Five key recommendations for the implementation of Hospital Electronic Prescribing and Medicines Administration systems in Scotland

Citation for published version:

Digital Object Identifier (DOI):
10.14236/jhi.v23i4.904

Link:
Link to publication record in Edinburgh Research Explorer

Published In:
Journal of Innovation in Health Informatics

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Five key recommendations for the implementation of Hospital Electronic Prescribing and Medicines Administration systems in Scotland

Kathrin M. Cresswell, Chief Scientist Office Postdoctoral Fellow, Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh, UK

Ann Slee, Honorary Research Fellow, Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh, Edinburgh, UK

Aziz Sheikh, Professor of Primary Care Research & Development and Co-Director, Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh, UK

Correspondence to: K Cresswell Kathrin.Beyer@ed.ac.uk, Tel: 0131 516 7982, Fax: 0131 650 9119

Keywords: hospital electronic prescribing and medicines administration, implementation

Word count: 1292
Abstract

NHS Scotland is about to embark on the implementation of Hospital Electronic Prescribing and Medicines Administration (HEPMA) systems. There are a number of risks associated with such ventures, thus drawing on existing experiences from other settings is crucial in informing deployment.

Drawing on our previous and ongoing work in English settings as well as the international literature, we reflect on key lessons that NHS Scotland may wish to consider in going forward. These deliberations include recommendations surrounding key aspects of deployment strategy surrounding: 1) the way central coordination should be conceptualised, 2) how flexibility in can be ensured, 3) paying attention to optimising systems from the outset, 4) how expertise should be developed and centrally shared, and 5) ways in which learning from experience can be maximised.

Our five recommendations will, we hope, provide a starting point for the strategic deliberations of policy makers. Throughout this journey, it is important to view the deployment of HEPMA as part of a wider strategic goal of creating integrated digital infrastructures across Scotland.
Introduction

eHealth functionalities associated with prescribing and medicines administration have been shown to improve the safety and quality of care, and also to contribute to increasing healthcare efficiency. (1) These systems therefore play an essential part in international efforts to modernise health systems. (2,3)

The widespread deployment of Hospital Electronic Prescribing and Medicines Administration (HEPMA) systems in Scotland is imminent and it is therefore now timely to reflect on experiences from other health systems to inform the strategy that Scotland should adopt. (4) Drawing on previous and ongoing work, we distil five key lessons that policymakers should consider going forward. (5,6)

Overall, the implementation of HEPMA is best viewed as part of a journey towards digitising health systems. Implementation-related activities in this process are best viewed as being part of the system lifecycle including conceptualisation, planning, implementation and adoption, and optimisation activities (Figure 1). (7)

Examining activities through the lifecycle perspective indicates that, once systems are chosen, the system lifecycle is already relatively advanced (i.e. at the contracting stage). As NHS Scotland is at this relatively advanced stage in the lifecycle, we focus on the pre-implementation, implementation and adoption, and optimisation stages.

1. Central coordination

Some central coordination is essential to streamline efforts to move towards optimisation (preferably reducing the time to deliver the benefits that optimisation will generate) and set standards that will eventually allow sharing of data across Scottish care settings. (8) Given the central approach, there is, however, a risk that systems will be viewed as imposed by local hospitals and users, (9-10) which may hamper their intended use and slow down implementation timeliness. (11) Setting up a range of structures that allow continuous strategic input from implementing sites and academic evaluators may help to address this (see Figure 2 for a proposed model). NHS Scotland has the advantage that relevant stakeholders can come together in person to exchange experiences. Existing structures now need to be utilised to strengthen national engagement activities and to involve end-users from all of the impacted professions ensuring that systems bring the intended benefits to individual users earlier on in the process than might otherwise be achieved. (12) This may be realised through establishing a single central source of information to underpin the face-to-face or other engagement activities and information needs of different stakeholders. (7) Here, it is important to convey from the start that system implementation and use must not be primarily pharmacy-led (as is often the case), but should draw on the range of professions – in particular, doctors and nurses – that are affected by the wider transformation of healthcare delivery associated with new systems. (6)

There are also significant opportunities surrounding economies of scale afforded by the national procurement model being pursued in Scotland and these should be harnessed. Central coordination of implementation efforts, including training strategies, should help to draw on existing experiences, to feedback lessons learned across implementations, and to share expertise and pool resources. (13) An important aspect here is the set-up of nationally shared risk/hazard registers, where known technical limitations and potential mitigation strategies are shared between hospitals. This should, if possible, be agreed with HEPMA vendors in advance.

