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Abstract 

Behavioural analysis of mice carrying engineered mutations is widely used to identify roles 

of specific genes in components of the mammalian behavioural repertoire. The 
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reproducibility and robustness of phenotypic measures has become a concern that 

undermines the use of mouse genetic models for translational studies. Contributing factors 

include low individual study power, non-standardised behavioural testing, failure to address 

confounds and differences in genetic background of mutant mice. We have examined the 

importance of these factors using a statistically robust approach applied to behavioural data 

obtained from three mouse mutations on 129S5 and C57BL/6J backgrounds generated in a 

standardised battery of five behavioural assays. The largest confounding effect was 

sampling variation, which partially masked the genetic background effect. Our observations 

suggest that strong interaction of mutation with genetic background in mice in innate and 

learned behaviours is not necessarily to be expected.  We found composite measures of 

innate and learned behaviour were similarly impacted by mutations across backgrounds. 

We determined that, for frequently-used group sizes, a single retest of a significant result 

conforming to the commonly used p<0.05 threshold results in a reproducibility of 60% 

between identical experiments.  Reproducibility was reduced in the presence of strain 

differences. We also identified a p-value threshold that maximized reproducibility of mutant 

phenotypes across strains. This study illustrates the value of standardized approaches for 

quantitative assessment of behavioural phenotypes and highlights approaches that may 

improve the translational value of mouse behavioural studies.  
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Introduction 

Engineered mutations in mice are widely used for assessing the roles of genes and proteins 

in many biological processes including behaviour.  However, experiments are complicated 

by the issue of reproducibility, failures of which may be due to a number of issues. The first 

major issue is methodological heterogeneity and lack of standardisation (Crabbe et al., 

1999, Kilkenny et al., 2009) and the second issue is differences in mouse genetic 

background.   These issues often arise due to the specific questions the studies are 

addressing, but they introduce uncertainty about the relevance of the studies for others 

(Crawley et al., 1997, Logue et al., 1997, Rodgers et al., 2002). A third issue is the 

presence of confounding factors such as differing animal age (Kilkenny et al., 2009). These 

factors may be  addressed in large, standardised phenotyping datasets using mixed effects 

models (Karp et al., 2012). 

Mouse genetic backgrounds are often chosen for particular experiments based on 

differences in wildtype behaviour, as reviewed by others (Baker, 2011, Balogh et al., 1999, 

Crawley, 2008, Crawley et al., 1997, Holmes et al., 2002). The two most common genetic 

backgrounds are 129 and C57BL/6, which were derived in the 1920s from fancier stocks.  

Of 27,906 mouse lines listed in a recent database (Blake et al., 2014), 78% were made on 

either one or both of these backgrounds.  Anecdotal evidence suggests that the chosen 

genetic background may occasionally interact with the engineered mutations being tested 

(Drapeau et al., 2014, Grant et al., 1992, Holmes et al., 2003, Huang et al., 2013, 

Kastenberger et al., 2012, Mistry et al., 2014, Morice et al., 2004, Pietropaolo et al., 2011, 

Popova et al., 2009). While the theoretical underpinnings of this effect are well understood 

(reviewed in Gerlai, 2001), the impact of genetic background on mutant behavioural 

phenotypes has not been quantified. 

The Genes to Cognition (G2C) Programme (Grant, 2003) implemented a single-centre 

behaviour pipeline approach with rigorous methodological standardisation.  Over 2700 mice 

were identically tested in a behavioural test battery involving five environments, from which 

16 maximally independent (uncorrelated) behaviour variables were carefully chosen for 

similarity between 129S5 and C57BL/6J wildtypes.  Amongst 60 G2C mutant lines, the six 

lines analysed here carried knockout mutations in Dlg4 (PSD-95), Dlg3 (SAP102), and 

Dusp6, each back-crossed into both 129S5 and C57BL/6J genetic backgrounds. These 
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genes encode proteins in the postsynaptic terminal of excitatory synapses and are known to 

play a role in cognition through behavioural experiments using mazes and computerized 

touchscreens (Cuthbert et al., 2007, Migaud et al., 1998, Nithianantharajah et al., 2013, 

Park et al., 2011).  

In this report, we apply robust statistical analysis of confounds, including sampling variation, 

to assess the similarity of mutant phenotypes between background strains. Based on 48 

behavioural comparisons, we examined how frequently the behaviours differed across 

backgrounds. We provide, to our knowledge, the first robust estimate of how often mouse 

genetic background has a significant modulating effect on mutant behavioural phenotypes, 

in both innate and learned behaviours. We also identify composite measures of innate and 

learned behaviour that measure aggregate impacts of mutation and show they are similar 

across genetic backgrounds. By demonstrating strong similarity of mutant behavioural 

phenotypes between mouse genetic backgrounds, these analyses provide insight into, and 

validate comparisons of, mutant phenotypes across studies in rodent model systems. 

