/en/statistics). Differences between HDI tertiles were tested with the Pearson χ^2 test and Kruskal-Wallis test for categorical and continuous variables, respectively.

Fixed effect binary logistic regression models were explored, and the variables determined to be statistically and clinically important were entered into full multivariable models. Final full model choice was guided by the Akaike information criterion (AIC). Hierarchical multivariable logistic regression models (random intercept) were constructed with country as the first level and patients as the second level. HDI tertile and other explanatory variables were included as fixed effects. Other than HDI tertile, all fixed effects were considered at the level of the patient. Coefficients are expressed as ORs with CIs and p values derived from percentiles of 10,000 bootstrap replications. Level 1 and 2 model residuals were checked and first-order interactions were tested. Goodness of model fit is reported with the Hosmer and Lemeshow test, and predictive ability described by area under the receiver operating characteristic (ROC) curve (c-statistic). All analyses were undertaken using the R Foundation Statistical Programme (R 3.1.1).

RESULTS
Patients
A total of 1409 patients aged under 16 years, from 253 centres in 43 countries, were included in this study (figure 1). At the time of operation, 282 (20.0%) were under the age of 2 years. Of all children, 694 (49.3%) were from high-HDI, 450 (31.9%) from middle-HDI and 265 (18.8%) from low-HDI groups. There were slightly more males than females in all HDI groups (55.9% in high-HDI, 61.1% in middle-HDI and 58.1% in low-HDI groups). Missing data rates were low, with one missing outcome for 24-hour mortality and one missing outcome for 30-day mortality. In 1140/1409 patients, 30-day outcomes, which otherwise represent status at discharge, were confirmed by direct patient contact (80.9%; high 572/694, 82.4%; middle 358/450, 79.6%; low 210/265, 79.2%; χ^2 test, p=0.361).

Demographics
Children undergoing emergency abdominal surgery in low-HDI countries had higher American Society of Anaesthesiologists (ASA) grades than children in middle-HDI or high-HDI groups (table 1). Furthermore, the WHO surgical safety checklist was employed prior to surgery in less than half of children undergoing emergency abdominal surgery from the low-HDI and middle-HDI groups compared with over 90% in the high-HDI group. At operation, 214/1406 (15.2%) of the children were found to have a perforated viscus, and this varied with HDI group (high 97/694, 14.0%; middle 49/450, 10.9%; low 68/265, 25.7%). Use of laparoscopy was widespread in high-HDI nations (341/694, 49.1%), whereas in middle-HDI (30/450, 6.7%) and low-HDI (8/257, 3.0%) settings, rates were much lower (p<0.001).

Appendicitis was the most common indication for undergoing surgery across all groups, followed by congenital abnormalities, intussusception and hernia (figure 2A and online supplementary table S1). Emergency abdominal surgery for congenital abnormalities was significantly higher in low-HDI groups compared with middle-HDI and high-HDI groups (14.3% cf. 1.8% and 3.2%, respectively).
Overall, 30-day mortality following surgery was 2.9% (n=41/1409) (figure 3). Of these deaths, 29.3% (n=12/41) occurred within 24 hours and 70.7% (n=29/41) between 24 hours and 30 days. Mortality varied significantly with HDI, with significantly higher proportions in low-HDI countries at 24 hours (0.3% in high-HDI, 0.7% in middle-HDI and 2.6% in low-HDI groups, p=0.005) and 30 days (0.9% in high-HDI, 2.9% in middle-HDI and 8.3% in low-HDI groups, p<0.001). Other associations with 24-hour and 30-day mortality in univariable analyses included neonatal age, >1 ASA grade and non-appendicitis procedures. Perforated viscus was significantly associated with 30-day mortality. An inversely proportional relationship is seen between 30-day mortality and age in all HDI groups even after adjustment in models (figure 2C).

In multilevel models, the association between low-HDI country, and 24-hour (OR 7.08, 95% CI 1.39 to 36.10, p=0.018) (table 2) and 30-day mortality (OR 7.79, 95% CI 2.96 to 20.48, p<0.001) (table 3) persisted. Middle-HDI country was associated with a 30-day mortality (OR 5.57, 95% CI 1.90 to 16.39, p=0.002) but not 24-hour mortality. A perforated viscus was significantly associated with increased 30-day mortality, whereas appendicitis was associated with lower 24-hour and 30-day mortality compared with other indications.

