Estimating binary spatial autoregressive models for rare events

Citation for published version:

Digital Object Identifier (DOI):
20.500.11820/40014934-d8db-41a0-8d78-59518b52d892
10.1108/S0731-905320160000037012

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Advances in Econometrics

Publisher Rights Statement:
'This article is © Emerald Group Publishing and permission has been granted for this version to appear here http://www.research.ed.ac.uk/portal/en/publications/estimating-binary-spatial-autoregressive-models-for-rare-events(40014934-d8db-41a0-8d78-59518b52d892).html Emerald does not grant permission for this article to be further copied/distributed or hosted elsewhere without the express permission from Emerald Group Publishing Limited.'

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and/or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Estimating Binary Spatial Autoregressive Models for Rare Events

Raffaella Calabrese (University of Essex)
Johan A. Elkink (University College Dublin)

Abstract

The most used spatial regression models for binary dependent variable consider a symmetric link function, such as the logistic or the probit models. When the dependent variable represents a rare event, a symmetric link function can underestimate the probability that the rare event occurs. Following Calabrese and Osmetti (2013), we suggest the quantile function of the Generalized Extreme Value (GEV) distribution as link function in a spatial generalized linear model and we call this model the Spatial GEV (SGEV) regression model. To estimate the parameters of such model, a modified version of the Gibbs sampling method of Wang and Dey (2010) is proposed. We analyze the performance of our model by Monte Carlo simulations and evaluate the prediction accuracy in empirical data on state failure.

1 Introduction

In this work we analyze rare binary spatial events, i.e. binary dependent variable with spatial dependencies and with a very small number of ones in the sample, usually lower than 5%. In forecasting applications ranging from epidemiology, finance, international relations, to natural disasters, rare events and interdependencies between these events are common. Both the rare event nature of the dependent variable and the spatial autoregressive component generate challenges for the statistical estimation of the model parameters.

When dealing with binary rare events without spatial effects, conventional classification methods, such as logit or probit models, tend to strongly favor the majority class because they are built upon the assumption that every class to be predicted has enough representatives in the data set (Hand et al., 2008). Different authors (e.g., King and Zeng, 2001a,b; Calabrese and Osmetti, 2013; Wang and Dey, 2010) have shown that a symmetric link function leads to very low or even no detection of the minority class when the dependent variable is a rare event.

Some solutions have been proposed to improve the prediction quality of such models for binary rare events without spatial interdependence. King and Zeng (2001a,b) have suggested a correction of the intercept of the logistic regression based on case-control sampling. According to Weiss (2004), this proposal has several drawbacks. A different approach has been suggested by Wang and Dey (2010) and Calabrese and Osmetti (2013), based on a flexible skewed link function given by the Generalized Extreme Value (GEV) distribution. This particular distribution is chosen for two main reasons. First, it allows to assign more weight to the information on the minority class. Second, if the minority class is represented by the ones, the
The characteristics of the rare events are given by the right tail of the response curve. The variable used in the literature to model the tail of a distribution is the GEV random variable (Kotz and Nadarajah, 2000).

The GEV distribution is characterized by three parameters: a location parameter, a scale parameter and a shape parameter. The main advantage of the GEV distribution is its flexibility—it can be negative and positive skewed. In the first case, more weight is given to the left tail of the response curve and this is more convenient if the minority class is represented by the zeroes. When the GEV link function is positive skewed, the values ones of the dependent variable get more weight, so the minority class should be given by the ones.

Based on our knowledge, this is the first manuscript that analyses the drawbacks caused by a symmetric link function in a spatial regression model for binary rare events. Binary spatial choice models are sufficiently important that LeSage and Pace (2009) focus an entire chapter (Chapter 10) on this topic. In this context, the most used models are probit or logit functional forms with spatial interdependence. Different approaches have been proposed in the literature to estimate these models, e.g. the Gibbs sampling method (LeSage, 2000), the expectation-maximization algorithm (McMillen, 1992), the Generalized Method of Moments (Pinkse and Slade, 1998; Klier and McMillen, 2008) and recursive importance sampling (Beron and Vijverberg, 2004). Fleming (2004) and Calabrese and Elkink (2014) compare the properties of these estimators, both theoretically and by Monte Carlo simulations.