Finally, we developed a p-value threshold approach that shows increased reproducibility of 

more-significant mutant phenotypes across backgrounds.  Taken together, our results 

demonstrate the benefit of battery approaches and standardization to behaviour studies and 

identify study design parameters and criteria that determine study reproducibility. 

Materials and Methods 

Animal care 

All animal experiments conformed to the British Home Office Regulations (Animal Scientific 

Procedures Act 1986) and local ethical approval, with specific procedures carried out under 

Wellcome Trust Sanger Institute guidelines for care and use of animals. Animals were 

housed in individually vented cages (Seal Safe 1284 L; Tecniplast, Italy) with 5 animals per 

cage, enriched with paper tunnels, on a normal 12-hour light, 12 hour dark cycle.  Animals 

were provided with IPS 5021 Autoclavable Mouse Breeder Diet (LabDiet, St Louis, MO, 

USA) and water ad libitum. 

 

Mouse generation. 

This article is protected by copyright. All rights reserved.
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The present study focused on three loss-of-function or knockout mutations: 1) a deletion of 

essential exons of the Dlg4 gene, which encodes the PSD95 protein (Migaud et al., 1998); 

2) a deletion of exons of the Dlg3 gene, which encodes the SAP102 protein (Cuthbert et al., 

2007); and 3) a deletion of exons of the Dusp6 gene (manuscript in preparation). All were 

generated by gene targeting of 129 embryonic stem cells and backcrossing onto both 

129S5/SvEvBrd (129S5) background (PSD95 ≥ 99.97% isogenic, median 99.98%; SAP102 

≥ 98.9% isogenic, median 99.87%; DUSP6 ≥ 97.9% isogenic, median 97.9%) and 

C57BL/6J background (PSD95 ≥ 75.0% isogenic, median 87.5%; SAP102 ≥ 87.5 % 

isogenic, median 87.5%; DUSP6 ≥ 99.2% isogenic, median 99.2%) in the heterozygous 

state. Intercrossing generated cohorts of mice for behavioural measurements. All mutations 

were made in-house. Wildtype 129S5/SvEvBrd and C57BL/6J mice used for back-crossing 

were obtained from stocks maintained at the Wellcome Trust Sanger Institute. 

For comparisons of behaviour in wildtype mice, 46 129S5 and 51 C57BL/6J mice were 

used, achieving >90% power to detect a phenotype of Cohen d = 0.7 at α = 0.05.  In mutant 

versus wildtype comparisons, group sizes were 10-20 mutants and 10-20 wildtypes, 

corresponding to 56.7-87.5% power to detect phenotypes of Cohen d = 1 at α = 0.05. 

Within a line, mutant and wildtype mouse cohorts were litter-matched, sex-matched and 

age-matched, but across background strains, age matching was not attempted since 

mutation effect sizes were insensitive to observed age effects (see Results). Age, sex and 

numbers of mice are shown in Table 1. 

Behavioural testing. 

A one-week standardised protocol was applied consisting of five test environments, with 

each animal assayed in all environments in the same order.  The experimenter was blinded 

to sex and genotype using radio-frequency identifying chips implanted before the behaviour 

experiments. Experimenter bias was eliminated by measuring behaviour variables 

automatically using cameras and other devices. 

Day 1, elevated plus maze (EPM).  The EPM had two exposed arms and two walled arms 

45 cm above the ground, with infrared illumination and monitored by an IR-filtered digital 

camera (all from Tracksys, Nottingham, UK), connected to Mediacruise software, version 

2.24.000.  The elevated plus maze had arms 10 cm wide and 60 cm long.  The central zone 
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was defined as the 10 cm by 10 cm area in the centre of the maze.  Mice were placed on 

the open arm next to the central zone. The body centroid of the mouse was used as the 

mouse location.  Analysis was carried out using Noldus Ethovision software, version 3.1.16 

(Tracksys, Nottingham, UK). Mice were run on the maze for five minutes in a darkened 

room under red light, two mazes per room, with the experimenter in the room.  After each 

run, mazes were cleaned with ethanol wipes. 

Day 2, morning, open field (OF). The OF was a white, matte-finish plastic 75 cm by 75 cm 

box with 42 cm walls on an infrared bed monitored by a digital camera (all available from 

Tracksys, Nottingham, UK). Animals explored the box for five minutes under normal room 

lighting (1000 lux), and behaviour was analysed by Noldus Ethovision software.  After each 

run, the apparatus was cleaned with ethanol wipes. 

Day 2, afternoon, novel object exposure (NOE). The NOE assay used the OF apparatus, 

with an unopened aluminium 355ml soft drink can in the centre of the box. The animal 

explored the apparatus in the presence of the novel object for five minutes.  Mice were 

assayed in OF and NOE in the same order, and the interval between OF and NOE was 

approximately four hours. 