An analysis of predicted excess deaths was performed using the final multilevel 30-day mortality model. Based on this model, if all children in low-HDI and middle-HDI

<table>
<thead>
<tr>
<th>HDI</th>
<th>Neonate n=147</th>
<th>Infant n=150</th>
<th>Child n=1112</th>
</tr>
</thead>
<tbody>
<tr>
<td>High HDI
n=694</td>
<td>Major complication: 14% (12/85) Reintervention: 9% (9/85) Minor complication: 26% (22/85) SSI: 9% (8/85)</td>
<td>Major complication: 6% (3/47) Reintervention: 0% (0/47) Minor complication: 28% (13/47) SSI: 2% (1/47)</td>
<td>Major complication: 2% (3/156) Reintervention: 3% (18/562) Minor complication: 11% (61/592) SSI: 4% (23/562)</td>
</tr>
<tr>
<td>Mortality at 24 h 0% (0/85) Mortality at 30 days 2% (2/85)</td>
<td>Mortality at 24 h 0% (0/47) Mortality at 30 days 0% (0/47)</td>
<td>Mortality at 24 h 2% (2/85) Mortality at 30 days 5% (4/85)</td>
<td></td>
</tr>
<tr>
<td>Middle HDI
n=450</td>
<td>Major complication: 18% (3/17) Reintervention: 12% (2/17) Minor complication: 18% (3/17) SSI: 9% (1/17)</td>
<td>Major complication: 10% (6/58) Reintervention: 10% (6/58) Minor complication: 29% (17/58) SSI: 18% (10/57)</td>
<td>Major complication: 2% (9/375) Reintervention: 3% (12/375) Minor complication: 10% (38/375) SSI: 9% (32/375)</td>
</tr>
<tr>
<td>Mortality at 24 h 0% (0/17) Mortality at 30 days 18% (3/17)</td>
<td>Mortality at 24 h 2% (1/58) Mortality at 30 days 9% (5/58)</td>
<td>Mortality at 24 h 0.5% (2/375) Mortality at 30 days 1% (5/375)</td>
<td></td>
</tr>
<tr>
<td>Mortality at 24 h 9% (4/45) Mortality at 30 days 24% (11/45)</td>
<td>Mortality at 24 h 0% (0/45) Mortality at 30 days 9% (4/45)</td>
<td>Mortality at 24 h 2% (3/175) Mortality at 30 days 4% (7/175)</td>
<td></td>
</tr>
</tbody>
</table>

Figure 3 Patient complications and mortality profile according to Human Development Index. HDI, Human Development Index; SSI, surgical site infection.
Major complications and reintervention
The overall rate of major complications following emergency abdominal surgery was 7.2% (n=102/1409) (figure 2B and online supplementary table S2). Major complications were significantly more common in low-HDI countries (11.3%, 30/265) compared with middle-HDI and high-HDI countries (6.4%, 29/450 and 6.2% 43/694, respectively, p=0.017). The rate of reintervention across the HDI groups mirrors these complications rates (low 6.8%, middle 4.4%, high 4.2%, p=0.222; online supplementary table S3).

Minor complications
Across all HDI groups, the minor complication rate (Clavien-Dindo I-II) was 14.8% (n=208). This varied across HDI groups, with higher rates in low-HDI countries (20.9%) compared with middle-HDI and high-HDI countries (15.1% and 13.8% respectively, p=0.010), but these differences did not persist in multivariable analysis (see online supplementary table S4).

Surgical site infection
The overall SSI rate was 9.3% (n=131). This varied significantly across HDI groups (low 21.1%, middle 9.6%, high 4.6%, p<0.001, online supplementary table S5).

DISCUSSION
The main findings of this study are sevenfold and fourfold higher 30-day mortalities in low-HDI and middle-HDI countries, respectively, compared with high-HDI countries. These rates are considerably greater than the threefold higher mortality previously reported among adult patients in low-HDI countries and account for an excess 40 deaths per thousand procedures in low-HDI and middle-HDI compared with high-HDI countries in this study alone.20 The risk factors for this excess mortality are necessarily multifactorial, including a higher intestinal perforation rate, which may reflect delayed access to surgery and different patterns of disease.

The twofold higher rate of major and minor postoperative complications and the fivefold difference in SSIs are also noteworthy. Our study does not allow us to identify the main factors responsible for these differences, but other studies in the literature point out a variety of aetiological factors including sepsis, multiple exposure to anaesthesia in the neonatal period,
postoperative bleeding, as well as complexity of congenital anomaly, delayed presentation, non-availability of trained personnel and financial constraints on the part of the caregivers. While the overall commonest surgical procedure in children remains appendicectomy, other complex procedures for congenital anomalies and intestinal obstruction are commonly performed in children in resource-limited settings. The similarity in procedures performed across resource settings was not expected, but it does demonstrate the depth of training required by surgical personnel to be able to handle such complex cases. Minimal access surgery was infrequently used in low-HDI and middle-HDI countries, showing inequality in access to contemporary technology through lack of resources including training in use of such technology.

