Draft genome sequence of the Streptococcus pneumoniae Avery strain A66

Citation for published version:

Digital Object Identifier (DOI):
10.1128/genomeA.00697-15

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Genome announcements

Publisher Rights Statement:
© 2015 Hahn et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 3.0 Unported license.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Draft Genome Sequence of the Streptococcus pneumoniae Avery Strain A66

Christoph Hahn,a Ewan M. Harrison,b Jun Parkhill,c Mark A. Holmes,b Gavin K. Patersona

School of Biological, Biomedical and Environmental Sciences, University of Hull, Hull, United Kingdoma; Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdomb; The Wellcome Trust Sanger Institute, Hinxton, United Kingdomc

We have used HiSeq 2000 technology to generate a draft genome sequence of Streptococcus pneumoniae strain A66. This is a common study strain used in investigations of pneumococcal bacterium-host interactions and was used in the seminal genetic studies of Avery et al.

Streptococcus pneumoniae is a prominent human pathogen throughout the world, particularly as a cause of pneumonia, meningitis, bacteremia, and otitis media. S. pneumoniae strain A66 (NCTC 7978) and derivatives, such as A66.1, are virulent in mice and have been used by many laboratories for in vivo studies examining host immune responses (1, 2), preclinical vaccine evaluation (3–5), the development of novel therapies (6, 7), studies on virulence mechanisms (8, 9), and the use of a bioluminescent form to track infection in vivo (10, 11). It has also been used in a variety of in vitro studies, notably including the work of Avery et al. (12). To facilitate the use of A66 as a study strain, we present here its draft genome sequence. DNA was harvested from a minimally passed culture from the National Collection of Type Cultures, where the strain was deposited in 1949 from the Rockefeller Institute for Medical Research, and sequenced using Illumina HiSeq 2000 technology.

Assembly was performed using Velvet software (13), and the assembled contigs were reordered and oriented by alignment using Mauve software (14) with S. pneumoniae OXC141 as a reference. The assembly consisted of 159 contigs, with an N50 of 53,248 bp. It was automatically annotated using RAST (15) and compared to strains TIGR4 and OXC141 using the Artemis Comparison Tool. The A66 draft genome was 1,983,415 bp in length with a GC content of 39.7%. Annotation found 2,087 coding sequences, including the genes for pneumolysin, the serotype 3 capsular locus, neuraminidase A, choline binding protein A, hylu-ronidase, ZmpA, and zinc metalloprotease B. However, A66 lacked the rrlA pilus locus, pspP locus, and zmpC. The genomederived multilocus sequence type is ST387 (16). No acquired antimicrobial resistance genes were identified in the genome sequence using ResFinder version 2.1 (17), and the strain was phenotypically susceptible to all antibiotics tested using Vitek 2 (card AST-ST01).

The availability of a draft genome sequence for A66 will greatly facilitate its value as a model strain for investigating pneumococcal biolog.

Nucleotide sequence accession numbers. This whole-genome shotgun project has been deposited in DDBJ/ENA/GenBank under the accession number LN847353. The version described in this paper is the first version, LN847353.1.

ACKNOWLEDGMENTS

The help of the core sequencing and informatics team at the Wellcome Trust Sanger Institute is gratefully acknowledged.

This project was supported by the Wellcome Trust (grant 098051).

REFERENCES

8. Paterson GK, Mitchell TJ. 2006. The role of Streptococcus pneumoniae