Day 3, rotarod (RR).  An accelerating rotarod apparatus with 3.0 cm diameter spindle 35 cm 

above the bottom of the apparatus was used (EZ-ROD, version 2.12, Accusan Instruments, 

Columbus, Ohio, USA). The spindle accelerated from 10 revolutions per minute (RPM) to 

48 RPM over five minutes.  A mouse’s fall triggered a computer-monitored switch, and 

latency to fall and maximum spindle speed were recorded for each trial.  Each mouse 

underwent eight trials in the morning and eight in the afternoon.  Within a session, trials 

began approximately 30 seconds after the end of the previous trial.  After each mouse, the 

apparatus was cleaned with ethanol wipes. 

Days 4-5, classical conditioning. Training was done in an operant box system from 

Coulbourn Instruments (Whitehall, PA, USA).  After two minutes of habituation, a 300 Hz 

tone at 83-86 dB was played for 30 seconds, co-terminating with a 2-second scrambled 

shock in the grid floor at 0.45 mA under control of Acctimetrics FreezeFrame software.  Two 

more tone-shock pairings were presented at 100-second intervals.  Mouse behaviour was 

recorded by overhead video camera and freezing behaviour was detected by Acctimetrics 
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FreezeView software, version 2. Testing was performed 24 hours later in the same boxes. 

After three minutes’ exposure to the operant box, the tone was played for two minutes, and 

freezing was recorded in 30-second time bins. 

Identification of 16 maximally independent behaviour variables 

All manipulation of behaviour variables was done in the R statistical programming 

environment.  One hundred and five highly redundant raw behaviour variables were 

summarised by a reduced set of 16 variables. Candidate behaviour variables were 

principally hand-selected for their own historical interest or relatedness to behaviours of 

historical interest. The resulting list of variables was trimmed based on two statistical 

criteria: 1) independence from (lack of correlation with) one another, and 2) wildtype 

similarity across 129S5 and C57BL/6J background, which was assessed by performing Chi-

squared goodness of fit tests of the (scaled and shifted) z-score distribution of each variable 

in each background. 

Five variables described behaviour in EPM: 1) EPM total distance (cm); 2) EPM max speed 

(cm/s); 3) EPM % time in open; 4) EPM time in centre (s); and 5) EPM max speed, open vs 

closed (cm/s). 

OF and NOE contributed two variables. 1) Total distance (cm) travelled during the open 

field and novel object exposure assays was denoted ‘OF, NOE total distance’. Log10 

transformation of these scores increased similarity of score distributions between 129S5 

and C57BL/6J mice and resulted in approximately normally-distributed data. 2) Response to 

the change in environment from the OF to NOE was measured by the difference between 

distances travelled (cm) between the two assays, denoted ‘NOE vs OF distance travelled’. 

RR measured a mouse’s innate motor coordination, motor learning, and motor memory, 

which were derived as shown in Figure S1A.  Two linear models were fit, one to a mouse’s 

latency to fall during the eight trials in the morning session, and the other to the eight trials 

in the afternoon session.  Naïve performance, denoted ‘RR naive fall time’, was computed 

as the fitted value of motor performance in the second trial in the morning session.  Motor 

learning, denoted ‘RR learning’, was measured as the slope of the linear model during the 

morning session.  Motor memory, denoted ‘RR memory’, was measured as the difference 

between the fitted midpoint of the afternoon session and the fitted midpoint of the morning 
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session.  This model of naive performance, learning, and memory had the following 

properties across all G2C wildtype mice (n129S5 = 851, nC57BL/6J = 395): 1) learning is not 

correlated with naive performance; and 2) the measure of memory is positively correlated 

with the measure of learning and more modestly with the measure of naive performance.  

RR naive fall time was log10 transformed to increase similarity between the 129S5 and 

C57BL/6J score distributions.  This transformation resulted in approximately normally-

distributed data. 

Classical conditioning contributed six variables related to learning and memory. The 

derivation of the variables is depicted in Figure S1B-D. We noted that the two learning 

(memory acquisition) variables were not strictly independent.  Not only did they reference 

the same raw data, we hypothesised that increases in the tone response might in part be 

driven by general increases in freezing due to contextual learning alone. To detect 

separable aspects of learning, all G2C data for 129S5 or C57BL/6J mice were used to 

construct a linear regression model relating the tone effect (Learning, tone effect; 

LRN_tone) to the general increase in freezing in successive trials (Learning, trial effect; 

LRN_trial); linear dependence between the two was subtracted from LRN_tone.  Sample R 

code for this operation is: 

 LRN_tone = lm(LRN_tone ~ LRN_trial)$residuals 

This was done separately for mice on the C57BL/6J background and on the 129S5 

background. 

Similar to learning variables, memory variables were interdependent.  Cued memory 

responses, ‘Cued memory, mean’ (CU_mean) and ‘Cued memory, change’ (CU_change), 

were not independent of the contextual response, (Contextual memory, mean; CT_mean).  