The study was able to draw from a large and diverse patient population, spanning wide geographical and resource areas globally. Despite the convenience sampling employed, it offers a snapshot of essential paediatric surgery across the globe. The main body of data from the study highlights the differences in pathology, patient premorbid status, operative findings and outcomes based on HDI grouping. The higher ASA status of children requiring emergency abdominal surgery in low-HDI and middle-HDI countries is concerning, and it potentially reflects delayed access to care with the consequent negative impact on postoperative outcomes. Similarly, the percentage of perforated viscus encountered at surgery was also significantly higher in low-HDI and middle-HDI countries. The delay in access to care has been previously reported by studies from LMICs. This may account for the poor survival of neonates with severe congenital anomalies in these settings, such as intestinal atresia, abdominal wall defects and oesophageal atresia. A study from Nigeria indicated that delayed intervention time >72 hours, neonatal age and severe postoperative complications are associated with higher mortality in paediatric surgical emergencies.

This study has some limitations. Being based on convenience sampling of hospitals, the data collected may not be truly representative of other sites which may be more poorly resourced. Collection bias, however, may result in the true outcomes being even worse in LMICs, as the lowest resource sites would be less likely to participate. In addition, other factors such as availability of personnel, availability of complex anaesthetic and intensive care support, and delay time before surgery were not analysed in this study but may significantly impact on postoperative mortality. The current study has documented differences in surgical outcomes in children based on HDI groups, but has not explored in depth the reasons for these differences. This will form the agenda for future research.

Table 3 Factors associated with 30-day mortality

<table>
<thead>
<tr>
<th></th>
<th>Alive</th>
<th>Died</th>
<th>Univariate logistic regression OR (95% CI, p value)</th>
<th>Multilevel logistic regression OR (95% CI, p value)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HDI tertile</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High</td>
<td>688 (99.1)</td>
<td>6 (0.9)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Middle</td>
<td>436 (97.1)</td>
<td>13 (2.9)</td>
<td>3.42 (1.34 to 9.79, p=0.013)</td>
<td>5.57 (1.90 to 16.39, p=0.002)</td>
</tr>
<tr>
<td>Low</td>
<td>243 (91.7)</td>
<td>22 (8.3)</td>
<td>10.38 (4.42 to 28.46, p<0.001)</td>
<td>7.79 (2.96 to 20.48, p<0.001)</td>
</tr>
<tr>
<td>Age</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Child (>2 years <16 years)</td>
<td>1095 (98.6)</td>
<td>16 (1.4)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Infant (>1 month<2 years)</td>
<td>140 (94.0)</td>
<td>9 (6.0)</td>
<td>4.40 (1.83 to 9.95, p=0.001)</td>
<td>0.91 (0.35 to 2.38, p=0.849)</td>
</tr>
<tr>
<td>Neonate (≤1 month)</td>
<td>131 (89.1)</td>
<td>16 (10.9)</td>
<td>8.36 (4.06 to 17.22, p<0.001)</td>
<td>2.27 (0.92 to 5.62, p=0.075)</td>
</tr>
<tr>
<td>Gender</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>794 (97.4)</td>
<td>21 (2.6)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Female</td>
<td>573 (96.6)</td>
<td>20 (3.4)</td>
<td>1.32 (0.70 to 2.47, p=0.382)</td>
<td>1.98 (1.00 to 3.94, p=0.051)</td>
</tr>
<tr>
<td>ASA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>964 (98.7)</td>
<td>13 (1.3)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>>1</td>
<td>403 (93.5)</td>
<td>28 (6.5)</td>
<td>5.15 (2.69 to 10.37, p<0.001)</td>
<td>1.47 (0.67 to 3.25, p=0.337)</td>
</tr>
<tr>
<td>Perforated viscus</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No</td>
<td>1157 (97.6)</td>
<td>28 (2.4)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Yes</td>
<td>200 (93.9)</td>
<td>13 (6.1)</td>
<td>2.69 (1.33 to 5.17, p=0.004)</td>
<td>2.63 (1.21 to 5.73, p=0.015)</td>
</tr>
<tr>
<td>Primary operation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-appendicectomy</td>
<td>447 (92.0)</td>
<td>39 (8.0)</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Appendicectomy</td>
<td>920 (99.8)</td>
<td>2 (0.2)</td>
<td>0.02 (0.00 to 0.08, p<0.001)</td>
<td>0.04 (0.01 to 0.18, p<0.001)</td>
</tr>
</tbody>
</table>

n=1398, AIC=282.7, c-statistic=0.902, H&L GOF=χ²=6.418, df=8, p value=0.601.
AIC, Akaike information criterion; ASA, American Society of Anesthesiologists; df, degree of freedom; H and L, Hosmer-Lemeshow Goodness of fit; HDI, Human Development Index.
for future studies, together with outcome studies, focusing on elective essential surgical procedures in children.

