Tetrazine Responsive Self-Immolative Linkers

Kevin Neumann, Sarthak Jain, Alessia Gambardella, Sarah E. Walker, Elsa Valero, Annamaria Lilienkampf and Mark Bradley*[^a]

Abstract: Molecules that undergo activation or modulation following the addition of benign external small molecule chemical stimuli have numerous applications. Here, we report the highly efficient “decaging” of a variety of moieties by activation of a “self-immolative” linker by application of a water soluble and stable tetrazine, including the controlled delivery of Doxorubicin in a cellular context.

Stimuli responsive compounds that undergo molecular modulation, activation or that switch on a desired physical, chemical or biological function upon the addition of an external chemical or physical trigger such as pH, temperature or light, have enormous power and biomedical potential.[1,2] Light in particular has been used, as a stimulus, for various applications ranging from polymers containing azobenzene units that undergo reversible cis/trans photoisomerisation resulting in controllable polymer modulation,[3] to nanoparticles that reversibly contract (150 to 40 nm) upon photo-triggering and light-mediated antibody activation.[4] Numerous polymer architectures have been generated where pH can reversibly alter polymer topography by changes in protonation state,[5] or irreversibly via bond cleavage (resulting in cargo liberation).[6,7] Many chemical moieties have been developed that respond to a range of molecular triggers. For example, boronate functionalised polymers have been designed to react with glucose thereby mediating insulin release[8] and hydrogels that respond to the presence of specific antigens via swelling and cargo liberation have been synthesised.[9] Li reported the caging of the catalytic lysine residue in OspF with a propargylglyoxycarbonyl group, which was cleaved by Pd catalysis switching on the protein function.[10] A key feature of many of these activation systems is the integration of a “self-immolative safety-catch”[11] type linker, whereby remote functional group activation leads to subsequent 1,6-elimination and target/cargo liberation. This includes the work of Urano who used 500 nm light to liberate BODIPY-caged histamine[12] whereas Springer applied this approach to generate carboxypeptidase activated produgs of Doxorubicin (Dox).[13] Numerous other examples exist where the 1,6-elimination process has been used as a response to a variety of analytes and redox states leading to polymer “depolymerisation”.[14] Even though these triggers and materials show huge potential there are still major challenges, including problems associated with light stimulated materials due to high tissue absorbance, neurotoxicity for common acrylate and acrylamide-based thermally responsive materials,[17] and the lack of tissue specificity with respect to pH.

Tetrazines have recently been exploited in a variety of inverse electron-demand Diels–Alder reactions (DA,ω) as a means of conjugating reporters (e.g. fluorophores[^18][19][20] and PET isotopes[^21][22]) to a variety of biological entities such as DNA[^23], target peptides,[24] and antibodies.[25][26] Typically, these bioconjugations are performed between a tetrazine and strained dienophile, such as trans-cyclooctene (TCO), resulting in a fast DA ω reaction.[27] Thus Chen developed bioorthogonal protein activation chemistry, with protection of the catalytic lysine residue in firefly luciferase with TCO rendering the protein inactive and treatment with a tetrazine restoring the protein function.[28] Tetrazine ligation with TCO has also been utilised for prodrg activation using Doxorubicin conjugated via a carbamate linkage to the allylic position of TCO, with DA ω liberating the free drug.[29]

In addition to the widely applied reactivity with strained alkenes and alkynes, tetrazines have been shown to rapidly react with cyclopentanone morpholine enamines and N-vinyl pyrrolidinones to liberate amines and amides, respectively.[30] Recently, it was shown that tetrazines react with phenyl vinyl ethers resulting in liberation of a phenol molety.[31] This reactivity directed our attention to the application of tetrazines not only in the decaging of phenols but also to 1,6-elimination chemistry via a self-immolative linker approach. Herein, we demonstrate the selective release of both

![Figure 1](image-url)

Figure 1. a) Nanoparticles with an average diameter of 35 nm were fabricated from the amphiphilic block-co-polymer PEG-b-Dox, with the methacrylate–Doxorubicin conjugated segment forming the hydrophobic core. Upon reaction with tetrazine, doxorubicin (red spheres) is liberated, driven by the 1,6-elimination reaction of the self-immolative linker. b) The mechanism of tetrazine mediated vinyl ether decaging and cargo liberation (here RNH₂).

[^a]: Kevin Neumann, Sarthak Jain, Alessia Gambardella, Dr. Sarah E. Walker, Dr. Elsa Valero, Prof. Mark Bradley
EaSI Chem School of Chemistry, University of Edinburgh
Joseph Black Building, David Brewster Road, Edinburgh, EH9 3FJ, UK.
E-mail: mark.bradley@ed.ac.uk

Supporting information for this article is given via a link at the end of the document.
caged fluorophores and the anticancer drug Doxorubicin by a tetrazine-mediated vinyl ether based dienophile, which upon a reaction with a DNA reaction (Figure 1). The designed system comprised a tetrazine (the stimulus) decages a phenol(ate) prompting the subsequent release of Doxorubicin via 1,6-elimination. Additional functionalisation of the linker with a methacrylate allowed the formation of amphiphilic PEG-b-Dox co-polymer nanoparticles that, upon reaction with tetrazine, released Doxorubicin resulting in the “switch-on” of cytotoxicity. In the absence of the stimulus, these PEG-b-Dox nanoparticles have low cytotoxicity and therefore have the potential to improve drug efficacy. Vinyl groups have been shown to be good dienophiles in DNA reactions and have been used to efficiently label and subsequently image 5-vinyl-2'-deoxyuridine modified DNA. Our hypothesis was that vinyl ethers could act as masking groups for phenols and that tetrazine-mediated activation via the incorporation of a self-immolative linker would allow the “switch-on” of fluorophores as well as enabling targeted drug release. The phenolic groups of fluorescein 1 and resorufin 2 were readily converted to vinyl ethers using the vinyl carbamate approach as described above. Finally, aldehyde 10 was reduced with NaBH₄ and the resulting linker 6 transformed into the nitrophenyl activated carbonate 11. Nile Blue was coupled to the linker to give the Nile Blue carbamate 12 with quenched fluorescence (Figure 3b), which upon reaction with tetrazine 5 under aqueous conditions underwent vinyl group removal with subsequent 1,6-elimination, loss of CO₂ and switch-on of fluorescence of Nile Blue 13 (Figure 3, Figure S6).