Furthermore, the temporal evolution of the cued response (Cued memory, change; 

CU_change) was expected to be correlated with the mean cued response, (Cued memory, 

mean; CU_mean).  To derive a measure of the temporal change in the cued response 

independent of the context effect and the mean cued effect, linear dependencies of 

CU_change on CT_mean and CU_mean were subtracted, again using linear models.  This 

was done separately for C57BL/6J mice and 129S5 mice.  Sample R code for this operation 

is: 
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 CU_change = lm(CU_change ~ CT_mean + CU_mean)$residuals 

Dependence of the mean cued effect, CU_mean, on the context effect, CT_mean, was then 

subtracted similarly, using R code: 

 CU_mean = lm(CU_mean ~ CT_mean)$residuals 

Steps taken to reduce data interdependence amongst classical conditioning behaviour 

variables conferred the following properties to classical conditioning variables: 1) the trial 

effect during task acquisition (Learning, trial effect; LRN_trial) is now exclusively predictive 

of the contextual memory variable (Contextual memory, mean; CT_mean); and 2) the tone 

effect during task acquisition (Learning, tone effect; LRN_tone) is now exclusively predictive 

of the cued memory effect (Cued memory, mean; CU_mean). In other words, the 

mathematical operations presented here discover separable aspects of task acquisition that 

separately predict two aspects of memory.  A caveat, however, is that these operations are 

only robust when based on data from many mice, whereas similar calculations on cohort 

sizes such as 20 mutants and 20 wildtypes are likely to suffer from over-fitting. 

The final behavioural repertoire consisted of 16 minimally-redundant/minimally-correlated 

behavioural variables, of which eight represented innate, instinctive behaviours and eight 

involved learning and memory. 

Statistical analysis of mutant-wildtype differences 

The mice and experiments reported here were generated as part of a pipeline operation and 

were tested in weekly batches. This design permitted robust assessment and control of the 

effects of four confounding factors: batch effect, two aspects of ageing, and variance 

differences between mutant and wildtypes. The batch effect arises as a result of differences 

in experimental conditions from week to week. Ageing may affect both mutants and 

wildtypes, or one of the groups only, increasing the variance of one or both groups and thus 

decreasing power to detect a phenotype. Although mice were litter-matched and thus age-

matched within mouse lines, substantial age differences were present in our dataset, 

ranging from approximately six weeks to over one year old.  Furthermore, median ages 

differed between mouse lines, necessitating analysis of ageing. In addition to batch and 

age, we analysed variance differences between mutant and wildtype animals, which may 
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erode the significance of mutant-wildtype differences. We performed these analyses on 

simulated behavior data, which permitted specification of true effect sizes.  Subsequently, 

comparison of trends in experimental data to trends in simulated data permitted 

approximation of the magnitudes of confounding effects.  By simulating the effect of these 

magnitudes of confounding effects on simple two-factor (mutant genotype, and sex if 

appropriate) ANOVAs, we could rule out any major impact of confounding effects. Therefore 

significance of phenotypes was assessed by ANOVA with respect to sex and genotype at 

the mutant locus. These analyses were performed in the R statistical programming 

environment are detailed in Supporting Text 1. 

Effect size calculations for single behaviour variables and groups of variables. 

Phenotypic magnitude was computed as the maximum likelihood estimator of Cohen d 

effect size, which for balanced experimental designs is approximately equal to the 

standardised mean difference of two groups (Cohen, 1988).  Aggregate effect sizes of 

multiple variables were computed by averaging effect size magnitudes; this measure is by 

definition always positive or minimally zero. Therefore, for each aggregate effect size, 

random draws of wildtype data of the same genetic background were used to simulate null 

effect; the median of this distribution was taken as the baseline null effect. Combined effect 

sizes for mutant lines of mice were required to significantly exceed this baseline to be 

detected as significant. 

Standard error of effect size was computed by sampling 1000 times from wildtype mice 

matched with the experimental cohorts for cohort size, genetic background and sex. This 

strategy makes no assumption about the distribution of the underlying data and therefore is 

more accurate than estimation of the standard error of effect size using a canonical formula. 

 

 

Comparison of mutant phenotypic effect size across genetic backgrounds. 

One of the main concerns of this work was to measure the likelihood of phenotypic 

recapitulation (that is, that phenotype effect sizes did not significantly differ) across 

backgrounds.  For a given phenotype comparison, defined by a given mutation and 
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behaviour variable, effect size difference between 129S5 and C57BL/6J was tested for 

significance using a z-score computed as the difference of d divided by the combined 

standard error:  Z = -|d2 - d1|/(SE1
2+SE2

2)0.5. The two-tailed p-value was assessed from the 

standard normal distribution. 

Impact of sampling and p value threshold on expected reproducibility 

We modelled the effect of sampling and the commonly used p<0.05 significance threshold 

on phenotypic reproducibility under the assumption of identical experimental conditions.  

This analysis is detailed in Supporting Text 2. 