The main conclusion of this study is that emergency abdominal surgery in children is associated with significantly worse outcomes in LMICs. The documentation provided by this study is essential to the process of scaling up surgical services for children in low-resource settings. Good surgical outcomes require a multitude of factors, including trained personnel, good facilities and surgical supplies, as well as prompt access to surgical care. Thus, any single intervention in this multifaceted system has a high likelihood of failing to fully address these complex issues. This relates to many well-meaning efforts from high-income countries (HICs) to assist surgically in resource-limited settings. For instance, temporary platforms in the form of ‘surgical safaris’, the provision of surgical equipment alone, or short-term training courses outside one’s normal work setting will likely have little long-term impact.24 25 The likeliest context in which broad systematic change can occur is likely that of a long-lasting institutional partnership. In such a context of relationship with mutual understanding and trust, appropriate change can be implemented in whichever areas are most needed, and progress can be monitored and evaluated.26

The recent global recognition of surgery as an essential healthcare component has provided a unique impetus for provision of essential surgical services, especially in LMICs.27 28 The task ahead is a huge one, in terms of access to and quality of care. The current study has documented relatively poor outcomes of emergency abdominal surgery in children in low-HDI and middle-HDI countries. Such data are essential in guiding efforts to improve the surgical care of children globally and prioritise it in the global health agenda.

Handling editor Seye Abimbola

Twitter Follow GlobalSurg at @GlobalSurg

Acknowledgements The authors would like to acknowledge Jacky Hong Chieh Chen, Lawani Ismail, Dylan Roi, Eugenio Grasset Escobar for protocol translation. Organisations assisting in dissemination (alphabetical) are as follows: Asian Medical Students’ Association (AMSA), Association of Surgeons in Training (ASIT), College of Surgeons of East, Central and Southern Africa (COSECSA), Cutting Edge Manipal, Egyptian Medical Student Research Association (EMRA), International Collaboration For Essential Surgery (ICES), International Federation of Medical Student Associations (IFMSA), Lifebox Foundation, School of Surgery, Student Audit and Research in Surgery (STARSurg), The Electives Network, UK National Research Collaborative, World Korean Medical Students Association (WKMSA), World Society of Emergency Surgery (WSES), World Surgical Association (WSA). Individuals assisting in dissemination (alphabetical) are as follows: Douglas Bowley, Vimal Gokani, Jaymie Ang Henry, Chia Kong, Chris Lavy, Jane Lim, Laura Luque, Mahiben Manrathuppi, Praveen Mogan, Dimit Negoedoviev, Raza Sayed, Joseph Shalhoub, Ravi Vohra.

Statistical analysis was carried out by Thomas M Drake, Ewen M Harrison. National leads were involved in recruitment of multiple centres (in some cases all centres) from the countries listed. Chetan Khatri (Lead Coordinator for GlobalSurg), Neel Gobin (Australia), Ana Vegas Freitas (Brazil), Nige Hall (Canada), Sung-Hee Kim (Hong Kong, China), Ahmed Negeida, Hosni Khairy (Egypt), Zahra Jaffry, Stephen J Chapman (England), Alexis P Arnaud (France), Stephen Tabiri (Ghana), Gustavo Recinos (Guatemala), Midhun Mohan (India), Radhian Amandito (Indonesia), Marwan Shawkv (Iraq), Michael Hanrahan (Ireland), Francesco Pata (Italy), Justas Zilinskias (Lithuania), April Camilla Rostani, Cheng Chun Goh (Malaysia), Adesoji O Ademuyiwa (Nigeria), Gareth Irwin (Northern Ireland), Sebastian Shu, Laura Luque (Peru), Hunain Shiwani, Afnan Altamimi, Mohamed Ubaid Alsagaf (Saudi Arabia), Stuart Ferguson (Scotland), Richard Spence, Sarah Rayne (South Africa), Jenifa Jeyakumar (Sri Lanka), Yuceel Cengiz (Sweden), Dmitri A Raptis (Switzerland), James C Glasbey (Wales).

Patient enrolment and data collection

Argentina: Claudio Feramani, Ruben Balmaceda, Maria Marta Modolo (Hospital Luis Lagomaggiore);

Australia: Ewan Macdermid, Neel Gobin, Roxanne Chenn, Cheryl Ou Yong, Michael Edey (Blacktown Hospital), Martin Jarmin, Scott K D’Amours, Dushyant Iyer (Liverpool Hospital, The University Of New South Wales), Daniel Youssef, Nicholas Phillips, Jason Brown (Royal Brisbane & Women’s Hospital), Isaac Hanley (The Tweed Hospital), Mark Dickos (Toowoomba Hospital);

Bangladesh: Ashrur Rahman Mitul, Khalid Mahmud (Okha Shishu Children Hospital), Antje Oosterkamp (Lamb Hospital);

Benin: Pamphile A Assouto, Imsaii Lawani, Yacoubo Amorou Souaiou (Centre National Hospitalier Et Universitaire Hubert Koutoku Maga);

Brunei: Girijath H Devadasar, Chan Leung Chong, Muhammad Rashid Minhas Qadir, (Ssb Hospital), Kyaw Phyo Aung, Lee Shi Yeo, Chan Leung Chong (RIPAS Hospital);