To further demonstrate the potential of external small-molecule controlled cargo release, the activated linker 11 was conjugated to the anti-cancer agent Doxorubicin (Figure 4a), a DNA intercalating anthracycline antibiotic used for the treatment of malignancies including breast and ovarian tumours, sarcomas, and acute leukemias. The Doxorubicin monomer 14 showed >90% conversion to the free drug after 5 day incubation with tetrazine 5 (Figure 4b). The methacrylate moiety of 14 was

```
Figure 2. a) Tetrazine 5 triggered decaging of bis-O-vinyl fluorescein 3 and O-vinyl resorufin 4 at 37 °C in PBS (pH 7.4) led to fluorescence “switch on”. b) DNA reaction between tetrazine 5 (200 μM) and 4 (35 μM) led to a 99-fold increase in fluorescence (λex/em, 530/590 nm) whereas the same reaction with 3 (35 μM) led to a 23-fold increase (λex/em, 485/528 nm). c) Monitoring of the reaction between bis-O-vinyl fluorescein 3 and tetrazine S1 (See Figure S5) in DMSO by ¹H NMR showed the initial formation of the mono O-vinyl fluorescein with full conversion to 1 after 48 h at 37 °C.
```

```
Figure 3. Synthesis and activation of the tetrazine cleaved self-immolative linker. a) i) 2,4-Dihydro-2H-pyran, PPTS, DCM, 60 %; ii) 3-Trimethylammonium methacrylate, Cs₂CO₃, DMF, 50 °C, 77 %; iii) (1) 1M HCl (aq.), MeOH, (2) Cs₂CO₃, vinyl boronic anhydride pyridine complex, Cu(OAc)₂, DCM, 55 %; iv) NaBH₄, MeOH, quant.; v) Phenyldichloroformate, Et₃N, 83 %; vi) Nile Blue 13, Et₃N, DCM/THF, rt, 16 %; vii) DNA of 12 (40 μM) and tetrazine 5 (100 μM) led to an 8-fold increase in fluorescence in PBS (pH 7.4) at 37 °C (see Figure S6). b) Fluorescence spectra of Nile Blue 13 and the fully quenched Nile Blue carbamate 12 (λex/em, 590/645 nm).
```
Figure 4. Synthesis and characterisation of Doxorubicin conjugated nanoparticles (PEG-b-Dox). a) i) Doxorubicin hydrochloride, Et₂N, 51 %; i) PEG CTA, APS, TMEDA, DMSO, 30 °C. b) Release profile of Dox from monomer 14 (2.3 mM) by tetrazine 5 (23 mM) at 37 °C in PBS/ACN as monitored by HPLC (λ = 495 nm). c) Size analysis (by dynamic light scattering) of the PEG-b-Dox derived nanoparticles showing an average diameter of 35 nm in PBS (pH 7.4) at 37 °C.

polymerised with the RAFT reagent PEG CTA (Mₐ 10,000 g mol⁻¹) using APS/TMEDA as the redox initiator to give the amphiphilic PEG-b-Dox co-polymer 15 (Mₐ 13,000 g mol⁻¹). These mild reaction conditions were required as thermally or UV initiated polymerisations led to co-reaction of the vinyl ether groups. Once placed in water, the PEG-b-Dox co-polymer 15 formed nanoparticles with a diameter of 35 nm (Figure 4c).

Figure 5. Tetrazine triggered release of Doxorubicin. HEK273T cells were grown in Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented with 10 % FBS. Nanoparticles, tetrazine 5 and/or free Doxorubicin were incubated with cells at 37 °C with 5 % CO₂ for 48 h. a) Control (just cells); b) PEG-b-Dox 15 nanoparticles (1 μM equiv. of Dox); c) Tetrazine 5 (35 μM); d) Tetrazine 5 (35 μM) and PEG-b-Dox 15 nanoparticles (1 μM). The samples were stained with propidium-iodide (2 μM) and analysed by flow cytometry (λex = 498 nm with 500–554 nm broad pass filter). Forward versus side scatter (SSC-A) profiles were used to gate intact cellular materials and determine membrane integrity (PI).

Acknowledgements

This work was supported by the European Research Council (Advanced Grant ADREEM ERC-2013-340469). S.J. was supported by Edinburgh Global Research Scholarship and the School of Chemistry Tercentenary International PhD Scholarship (University of Edinburgh), and E.V. was supported by EU Marie Curie Intra-European Fellowship for career development (Project No. FP7-PEOPLE-2012-IEF-327903-CLEDEPOLY).

Keywords: Tetrazine • Diels–Alder • Prodrug • nanoparticle • Doxorubicin

Kevin Neumann, Sarthak Jain, Alessia Gambardella, Dr. Sarah E. Walker, Dr. Elsa Valero, Dr. Annamaria Lilienkampf and Prof. Mark Bradley*

Page No. – Page No.

Tetrazine Responsive Self-Immolate Linkers