Results 

Construction and validation of a standardised behavioural dataset 

The G2C programme characterised behaviour of 60 mutant mouse lines (10-20 litter-

matched mice per group) in a standardised behaviour pipeline. Fifty-five of these lines were 

on either 129S5 or C57BL/6J background; six lines (Table 1) reflect three mutations 

(PSD95/Dlg4, SAP102/Dlg3, and Dusp6) introduced into both these backgrounds. Of 105 

raw behaviour variables measured per mouse, 16 variables efficiently summarised the 

dataset; these were minimally-correlated and thus minimally-redundant (Figure S2). 

Amongst wildtype mice of the same background (n129S5 = 851, nC57BL/6J = 395) these 

variables showed Pearson R2 < 0.016.  Mechanistic relationships existed between 9/120 

pairs of variables (learning versus memory of a task, and variables assessing aspects of 

locomotion); these showed median Pearson R2 = 0.15. Wildtype z-score transformed 

behaviour scores were similarly distributed for both backgrounds for 14/16 variables (Chi-

squared goodness of fit tests, p > 0.05). The strain z-score distributions differed only in that 

129S5 mice showed a broader range of times in the EPM open arm and C57BL/6J mice 

showed a broader range of RR memory. These results indicate the sixteen variables were 

minimally redundant and similar between wildtype mice in the two background strains. 

We next validated our assays by comparison with previously published results. As shown in 

Figure S3 and Figure 1, comparisons of wildtype mice from the two background strains 

recapitulated known behaviour differences between 129 and C57BL/6 mice. Consistent with 

previous reports, 129S5 mice showed lower activity in EPM total distance, EPM max speed, 
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OF NOE total distance (Bolivar et al., 2000, Rodgers et al., 2002); reduced motoric 

performance on the rotating rod task, with males more severely impacted than females 

(Mcfadyen et al., 2003); more freezing in response to contextual fear; and increased 

occupancy of the central zone of the elevated plus maze (Bolivar et al., 2001, Rodgers et 

al., 2002).  We noted two discrepancies with published reports.  First, in our experiments 

129S5 mice spent longer in the open arm of the EPM (Rodgers et al., 2002), which is most 

likely explained by the protocol’s minimally-sized central zone and the relative inactivity of 

129S5 mice (which were placed just outside the central zone).  Second, 129S5 mice did not 

differ from C57BL/6Js in mean freezing in our cued fear memory assay, in contrast to a 

published report (Bolivar et al., 2001), in which C57BL/6 had higher activity indices than 129 

mice.  This difference may have resulted from differences in the protocol. These results 

establish that our behaviour protocols recapitulate known behaviour patterns in these 

strains. 

Minimal impact of four confounding effects. 

Prior to analysis of the impact of the mutations, it was necessary to examine potential 

confounding effects.  Our pipelined study design, which used litter matched mice, was 

subject to four such effects: batch, unequal variance, age and age × genotype. Effects like 

these have been shown to play a role in phenotyping pipelines and to be amenable to 

analysis using mixed effect models (Karp et al., 2012).  We used a similar mixed effect 

model approach, as described in Supporting Text 1, which showed that confounding effects 

generally eroded the effect sizes, but this erosion was usually less than 20% overall. 

Therefore analyses of variance were restricted to sex and genotype at the mutant locus. 

Two contrasting methods of assessing similarity/reproducibility of mutant 
phenotypes across experiments 

Although it is widely recognised that reproducibility of phenotypes between studies 

performed on different strains is important, to our knowledge there have been no methods 

available to measure this.  The first and most elegant way to address this question is 

quantitative and compares the effect sizes of phenotypes.  In this case, we expect that two 

published results, one significant and the other not, may yet be insignificantly different in 

effect size and therefore be considered as equivalent.  Assuming a test-retest scenario with 
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no methodological variation between the published reports, effect sizes are expected to 

differ at the expected false positive rate, usually 5%. 

A second method of assessing reproducibility refers to phenotypic p-values and addresses 

the situation found in phenotype databases derived from literature reports.  Such databases 

record presence or absence of a phenotype, indicating that the null hypothesis test yielded 

a p-value less than the accepted false positive rate, usually 5%. Thus, this method of 

comparing studies accepts phenotypes that reach p<0.05 in either of the two published 

experiments and asks how many phenotypes found in one report are found in the other.  

Assuming a test-retest scenario with no methodological or strain variation between the 

published reports, simulations showed that with a sample size of 15 animals per group, 

sampling variation places an upper bound of 60.6% reproducibility on such pairs of 

experiments (see Materials and Methods).  It should be noted that with further repetitions 

the effect of sampling will be overcome and the likelihood of detecting a significant 

phenotype will increase above 60.6%.  

Reproducibility of phenotype effect sizes.  

One of the main objectives of this work was to measure the likelihood that the effect of a 

mutation would be recapitulated across backgrounds. To assess this likelihood, we 

compared mutant phenotypes across mouse genetic backgrounds in terms of their effect 

size, rather than in terms of real-world units (cm and seconds), which may vary 

considerably between strains.  This strategy involves scaling of phenotypes separately by 

background strain.  Examination of the 16 behavioural variables in the PSD95, SAP102 and 

DUSP6 mutant mice on both backgrounds revealed 41 of 48 tests (85%) showed no 

significant difference between background strains (Figure S4, summarised in Figure 2). 