Brazil: Vanessa Dina Palomino Castillo, Monique Monor Munhoz, Gisele Moreira (Conjunto Hospitalar De Sorocaba), Luiz Carlos Barros De Castro Segundo, Salim Anderson Khouri Ferreira, Malia Cassa Careta (Hospital Da Santa Casa De Misericórdia De Vitória), Rafael Arauju, Juliania Meneguzzi, Marisa Leal, Caio Vinicius Barroso de Lima, Luiza Sarmento Tatagiba, Antônio Leal (Hospital Infantil Nossa Senhora Da Gloria);

Cameroon: Samuel Nio, Juana Kaba, Tagang Ebogo Ngwa, James Brown (Mbingo Baptist Hospital);

Canada: Sebastian King, Augusto Zani, Georges Azmie, Mohammed Firdouse, Sameer Kushwaha, Arnav Agarwal (The Hospital For Sick Children, Toronto), Karen Balecy, Brian Cameron, Michael Livingston (McMaster Children’s Hospital), Alexandre Horobetsky, Lais L Deckelbaum, Tarek Razek (Centre for Global Surgery, McGill University Health Centre);

Colombia: Irene Montes, Sebastien Siarra, Manuela Mendez (Clinica CES), Maria Isabel Villegas, Maria Clara Mendoza Arango, Ivan Mendoza, (Clinica Las Vegas), Fred Alexander Naranjo Ariaszt (a), Jaime Andres Montoya Botero, Victor Manuel Quintero Riaza (El Hospital Pablo Tobón Uribe), Jakeline Restrepo, Carlos Morales, Maria Clara Mendoza Arango (Hospital Universitario San Vicente Fundacion), Hermann Cruz, Alejandro Munera, Maria Clara Mendoza Arango (Ips Universitaria Clinica Leon Xil);

Croatia: Robert Karlo, Edgar Domini, Jakov Mlinovic (Zadar General Hospital), Mihael Radic, Kresimir Zaminari, Nikola Pezzol (General Hospital Sibenik);

Lasheen, Salma Said Eikolaly, Nehal Yosri Elsayed Abd-Wahab, Mahmoud Ahmed Fathi Abozayed, Ahmed Adel, Ahmed Moustafa Saeed, Gehad Samir El Sayed, Jehad Hassan Yousif (Banha University Hospital); Soliman Magdy Ahmed, Narineen Soubhy El-Shatby, Abd El-Rahman Hegazy Khedr (Belbei Central Hospital); Abdelrahman Osama Elsebayeb, Mohamed Elsayat, Mohamed Abdelrahim, Ibrahim Elsayat, Mahmoud Warda, Khaled Nasr El Deen, Abdelrahman Esmal, Omar Salah, Mohamed Abbas, Mona Rashad, Ibrahim Elsayat, Dalya Hameda, Gehad Tafvik, Maj Salama, Hazem Khalid, Mohamed Seila, (El Dawly Hospital—Mansoura); Karem Elshaeer, Abdel fattah Hussein, Mahmoud Eldhakawri (El Mahalai General Hospital); Ahmed Mohamed Alfii, Osama Saadeldin EIbrahim, Mahmoud Mohamed Metwalli (El Matara Educational Hospital); Rowida Elimelegy, Dalia Moustafa Eldawaby Elsayhahi, Hisham Safa, Eman Nofal, Mohamed Elbamerwy, Methally Abo Raya, Ahmed Abdelmotaleeb Ghaz, Hisham Samih, Asmaa Abdellah, Sarah Abdelrahim.

Abd El Ely Kholy, Fatma Elukky, Mahmoud Salma, Sarah Samya, Reem Fahry, Aya Abozarab, Ahmed Samir, Ahmed Sakr, Abdelrahman Haroun, Asmaa Abdel- Rahman Al-Araaq, Ahmed Elkholy, Sally Elshawhey (El-Menshawy General Hospital); Esna Ghanem (El-Shohada Central Hospital); Ahmed Tammam, Ali Mohamed Hammad, Yousra El Shoura, Gehad El Ashli, Holsi Khairy (Kasr Al-Ainy School Of Medicine); Sarah Antar, Sara Mehriz, Mahmoud Abdelshefy, Maha Gamal Mohamed Hamad, Mona Hosh, Emaad Abdalbass, Basma Magdy, Thrya Atyazat, Elsayed Gamaly, Hossam Elfeeki, Amany Abouzahba, Shereen Elsheikhe, Fatimah I Elygandy (Mansoura University Hospitals); Fataha Abd El-Salam, Samia Selifein, Mahmoud Ammar, Athar Eysa, Aliaa Salek, Aliaa Gamal Toemsa, Ely Ayr, Mahmoud Abusef, Hagar Zidan, Sara Abd El Bemage Barakat, Nadin Elsayed, Yasmim Abd Elrasoul, Mohamed El Kelany, Mohamed Sabry Ammar, Mennat-Al Nahla Mustafa, Yasmim Makhlouf, Mohamed Etnam, Samar Saad, Mahmoud Alhawawy, Ahmed Rasilan, Mahmoud Morsi, Ahmed Sabry, Hager Elvakin, Helia Shaker, Hagar Zidan, Mohamed El Kelany (Menoufia University Hospitals); Hussein El-Kashef, Mohamed Shaalaan, Areeq Tarek (Minia University Hospitals); Ayman Elwan, Ahmed Ragab Nayel, Mostafa Seif, Doaa Emadeltin Shafik, Mohamed Ali Ghoname, Ahmed Almahall, Ahmed Fouad, Ayman Elwan, Eman ADEL Sayma (New Damietta University Hospital); Ahmed Elbatahgy, Angham Solaiman El-Ma’doul, Ahmed Mosad, Hagar Tolba, Dara Eldin Abdelzaloom Emin Elseoby, Hasan All Mosad, Amira Atef Omar, Ola Sherief Abd El Hameed, Ahmed Lasheen (Quevisina Central Hospital, Quevisina); Yasser Abd El Salam, Ashraf Morsi, Mohammed Ismail (Ras El Tin General Hospital); Hager Ahmed A A Mer, Ahmed Elkelany, Ahmed Sabry El-Hamnoly, Noura Aitallah, Onoia Mosiala, Ahmed Afandy, Mohamed Mohktir, Alaa Aboeinein, Sara Ayad, Ramdan Shaker, Rokia Sakr, Mahmoud Amreia, Soeselo, Chintya Tedjatmadja (Atmajaya Hospital), Fitriana Nur Rahmawati, Soeselo, Chintya Tedjatmadja.

