Grid cells' need for speed

Citation for published version:

Digital Object Identifier (DOI):
10.1038/nn.4460

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Nature Neuroscience

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Title: Grid cells’ need for speed

Author names: Matthew F. Nolan and Alfredo Gonzalez-Sulser

Affiliation: Centre for Integrative Physiology, The University of Edinburgh, Edinburgh, United Kingdom. EH8 9XD

Corresponding email: mattnolan@ed.ac.uk

Abstract

Grid firing fields of neurons in the entorhinal cortex are thought to require inputs encoding running speed, but where do these speed signals originate? New results suggest that glutamatergic projections from the medial septum are one of the inputs that provide speed signals to the entorhinal cortex.

Main text

To complete many everyday tasks, from foraging to running from predators, animals must be able to keep track of where they are. This can be achieved by updating internal estimates of location using information about speed and direction of movement. Grid cells in the medial entorhinal cortex (MEC) are thought to be key to this process, which is known as path integration. However while speed signals have been recorded in the MEC, their origin is unclear. Two recent studies have addressed the role of projections from the medial septum (MS), a region previously associated with generation of theta frequency network activity in the hippocampus and entorhinal cortex.

In this issue of Nature Neuroscience Justus et al. investigate whether glutamatergic neurons in the MS provide the MEC with information about running speed. Consistent with an earlier report based on recordings in rats, Justus et al. found a subset of cells in the MS that are speed sensitive. Intriguingly, they show that some neurons in the MS increased their firing rate with increasing running speed, whereas others decreased their firing rate (Fig. 1a). Justus et al. also discovered cells in which theta frequency modulation of firing, as well as the overall firing rate, was sensitive to running speed (Fig. 1b). Justus et al. then expressed a Ca²⁺ sensor in the glutamatergic neurons in the MS and imaged population-level calcium signals from their axon terminals in the MEC. They find that that the calcium signal in the MEC is positively correlated with running speed. Therefore, glutamatergic neurons in the MS appear to be a source of speed signals in the MEC.

How are glutamatergic signals from the MS integrated within the MEC? By making patch-clamp recordings from MEC neurons in brain slices and activating MS inputs optogenetically, Justus et al. show that pyramidal cells in superficial layers are
primary targets of glutamatergic inputs from the MS (Fig. 1e). The depolarization
generated by these inputs is proportional to the frequency at which they are
activated, suggesting they could relay rate coded speed signals. To further explore
this possibility, Justus et al. use a modelling approach in which spike patterns
recorded from speed coding neurons in the MS were replayed into reduced models
of pyramidal cells. These simulations suggest that pyramidal neurons in the MEC
could be speed sensitive cells, but are less likely to follow theta frequency
modulation of MS inputs. In contrast, simulated interneurons, because of their
shorter membrane time constant, effectively relay the theta frequency component of
MSDB inputs, but are relatively insensitive to running speed.

These results stimulate further questions about speed coding neurons in the MS and
their connections to the MEC. It is not yet clear if GABAergic or cholinergic neurons
that project from the MS to the MEC are also speed sensitive. The identity of
neurons with firing that is negatively modulated by speed is also unclear. While
cholinergic responses in the MEC so far appear to be quite rare, there are
prominent GABAergic projections from the MSDB that seem to specifically target
GABAergic interneurons in the MEC (Fig. 1e). Given that a substantial proportion
of the speed sensitive neurons in the MEC appear to be interneurons, it will be
important to establish the relative contribution of glutamatergic and GABAergic
projections to speed sensitive firing of identified cells in the MEC.

In a second recent study, Hinman et al. demonstrate that inactivation of the MS
differentially affects two independent speed signals in the MEC. They find that, just
as in the MS, running speed is encoded in the MEC both by spike frequency and by
changes in theta frequency oscillatory activity. However, whereas in the MS these
codes appear to be generated by the same neurons (Fig. 1b), in the MEC they
appear to be generated by different neurons. The oscillatory code in the MEC also
appears to differ in that the oscillation frequency (Fig. 1c) and the depth of theta
modulation (Fig. 1d) both increase with running speed. Intriguingly, Hinman et al.
demonstrate that rate coded speed signals in the MEC are enhanced by inactivation
of the MS, whereas the dependence of oscillatory signals on running speed is
reduced. These results suggest that inputs from the MS support oscillatory rather
than rate coded speed signals in the MEC.