Plotting effect sizes in C57BL/6J background against effect sizes in 129S5 background 

revealed a strong correlation (16 variables × three mutations, Spearman rho = 0.489, p = 

0.0005, data not shown). Thus, both backgrounds revealed overall similarity in both innate 

and learned behaviours. 

Because the ability to measure phenotypic differences is affected by sampling, we next 

compared our cohorts of 10-20 mutants to large datasets of background-matched wildtype 

mice from 55 G2C lines (n129S5 = 851, nC57BL/6J = 395, except SAP102, for which n129S5,male = 
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451, nC57BL/6J,male = 215; data not shown).  With the larger and more robust wildtype dataset 

we found that the number of detected strain differences increased from seven to seventeen.  

These differences occurred with similar frequency in all three mutations (seven, four, and 

six differences in PSD95, SAP102, and DUSP6 lines, respectively).  This observation is 

reinforced by the fact that the measured effect size differences (48 comparisons) had a 

standard deviation (0.53 Cohen d units) similar to the sizes of standard errors of the 

phenotypic effect size estimates (96 individual measures, median standard error 0.53 

Cohen d units). Masking of strain differences by sampling effects implies that, for the broad 

behaviour repertoire presented here, sampling effects associated with sample sizes 

typically used in mutant-wildtype comparisons mask most strain effects.  Thus strain effects 

are not a necessary barrier to comparison of mutant behaviour phenotypes between mouse 

backgrounds. 

One of the advantages of our behaviour battery is the opportunity to measure magnitude 

and direction of mutant phenotypes for a large number of semi-independent measures of 

mouse behaviour (semi-independence shown in Figure S2).  However, it is also of interest 

to develop aggregate measures of phenotypic magnitude/severity. Mutations with restricted 

effects will have smaller aggregate size than mutations with broad effects on multiple 

behaviour variables. It should be noted that these measures do not summarise a mutant 

phenotypic profile, but merely measure in aggregate how extreme it is. 

We obtained such aggregate phenotypic measures by averaging absolute values of Cohen 

d (litter matched mutant-wildtype experiments, Figure 3) across three sets of behaviour 

variables (all 16 variables, eight innate, and eight learned). A beneficial property of these 

aggregate phenotypes is that they are subject to less sampling variation, having in effect a 

lower “signal to noise ratio” than the component phenotypes. This is similar to the manner in 

which averaging the results of several tests gives a more robust measure of a school pupil’s 

performance in a given subject. Another beneficial property of averaging may be 

cancellation of some background strain-related variation, which may permit reliable ranking 

of genes by their overall phenotypic impacts in mice irrespective of genetic background (and 

thus be a key measure of phenotype that might have translational relevance). 

As shown in Figure 3A-C, using litter-matched wildtypes, averaging all 16 phenotypes 

(Figure 3A, Overall) showed a strain difference between DUSP6 lines. Averaging the eight 
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innate behaviours (Figure 3B) showed no strain differences and averaging the eight learned 

behaviours (Figure 3C) showed a difference between strains in PSD95 mutants. We next 

asked if these differences could be sampling artefacts, and therefore recalculated all 

combined behaviour effect sizes based on the larger set of (background-matched, Figure 

3D-F) wildtype mice.  This analysis showed no phenotypic differences in PSD95 and 

DUSP6 mice and a nominally significant difference in learned behaviour in SAP102 

mutants.  These results show that aggregate phenotypes are similar in both genetic 

backgrounds.  They also suggest that sampling has a larger impact than strain background 

on these measures.  

Reproducibility of phenotypic p-values.  

As noted above, phenotype databases derived from literature reports record presence or 

absence of phenotypes passing a p-value threshold.  Applying this criterion to our dataset of 

three mutations, 16 behavioural variables, and two backgrounds, we found that only 36% 

(10/28) of phenotypes were reproduced across mouse genetic backgrounds, consistent with 

a combination of strain and sampling effects.  This is less than the 17 phenotypes (60.6%) 

expected when there is no strain difference (p = 0.007, binomial test; supplementary 

analysis detailed in Supporting Text 2). 

We next sought to identify a more stringent significance threshold for phenotypes that would 

result in a greater than 36% reproducibility in another strain background. We scanned a 

broad range of increasingly stringent p-value thresholds in each background and counted 

behaviour phenotypes that achieved nominal significance in the same direction in the other 

background (see “this” and “other” strain in Figure 4).  As expected, increases in p-value 

stringency of observed phenotypes led to an increasing fraction of nominally-significant 

other-strain phenotypes. However, it should be noted that increasing p-value stringency and 

thus increasing reproducibility of phenotypes concomitantly results in fewer phenotypes 

being detected and thus increased risk of false negative phenotypes. 