France: Aurelien Scalibre, Fernanda Frade, Sabine Irtan (Trousseau Hospital, Sorbonnes Universités, UPMC Univ Paris), Valentine Parent, Amandine Martin, Alexis P Arnaud, Vivien Gravalle, Elodie Gaignard, Quentin Alimi (Rennes University Hospital), Olivier Abbo, Sofia Moutaiilb, Oudria Bouali (Hôpital des Enfants, Toulouse); Erik Herveux, Yves Aigrain, Nathalie Botto (Hôpital Necker- Enfants Malades, Paris), Alice Faure, Lucie Fievet, Nicoleta Papai (Hôpital Nord, Marseille), Emilie Eyssartier, Francois Schmitt, Guillaume Podevin (Pediatic Surgery Department, University Hospital, Angers); Cecile Muller, Arnaud Bonnard, Matthieu Peyrouton (Robert Debré Children University Hospital);

Ghana: Francis Abantanga, Kwaku Boakye-Yiadom, Mohammed Bukari (Koromo Anoyke Teaching Hospital), Frank Owusu (Ossifino District Hospital), Joseph Awuku-Asahbre, Stephen Tabir, Lemuel Davies Bray (University For Development Studies, School Of Medicine And Health Sciences, General Surgery Department, Tamale Teaching Hospital);

Greece: Dimitrios Lytras, Kyriakos Pearinos, Anastasia Barnicha (Achilleopoulosio Geopisthos Hospital Of Volos), Christos Anthoulakis, Nikolaos Nikolaudis, Nikolaos Mitroudis (Seres General Hospital);

Guatemala: Gustavo Rincones, Sergio Estupinan, Walter Forro (Hospital De Accidentes Ceibal), Romeo Guevara, Maria Aquilera, Napoleon Mendez, Cesar Augusto Azmitia Mendizabal, Pablo Ramazzini, Mario Conteras Urquizu (Hospital General San Juan De Dios), Daniel Estuardo Marroquin Rodriguez, Carlos Ivan Perez Velasquez, Maria Conteras Merida (Hospital Regional de Retalhuleu), Francisco Regalado, Mario Lopez, Miguel Siguyantay (Hospital Roosevelt, Guatemala);

India: Amoudtha Rasendran, Jacqueline Sheehan, Richard Kerley, Caioimhe Normile, Richard William Gilbert, Jiheon Song, Linea Mauro, Mohammed Osman Daboulk, Michael Hanrahan, Pauly Keilty, Eleanor Marks (Cork University Hospital), Simon Gosling, Michelle Mccarthy, Amoudtha Rasendran (Cork University Hospital and University College Cork), Monty Khajanchi, Savin Sotskar, Rajeev Sotskar (Seth Gordhandas Sundersand Medical College And King Edward Memorial Hospital), Yella Reddy, Caranj Venugopal, Sunil Kumar (PES Institute Of Medical Sciences and Research); Indonesia: Elda Prisa Refiante Suanto, Daniel Aridjan Soeoso, Chinnya Tedjatmadja (Atmajaya Hospital), Fotinara Nur Rahmawati, Radhan Amandito, Maria Mayasari (Dr Cipto Mangunkusumo General University, Jakarta);