2. Flexibility in strategy based on periodic review

The deployment strategy needs to be flexible and responsive to local needs wherever possible to help mitigate potentially adverse consequences resulting from the national procurement model. (14) In
order to achieve this, ongoing evaluation of implementation progress and potential risks is vital. (15) This should also include formative feedback to implementing sites thereby helping to build local evaluation expertise and to guide next steps.

In terms of deployment strategy (see Figure 3 for a proposed model, further discussed below), there should be a formal review after each cohort of hospitals goes live, feeding back lessons learned into future deployment strategy and making adjustments where necessary. We suggest that a multidisciplinary National Advisory Board be established which will be responsible for strategic oversight of implementation efforts and progress, and also liaise with local implementation teams and suppliers. This will also help to oversee individual sites’ readiness to go live and thus oversee the scheduling of go-lives.

3. Focus on systems optimisation from the start
In line with the system lifecycle perspective, system optimisation needs to be seen as the end-goal, as deriving value from HEPMA is very dependent on achieving this. (16) It is however, more often than not, an afterthought in many implementation efforts. The implementation of HEPMA systems in Scotland represents a real opportunity to share optimisation experience, as some hospitals in the UK/Scotland have refined systems over a number of years to realise significant benefits. (6) If ‘fast followers’ effectively utilise the experiences from ‘early adopters’, this can help to reduce the timeline to realise benefits.

It is also important to view HEPMA as part of the growing health information infrastructure in Scotland, where an increasing number of users draw on a range of sources of information and collect data from these that are then (in due course) centrally collated and analysed. Interfacing and data analytics activity should be central to these optimisation efforts, as the HEPMA system that is likely to be deployed in Scotland is an interfacing (rather than an enterprise) solution with limited inbuilt data analytics capability. (17) A national data strategy on how this may be achieved should guide ongoing analytics efforts and HEPMA implementation should be viewed as part of the journey towards realising this aim.

4. Developing, sharing and retaining expertise
NHS Scotland has limited implementation and optimisation expertise, which may hamper efforts to successfully deploy and derive benefits from HEPMA. (18) A central problem is that all too often external project managers are seconded to oversee implementations and then leave with the accumulated knowledge. Internal capacity development using local staff and increasing their skill set ensuring that staff is retained at local level should therefore be a priority for the Scottish Government. Developing and retaining expertise is important for implementing hospitals in order to help maintain and continually refine systems beyond the initial implementation period, whilst sharing expertise nationally can help to maximise existing resources. Creating new career pathways, structures, and incentives are essential activities that thus need to be carried out in parallel to system implementation. These efforts should ideally be inter-disciplinary reflecting the broad range of skills and expertise needed to exploit HEPMA for patient, professional and system benefits. Periodic sharing of experiences should also be promoted across hospitals, and to this end the establishment of an implementation peer support and networking group should be considered.

5. Learning from experience
There is already significant expertise available within the UK, including hospital sites that have implemented the same system that is likely to be procured in Scotland and optimised this over a number of years. There is also a range of academic evaluators that have insights into local, national,
and international experiences. Drawing on this expertise will be vital in facilitating the implementation and ongoing optimisation of systems. The proposed structures in Figure 2 may help to conceptualise how this expertise can be effectively harnessed.

In terms of deployment strategy, we propose that hospitals pair up with those that already have implementation experience in relation to planning, direct implementation and ongoing optimisation. Figure 3 outlines how this may be conceptualised, incorporating periodic review and reflection on experiences after each new cohort of hospitals goes live. A phased deployment strategy should be considered at the outset, thereby allowing an opportunity for learning from early efforts, followed by accelerated implementation across the remaining hospitals.

Conclusions
We have made a number of recommendations that will, we hope, help Scottish policymakers and NHS Scotland ensure successful deployment of HEPMA systems. More generally, it is important to pursue the strategic goal of creating integrated digital infrastructures across Scotland. The implementation of HEPMA presents an important stepping stone and a real opportunity in this respect.

Contributors and sources: AS and ASI conceived this work. AS is currently leading a National Institute for Health Research (NIHR) funded national evaluation of electronic prescribing and medicines administration systems. KC is employed as a researcher on this grant and led on the write-up and drafting the initial version of the paper, with AS and ASI commenting on various drafts.