For 48 behaviour tests, the optimal fraction of reproduced phenotypes was 50-60% and this 

was achieved in the range 0.0011 < p < 0.01 (see window in Figure 4).  At maximum, 60% 

(6/10) phenotypes were reproduced at a phenotype threshold of p = 0.0024 (Figure 4). This 

test was repeated using the larger cohorts of background-matched wildtypes: within the 
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same threshold window 56-68% phenotypes were reproduced (data not shown). Thus, 

reproducibility of significant mutant phenotypes is increased by the use of larger sets of 

background-matched controls. 

Discussion 

We have used behavioural data from a large and standardised phenotyping programme to 

characterise the effect of 129S5 or C57BL/6J genetic background on behaviour of mice 

carrying single targeted mutations in three different genes. Whilst this is not the first report 

of a modulating effect of genetic background on mutant mouse behaviour, the extant reports 

are rare, anecdotal, variable in methods, and affected by sampling variation and other 

confounds, and therefore cannot offer an estimate of the prevalence of this phenomenon. 

Besides being systematic, the importance of this study is two-fold.  First, it addressed 

substrains of the most commonly used mouse strains in behavioural research, which differ 

greatly in wildtype behaviour.  Second, it addresses behaviour measures that we expect to 

affect mouse performance in many other commonly used behaviour assays. 

Recapitulation of mutant phenotypes across different genetic backgrounds was assessed 

by measurements of 16 variables, describing broad aspects of innate and learned 

behaviour, in five apparatuses. The validity of the majority of the protocols is reinforced by 

the fact that behaviours of wildtype mice in our experiments recapitulated the results of 

others. Three mutations afforded a total of 48 comparisons, which provided an estimate of 

recapitulation frequency across these background strains. With our mutant-wildtype group 

sizes, 85% of mutant phenotypes had indistinguishable effect sizes between 129S5 and 

C57BL/6J; overall the effect sizes were also highly correlated.  Importantly, this showed that 

large wildtype differences do not necessarily translate into large impacts on mutant 

phenotype effect size.  Rather, the mutant phenotypes in one strain were merely a scaled 

version of the phenotypes in the other, leading to typically similar effect sizes.   

Composite measures of function are used in many areas, for example in human IQ and 

mental health screening (Xu et al., 2015). Whereas in human measures, summary 

measures are made at the level of the individual, in our experiments summary measures 

are made at the level of the mutant mouse line. Averaging the absolute mutant effect sizes 

of multiple individual variables produced a composite estimate of overall mutant effect. 
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Applying this approach, we found very similar overall impacts of mutation on both 

backgrounds. We propose that aggregate mutant phenotypes like these represent new and 

useful forms of behaviour measurement. For example, this measure could serve as a 

quantitative score for the overall impairment of the behavioural repertoire in lines of mutant 

mice and to identify genes (or drugs) of greatest overall importance in behaviour.  

A challenge faced by any study that addresses the reproducibility of phenotypes is to 

develop criteria for equivalence with published results.  Literature and public databases 

describe mutant behavioural phenotypes in terms of presence (nominal significance) and 

direction and therefore equivalence criteria should be described in these same terms. Using 

the significance threshold of p<0.05, which is typically applied in behavioural research, we 

found that only 36% of phenotypes were reproduced across strains compared to an 

expected maximum of 60.6% in the absence of strain and methodological variation. It 

should be noted that these levels of reproducibility were obtained under a highly 

standardized behavioural testing and housing protocol and would be expected to be lower 

between laboratories or with other methodological heterogeneity. 

To search for an optimum in reproducibility, we used a sliding p-value threshold approach 

and found that 50% or more of mutant phenotypes were reproducible when the original p-

value was p<0.01. The observation that less stringent thresholds resulted in less 

reproducible results is relevant for interpreting published behaviour results and for the 

design of experiments.  Specifically, this p-value threshold approach, in which greater 

reproducibility is measured by nominal significance upon retest in any background strain, 

profits from higher experimental power and larger group sizes.  We show that phenotype 

effect sizes observed at larger group sizes differ between mouse strains more frequently.  

However, for practical group sizes of 10-20 animals, we also show that strain-based mutant 

phenotype differences are masked by sampling effects. Furthermore, we find evidence that 

at these modest group sizes, averaging across multiple phenotypic variables permits robust 

assessment of phenotypic severity of mouse mutations irrespective of background strain. 

This experimental robustness is achieved by standardised behavioural testing in a test 

battery that probes a wide range of behaviours. 

Eight caveats apply to generalising the results of our study.  First, phenotypic reproducibility 

between studies is more likely in the presence of methodological homogeneity in assay 
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content and analysis methods; in practice, it is on this level that many studies differ.  