Ireland: SS Prasad, Anand Kirishnan, Nidhi Gyanchandani (KMC Hospital), Shiram Bh, Anjana Sreedharan, S.V. Kinnena (Kasturba Medical College), Shravan Naidi, Harish Neelamraju Lakshmi, Puneet Malik (Sawai Man Singh Medical College & Hospitals, Jaipur, Rajasthan), Abd Bin Mahamoon (Travancore Medical College Hospital), Monty Khajanchi, Savin Sotskar, Rajeev Sotskar (Seth Gordhandas Sundersand Medical College And King Edward Memorial Hospital), Yella Reddy, Caranj Venugopal, Sunil Kumar (PES Institute Of Medical Sciences and Research); Indonesia: Elda Prisa Refiante Suanto, Daniel Aridjan Soeoso, Chinnya Tedjatmadja (Atmajaya Hospital), Fotinara Nur Rahmawati, Radhan Amandito, Maria Mayasari (Dr Cipto Mangunkusumo General University, Jakarta);

Iraq: Ruqay Khadih Mohammad Jawad Al-Hasani, Hasan Imael Ibaheem Al-Hameedi, Issa Abdullahl Aziz Al-Azraqi (Al Sader Medical City), Lubna Sabeih, Rahma Kamli, Marvan Shawk (Baghdad Medical City);

Italy: Amooldtha Rasendran, Jacqueline Sheehan, Robert Kerley, Caioimhe Normile, Richard William Gilbert, Jiheon Song, Linea Mauro, Mohammed Osman Daboulk, Michael Hanrahan, Pauly Keilty, Eleanor Marks (Cork University Hospital), Simon Gosling, Michelle Mccarthy, Amoudtha Rasendran (Cork University Hospital and University College Cork), Monty Khajanchi, Savin Sotskar, Rajeev Sotskar (Seth Gordhandas Sundersand Medical College And King Edward Memorial Hospital), Yella Reddy, Caranj Venugopal, Sunil Kumar (PES Institute Of Medical Sciences and Research); Indonesia: Elda Prisa Refiante Suanto, Daniel Aridjan Soeoso, Chinnya Tedjatmadja (Atmajaya Hospital), Fotinara Nur Rahmawati, Radhan Amandito, Maria Mayasari (Dr Cipto Mangunkusumo General University, Jakarta);

Israel: Amoudtha Rasendran, Jacqueline Sheehan, Richard Kerley, Caioimhe Normile, Richard William Gilbert, Jiheon Song, Linea Mauro, Mohammed Osman Daboulk, Michael Hanrahan, Pauly Keilty, Eleanor Marks (Cork University Hospital), Simon Gosling, Michelle Mccarthy, Amoudtha Rasendran (Cork University Hospital and University College Cork), Monty Khajanchi, Savin Sotskar, Rajeev Sotskar (Seth Gordhandas Sundersand Medical College And King Edward Memorial Hospital), Yella Reddy, Caranj Venugopal, Sunil Kumar (PES Institute Of Medical Sciences and Research); Indonesia: Elda Prisa Refiante Suanto, Daniel Aridjan Soeoso, Chinnya Tedjatmadja (Atmajaya Hospital), Fotinara Nur Rahmawati, Radhan Amandito, Maria Mayasari (Dr Cipto Mangunkusumo General University, Jakarta);

Italy: Piergiorgio Danelli, Andrea Bondurri, Anna Maffioli (Azienda Ospedaliera Luigi Sacco—Polito University Hospital), Luigi Bonavina, Yuri Macchitella, Chiara Ceriani (University of Milan, IRCSS Policlinico San Donato), Ezio Veronese, Luca Bortolasi, Alireza Hezamin (San Bonifacio Hospital), Francesco Pata, Angelo Benevento, Gaetano Tesser (Sant’Antonio Abate Hospital, Gallarate), Luca Turati, Giovanni Grollo, Emanuele Rausa (Treviso Hospital);

Lithuania: Donatas Venskutonis, Saulius Bradutis, Linaus Urbanavicius, Aiste Austreitute, Romualdas Riuava, Justas Zilinskas, Zilvinas Danbrauskas (Lithuanian University Of Health Sciences);

Malawi: Rooy Coomber, Matthew Johnson, Jennifer Novers (Queen Elizabeth Hospital);

Malaysia: Dineshwy Pariaasamy, Atifaz Salleh, Andreo Das (Hospital Kajang), Reuben Goh Erm Tze, Milakko Nurualam (Malaysia General Hospital), Hoong Yin Chong, April Camilla Roslani, Cheng Chun Goh (University Malaya Medical Centre);