Acknowledgements: We are very grateful to all participants who kindly gave their time and to the extended project and program teams of work we have drawn on.

Funding: This work has drawn on data funded by the NHS Connecting for Health Evaluation Programme (NHS CFHEP 001, NHS CFHEP 005, NHS CFHEP 009, NHS CFHEP 010), the National Institute for Health Research under its Programme Grants for Applied Research scheme (RP-PG-1209-10099) and The Commonwealth Fund. KC is supported by a Chief Scientist Office (CSO) of the Scottish Government Post-doctoral Fellowship and a grant by the Edinburgh and Lothians Health Foundation; AS is supported by the Farr Institute. The views expressed are those of the author(s) and not necessarily those of the NHS, the CSO the NIHR or the Department of Health.

Competing interest declaration: The authors declare that they have no competing interests.
References

Figures

Figure 1: Lifecycle perspective of implementing HEPMA systems¹

<table>
<thead>
<tr>
<th>Conceptualisation</th>
<th>Assessing local requirements, homework (looking at systems and understanding/re-designing processes), anticipated benefits, drivers and the</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project initiation</td>
<td>Establishing a project team, engagement of stakeholders, securing high-level support</td>
</tr>
<tr>
<td>Functional specification</td>
<td>Existing range of suppliers and systems, product specification and functionality</td>
</tr>
<tr>
<td>Drafting a business case</td>
<td>Process/templates, risks, resources, overview of systems/suppliers, site visits, networking</td>
</tr>
<tr>
<td>Procurement/tendering</td>
<td>Process, scoring, engaging suppliers</td>
</tr>
<tr>
<td>System choice</td>
<td>Based on needs and available options, analysis of bidders</td>
</tr>
<tr>
<td>Contracting</td>
<td>Process, dividing responsibilities, awarding the contract, contract negotiations</td>
</tr>
<tr>
<td>Pre-implementation</td>
<td>Training, piloting, work process mapping, information technology requirements (infrastructure, interfacing, software, hardware), continued engagement, configuration and testing, data migration, back-up systems, process management, implementation strategy, and roadmap, champions</td>
</tr>
<tr>
<td>Implementation</td>
<td>Relationship with suppliers, initial support, timelines and transition to business as usual</td>
</tr>
<tr>
<td>System optimisation</td>
<td>Upgrading, on-going support, dealing with workarounds, continuing development and customisation, change in role of project team</td>
</tr>
<tr>
<td>Maintenance</td>
<td>Benefits realisation, investment analysis</td>
</tr>
<tr>
<td>Impact</td>
<td>Progress reports, lessons learned and sharing of experiences, benchmarking, data quality monitoring, reporting, risk registers, critical incidence reports and analysis</td>
</tr>
<tr>
<td>Evaluation</td>
<td>For example hospitals upgrading to another system</td>
</tr>
<tr>
<td>On-going development</td>
<td></td>
</tr>
</tbody>
</table>

Figure 2: Proposed structures for monitoring/reviewing progress/strategy

- **eHealth Board** (set standards for interoperability, contracts with suppliers, overall national deployment strategy)
- **National Advisory Board** (periodic review of progress/strategy, liaison with local implementers and vendors)
- **Clinicians, academics, HIS, change managers, business leads, early adopters**
- **Evaluation team** (academic input helping hospitals to build in-house evaluation expertise, feed into national evaluation efforts)
- **Implementation peer support and networking group** (representatives from local hospitals at various stages of implementation)
- **Local implementation teams** (pharmacists, doctors (junior and senior), nurses, data analysts, IT, business change, human factors, supplier representative)
Figure 3: Proposed deployment strategy (please note: numbers are illustrative)

Hospitals live with HEPMA (Early Adopters)

Reflection/lessons

Fast Followers 1

Hospital 1

Hospital 2

Hospital 3

Hospital 4

Hospital 5

Hospital 6

Hospital 7

Hospital 8

Hospital 9

Hospital 10

Hospital 11

Hospital 12

Early majority (pair up with group 1&4 and 2&3)

13 14 15 16 17 18

Reflection/lessons

Fast Followers 2

Fast Followers 3

Late majority

19 20 21 22 23 24

25 26 27 28 29 30