Second, recapitulation frequency is subject to sampling variation, and thus partitioning of 

behaviours into those that do or do not recapitulate across strains will not be definitive in our 

study; this was demonstrated by the fact that significant strain differences in our aggregate 

measures of behaviour were abolished by analysis of a much larger wildtype dataset.  A 

third caveat is that our high frequency of recapitulation was observed in a broad behavioural 

repertoire; conceivably, assays focusing on narrower aspects of cognition may exhibit an 

altered rate of recapitulation. Fourth, when comparing results from two backgrounds, it may 

be necessary to scale measures to achieve relevance across background strains.  Fifth, it 

should be observed that the robustness of aggregate behaviour measures depends on 

having multiple measures, some of which, by themselves, may not achieve nominal 

significance.  Sixth, a technical limitation was that C57BL/6J isogenicity was low in two of 

the mouse lines; in spite of this, expected behavioural differences between 129S5 and 

C57BL/6J wildtypes were confirmed. Seventh, we acknowledge that the number of 

mutations in this study was low, raising the question of overall generalisation of our 

observation of similarity in mutant behaviour profiles in future studies. What this study has 

demonstrated, however, is that when comparing mutations in two behaviourally very 

different strains a large modulatory effect of background strain on mutant phenotypes is not 

necessarily to be expected. Importantly, this study also suggests that inherent uncertainty in 

mutant-wildtype studies due to sampling effects may be more important than genetic 

background in comparisons between studies. An eighth caveat, that there is more than one 

way to measure frequency of modulation of mutant phenotypes by genetic background, is 

illustrated by a new report by Sittig et al (2016). Those authors described frequent strain × 

mutation interactions based on analysis of known phenotypes of two genes in heterozygous 

F1 crosses. It should be noted that focusing on known phenotypes inflates the prior 

likelihood of strain differences. Furthermore, where strong background effects are rare, 

Sittig et al’s use of one ANOVA per phenotype (across many strains) further inflates the 

relative frequency with which significant strain × mutation interactions are identified. On the 

other hand, comparing minimally correlated phenotypes using effect sizes (as we did) would 

reveal a lower estimate of frequency of strain × mutation interactions.  

In conclusion, our study validates the use of this rapid and simple behaviour test battery for 

characterising and comparing mutant mice with respect to a broad repertoire of innate and 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
learned behaviours.  It also suggests the value of aggregate behaviour measures for 

comparison of overall phenotype severity between mouse lines and genetic backgrounds. 
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Tables 

Table 1: numbers, sex, and age of mice 

Mutation Genetic 

background 

Wildtypes (F,M) Mutants 

(F,M) 

Age (days, 

quantile: min, 

0.25, 0.75, max) 

PSD95/Dlg4 129S5 6,8 6,7 40,65,88,194 

C57BL/6J 11,16 13,16 56,136,207,285 

SAP102/Dlg3 129S5 0,11 0,11 183,224,300,322

C57BL/6J 0,10 0,14 48,121,208,329 

DUSP6/Dusp6 129S5 10,11 11,13 48,164,248,294 

C57BL/6J 7,7 9,7 107,249,383,472
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Table 2: Innate and learned behaviour variables and definitions 

Assay Variable name Type of 

variable 

Description 

Elevated plus 

maze (5 min) 

EPM total distance innate Total distance (cm) travelled in 

arm or central zone 

EPM max speed innate Maximum speed in any arm or 

central zone (cm/s) 

EPM % time in open innate % time spent in open arms, per 

total time spent in arms 

EPM time in centre innate Time (s) spent in the central 

zone, not in the arms 

EPM max speed  

open vs. closed 

innate Difference in maximum speed 

(cm/s) in the open arm versus 

closed arm 

Open field & 

novel object 

exposure (5 

min each) 

OF, NOE total 

distance 

innate Total distance (cm) travelled in 

two assays, log10 transformed 

NOE vs. OF 

distance travelled 

innate Difference in distance travelled 

(cm) in novel object exposure 

versus open field 

Rotating rod RR naïve fall time innate Second time to fall from the 

rotating rod (s) during eight trials 

in the morning, from fitted linear 

model, log10 transformed 

RR learning learned Rate of increase of fall time per 

trial (s/trial) in the morning 

session, from fitted linear model 

RR memory learned Difference in fall time (s) 

between midpoint performances 

in afternoon and morning, from 

fitted linear models 

Classical 

conditioning 

Learning, trial effect learned Increase in % freezing during 

third pair of stimuli versus first 
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Assay Variable name Type of 

variable 

Description 

training/acquis

ition 

pairing 

Learning, tone effect learned Increase in tone response (% 

freezing) due to third tone 

versus tone response at first 

tone 

Classical 

conditioning 

context 

memory 

Contextual memory, 

mean 

learned Mean % freezing during two min 

of context re-exposure versus 

initial two min of habituation 

during training 

Contextual memory, 

change 

learned  Change in % freezing during 

context re-exposure 

Classical 

conditioning 

cue memory 

Cued memory, 

mean 

learned Mean increase in % freezing 

due to tone 

Cued memory, 

change 

learned Change in % freezing in last 

versus first time bin during 

audible cue 
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