Genome sequences of a novel vietnamese bat bunyavirus

Citation for published version:

Digital Object Identifier (DOI):
10.1128/genomeA.01366-16

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF; also known as Version of record

Published In:
Genome announcements

Publisher Rights Statement:
© 2016 Oude Munnink et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this content breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.

Download date: 30. Dec. 2018
The Bunyaviridae is a diverse viral family comprising five genera. Some members are notorious for their zoonotic potential (hantavirus and Rift Valley fever virus), one can cause severe problems in cattle (Snoellenberg virus), and another infects plants (hantavirus and Rift Valley fever virus), one can cause severe pulmonary disease in humans (hantavirus) (1); however, additional research is needed to accurately classify this novel bunyavirus and resolve the M segment mystery.

In conclusion, we present the L and S genome segments of a novel Vietnamese bunyavirus. This novel virus was identified in 14 bat fecal samples, and for all viruses, the complete genome sequences of the L and S segments were determined. The lengths of the two segments of this novel unclassified bunyavirus are consistent with other members of Phlebovirus and the Hantavirus (1); however, additional research is needed to accurately classify this novel bunyavirus and resolve the M segment mystery.

ACKNOWLEDGMENTS

To document the viral zoonotic risks in Vietnam, fecal samples were systematically collected from a number of mammals in southern Vietnam and subjected to agnostic deep sequencing. We describe here novel Vietnamese bunyavirus sequences detected in bat feces. The complete L and S segments from 14 viruses were determined.

Genome Sequences of a Novel Vietnamese Bat Bunyavirus

Bas B. Oude Munnink, a,b My V. T. Phan, a Lia van der Hoek, c Paul Kellam, a,d Matthew Cotten, a,b the VIZIONS Consortium

Wellcome Trust Sanger Institute, Hinxton, England; Department of Viroscience, Erasmus Medical Center, Rotterdam, The Netherlands; Laboratory of Experimental Virology, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands; Imperial College London, London, United Kingdom

To document the viral zoonotic risks in Vietnam, fecal samples were systematically collected from a number of mammals in southern Vietnam and subjected to agnostic deep sequencing. We describe here novel Vietnamese bunyavirus sequences detected in bat feces. The complete L and S segments from 14 viruses were determined.

The genome lengths of the L segment of the novel Vietnamese bat bunyaviruses were 6,484 to 6,713 nucleotides (average sequence coverage, 78- to 2,619-fold). The nucleotide sequence of the L segment of the 14 isolates differed at 21 to 124 positions (98% to 100% nucleotide identity), while the S segments differed at 5 to 54 positions (97% to 100% nucleotide identity). The genome length of the S segment varied between 1,464 and 1,576 nucleotides (average sequence coverage, 47- to 849-fold).

Consistent with other studies (8, 9), no contigs with similarities to the Bunyaviridae M segment could be found. Either the M segments exist in these samples with greater sequence divergence precluding identification, or these viruses exist without a standard M segment, perhaps by complementation with functions from other coinfected viruses.

In conclusion, we present the L and S genome segments of a novel Vietnamese bunyavirus. This novel virus was identified in 14 bat fecal samples, and for all viruses, the complete genome sequences of the L and S segments were determined. The lengths of the two segments of this novel unclassified bunyavirus are consistent with other members of Phlebovirus and the Hantavirus (1); however, additional research is needed to accurately classify this novel bunyavirus and resolve the M segment mystery.

Accession number(s). The complete genome sequences of the Vietnamese bat bunyaviruses are deposited in GenBank under the accession numbers KX886759 to KX886786.
Hoang Nhu, Tran Hoang Minh Chau, Tran Khanh Toan, Tran My Phuc, Tran Thi Kim Hong, Tran Thi Ngoc Dung, Tran Thi Thanh Thanh, Tran Thi Thuy Minh, Tran Thua Nguyen, Tran Tinh Hien, Trinh Quang Tri, Vo Be Hien, Vo Nhuut Tai, Vo Quoc Cuong, Voong Vinh Phat, V. U. Thi Lan Huong, and Vu Thi Ty Hang, Heiman Wertheim; from the Centre for Immunity, Infection and Evolution, University of Edinburgh: Carlijn Boogaardt, Margo Chase-Topping, A. L. Ivens, Lu Lu, Dung Nyugen, Andrew Rambaut, Peter Simmonds, and Mark Woolhouse; from the Wellcome Trust Sanger Institute, Hinxton, United Kingdom: Matthew Cotten, Bas Oude Munnink, Paul Kellam, and My Vu Tra Phan; from the Laboratory of Experimental Virology, Department of Medical Microbiology, Center for Infection and Immunity Amsterdam (CINIMA), Academic Medical Center of the University of Amsterdam, Amsterdam, The Netherlands: Martin Deijs, Lia van der Hoek, Maarten F. Jebbink, and Seyed Mohammad Jazaeri Farsani; and from Metabiota, Inc., San Francisco, CA: Kimberly Dodd, Jason Euren, Ashley Lucas, Nancy Ortiz, Len Pennacchio, Edward Rubin, Karen E. Saylor, Tran Minh Hai, and Nathan D. Wolfe.

FUNDING INFORMATION

This work was supported by the Wellcome Trust of the United Kingdom through the VIZIONS strategic award WT/093724. M.C. and B.B.O.M. were additionally funded by the European Union’s Horizon 2020 research and innovation program under grant agreements 643476 (COMPARE) and 634650 (Virogenesis).

REFERENCES