Mexico: Marjia Agius, Elaine Bor, Maureen Bezzina, Roberta Bugeja, Martinique Vella-Baldacchino, Andrew Spina, Josephine Psaila (Mater Dei Hospital, Malta);
Royal Infirmary NHS Foundation Trust), Kalon Hewage, James Davies (Dorset County Hospital), Andre Dubois, Sayed Sarwary, Ali Zardab, Alan Grant, Robert McIntyre (Dr Gray’s Hospital), Shriwati Wewel, Gemma Humm, Erberto Fariaella, Sunil Parthiban (East And North Hertfordshire NHS Trust Lister Hospital) Nigel J Hall, Naomi J Wright, Christina P Major (Evelina London Children’s Hospital), Thelma Xerri, Phoebe De Bono, Jasmin Amin, Mustafa Farhad, John F. Camilleri-Brennan, Andrew G N Robertson, Joanna Swann, James Richards, Alias Jabbar, Myranda Attard, Hannah Burns, Euan Macdonald, Matthew Baldacchino, Jennifer Sekhan, Julian Camilleri-Brennan (Forth Valley Royal Hospital), Tom Falconer Hall, Madelaine Gimnezvetsa, Greta McIachlan (Frimley Park Hospital), Jamie Shah, James Giles (George Eliot Hospital), Maleha Hassan, William Beasley, Apostolos Vaghiougiorgos, Stephen Dias, Geta Maharaj, Rosie McDonnell (Glengwili General Hospital), Kate Cross, Clare M Rees, Bernard van Dunen (Great Ormond Street Hospital for Children NHS Foundation Trust), Emma Upchurch (Great Western Hospital), Sharad Karandikar, Doug Bowley, Ahmed Karim (Heart of England Foundation Trust), Witol Chachulski, Liam Richardson, Giles Dawney, Ben Thompson, Ajayesh Mistry, Anheel Bhangi, Millika Ghelia, Sudipta Roy, Osama Al-Obaidi, Millichia Ghelia, Kastuv Das (Hereford Count Hospital), Ash Prabhudesai, DM Cocker, Jessica Juliana Tan (Hillingdon Hospital), Saythinnen Vivekananthan, Michael Gillespie, Katrin Gudlaugsdottir (Inverclyde Royal Hospital), Theodore Pezas, Chelise Currrow, Matthew Young-Han Kim (Ipswich Hospital NHS Trust), Yahya Salama, Rohi Shah, Ahmed Abolkasem Ibrahim, Hamdi Ebdewi, Gianpiero Gravante, Saleem El-Rabaia (Kettering General Hospital), Zoe Chan, Zafar Hassan (King’s College Hospital), Misty Makinde, David Hemingway, Alex Boddy, Ahmed Abeer Petal, Devali Kotecha (Leicester Royal Infirmary), Harmony Kaur Ushl, Simon-Peter Hossein (Luton and Dunstable Hospital), Simon Ward, Kamran Malik (Macerefield District General Hospital), Kate Owen, Francis Rough, Tom Newton, Mina Akhouri, Min Kyu Kang, Christopher Houlder, Jonathan Barry (Morriston Hospital), Michael S J Wilson, Yan Ning Neo, Ibrahim Ibrahim, Emily Chan, Fraser S Peck, Pei J Lim, Alexander S North, Rebecca Blundell, Adam Williamson (Macclesfield District General Hospital), Leifa Jennings, Tom Newton, Bee Han Kim (Macclesfield District General Hospital), Zoe Chan, Zafar Hassan (Macclesfield District General Hospital).

REFERENCES

Competing interests None declared.

Provenance and peer review Not commissioned; externally peer reviewed.

Data sharing statement This is the paediatric data from a larger study—GlobalSurg 1. Part of the data has been published under the group name GlobalSurg Collaborative.

Open Access This is an Open Access article distributed in accordance with the terms of the Creative Commons Attribution (CC BY 4.0) license, which permits others to distribute, remix, adapt and build upon this work, for commercial use, provided the original work is properly cited. See: http://creativecommons.org/licenses/by/4.0/
Determinants of morbidity and mortality following emergency abdominal surgery in children in low-income and middle-income countries

GlobalSurg Collaborative

BMJ Glob Health 2016 1:
doi: 10.1136/bmjgh-2016-000091

Updated information and services can be found at:
http://gh.bmj.com/content/1/4/e000091

These include:

Supplementary Material
Supplementary material can be found at:
http://gh.bmj.com/content/suppl/2016/12/09/bmjgh-2016-000091.DC1.html
http://gh.bmj.com/content/suppl/2016/12/09/bmjgh-2016-000091.DC2.html

References
This article cites 25 articles, 2 of which you can access for free at:
http://gh.bmj.com/content/1/4/e000091#BIBL

Open Access
This is an Open Access article distributed in accordance with the terms of the Creative Commons Attribution (CC BY 4.0) license, which permits others to distribute, remix, adapt and build upon this work, for commercial use, provided the original work is properly cited. See:
http://creativecommons.org/licenses/by/4.0/

Email alerting service
Receive free email alerts when new articles cite this article. Sign up in the box at the top right corner of the online article.

Topic Collections
Articles on similar topics can be found in the following collections
Open access (127)

Notes

To request permissions go to:
http://group.bmj.com/group/rights-licensing/permissions

To order reprints go to:
http://journals.bmj.com/cgi/reprintform

To subscribe to BMJ go to:
http://group.bmj.com/subscribe/