How can the observation of a rate coded glutamatergic speed signal from the MS to
the MEC be reconciled with an increase in rate coded speed firing in the MEC
following inactivation of the MS? One possibility is that some computations in the
MEC involve integration of multiple speed-sensitive inputs. For example, neurons
found in the visual cortex also encode running speed, while in the MEC grid firing
fields and speed coding were recently found to rely on visual input to a greater extent
than previously suspected. Thus, if inputs from the MS converge on neurons in the
MEC that also receive visually driven speed signals, then the computation carried
out by MEC neurons may require that the input from the MS is also speed-sensitive.
Another possibility is that speed inputs from the MS may be required to coordinate
spike sequences that occur nested within the theta rhythm, while other speed
inputs may drive rate coded speed firing and perhaps also path integration by grid
cells (or vice-versa).

What about the MS-dependent speed modulated oscillatory activity in the MEC?
Could the speed-dependent glutamatergic signals identified by Justus et al. play a
role? This seems possible. For example, if background synaptic activity in vivo
increases the membrane conductance of pyramidal cells receiving glutamatergic
inputs, then the resulting reduction in their integration time constant might enable
them to respond to speed and theta modulated components of MS firing.
Alternatively, depolarisation driven by rate coded glutamatergic speed signals may
promote membrane potential oscillations by increasing the electrical driving force for
theta modulated GABAergic input received either directly from the MS, or indirectly
via local interneurons. Disentangling these and other possibilities will likely require
further detailed analysis of circuitry connecting the MS and MEC, it’s activity during
running behaviours and the consequences of targeted manipulation of genetically
defined subsets of MS neurons.

Finally, what are the implications do the findings from Justus et al. and Hinman et al.
have for mechanisms of grid cell firing? While most models of grid firing require
signals encoding speed and heading direction as inputs, they differ in the nature of
the speed signal. In continuous attractor network models, the speed is encoded by
firing rates. Although the neurons generating these inputs need not be in the MEC,
some of the speed-sensitive neurons reported by Hinman et al. appear consistent
with requirements of these models. In oscillatory interference models, speed is
encoded in the frequency of oscillatory signals and some of the firing patterns
reported by Hinman et al. appear consistent with these models. Hinman et al.'s
finding that the MS is required for both grid firing and speed-dependent oscillations
could be interpreted as convergent evidence for interference models. However, the
discovery by Justus et al.\(^2\) of rate coded speed inputs from the MS to the MEC,
suggests that effects of inactivation of the MS might also be consistent with attractor
network models.

In summary, recent experimental evidence argues for multiple sources of speed
input to the MEC. Glutamatergic projections from the MS are a first identified source
of speed signals, while speed-dependence of MEC firing following inactivation of the
MS suggests the existence of additional speed inputs to the MEC. While the exact
role of speed inputs in grid firing remains unclear, increasingly precise circuit
investigations, such as that by Justus et al., combined with systematic analyses of
speed coding introduced by Hinman et al., provide a powerful framework for further
investigation. Future studies will likely need to untangle the apparent complexities of
network connectivity and combine them with elucidation of grid cell input and output.

References

1. Kropff, E., Carmichael, J. E., Moser, M.-B. & Moser, E. I. Speed cells in the
Figure 1. Glutamatergic inputs providing input for neuronal speed codes in MEC. a-d. Different neuronal codes generate distinct activity patterns representing fast and slow running speed. Coding occurs through the frequency of spike firing (a) or by spiking timing (black bars) relative to network oscillations (red lines) e. Circuit diagram of projections from different cell types in the MS to specific synaptic targets in MEC. Note: Large arrows denote more frequent synaptic targets in MEC and small arrows denote less frequent ones. Abbreviations: ACh: cholinergic, Glut: glutamatergic, GABA: GABAergic, Pyr: pyramidal, FS: fast spiking interneuron.
a
Rate Code

b
Mixed Rate and Oscillation Code

c
Oscillation Frequency Code

d
Oscillation Depth Code

e

Diagram showing connections between different brain regions:

- **Medial Septum**
 - ACh
 - Glut
 - GABA

- **Medial Entorhinal Cortex**
 - Stellate (Glut)
 - Pyr (Glut)
 - FS (GABA)