To improve the detection of the minority class and following Calabrese and Osmetti (2013), we propose the quantile function of the Generalized Extreme Value (GEV) distribution as link function in a spatial generalized linear model and we call this model the Spatial GEV (SGEV) regression model. To estimate the parameters of such model, a modified version of the Gibbs sampling method of LeSage (2000) and Wang and Dey (2010) is proposed. LeSage (2000) proposes a Gibbs sampler for estimating binary dependent variable models with spatial interdependence, which comparative analysis shows is one of the best estimators available in this context (Calabrese and Elkink, 2014).1 Wang and Dey (2010) propose a Gibbs sampler for rare events using the GEV distribution. We merge the two efforts to develop a new estimator for rare events with spatial autocorrelation.

The SGEV estimator will be evaluated in a series of Monte Carlo simulations, comparing the performance to a number of existing estimators Klier and McMillen (2008); LeSage (2000) for similar data structures, where we evaluate the accuracy of the prediction. In so doing, this research makes a significant contribution to the literatures in spatial econometrics and rare events modeling.

The proposed estimator is of particular relevance to several areas, such as natural science, epidemiology, political science or credit risk. Even if natural disasters (Frei and Schar, 1998; LeSage et al., 2011) or epidemics (Roberts, 2000) occur infrequently, their forecasting is a mandatory activity to reduce the level of risk and damage. In credit risk analysis, there are several contexts where the detection of the minority class is pivotal. Moreover, our proposal could be particularly useful to measure credit contagion, i.e. how the failure of a debtor to fulfill his or her debt obligation can affect the failure propensity of another debtor, on different types of portfolio. For example, if we consider loans to firms, the interdependence is given by the presence of business relations among different firms (Barro and Basso, 2010). As house prices are affected by house locations, credit contagion is important to estimate the failure

1See LeSage et al. (2011) for a corrected, more recent version of this estimator. The estimator proposed below is based largely on Wang and Dey (2010) and therefore not affected by these corrections.
propensity of a mortgage loan (Zhu and Pace, 2014). Credit contagion can also be measured on banks as opposed to obligors, such that this approach contributes to the topical literature on systemic risk (Calabrese, Elkink and Giudici, 2014).

Aside from the literature in economics and banking, there are countless application areas in the social sciences more generally. For example, in the political science literature rare events data with spatial or network interdependencies can be found in the study of civil war or interstate conflict (e.g. Gleditsch and Ward, 2013), of currency crisis (Novo, 2003), or of state failure (King and Zeng, 2001a,b). The change of political regime from autocracy to democracy is another example where the occurrence of the transition is rare, while they can be expected to be spatially and temporally correlated (Gleditsch and Ward, 2006; Elkink, 2011). The interdependence here can be spatial, specified in an exogenously given spatial weights matrix, or based on some alternative network structure such as trade relations or cultural similarity matrices. Following King and Zeng (2001b), who demonstrate the relevance of a rare events estimator by predicting state failure, we provide an empirical application of the SGEV model using updated data on state failure.

Section 2 provides a brief overview of binary regression models with spatially interdependent data. Section 3 will outline the estimation complications arising from the nature of rare events data and proposes the use of an asymmetric link function in the binary regression model. Section 4 proposes the Spatial Generalized Extreme Value model for the estimation of rare events data with spatial or network interdependence. Section 5 provides a Monte Carlo analysis to evaluate the statistical performance of the proposed estimator. An initial empirical application is presented in Section 6 and Section 7 concludes.

2 Spatial binary regression models

A widely used representation of a regression model for a binary response \(Y \) is the latent response model (Verbeek, 2008). A continuous variable \(Y^* \) is the dependent variable with the observation mechanism

\[
Y_i = \begin{cases}
1, & Y^*_i > 0 \\
0, & \text{otherwise}.
\end{cases}
\]

(2.1)

A linear model is specified for this latent response, so the model specification is

\[
Y^* = \rho W Y^* + X \beta + \varepsilon,
\]

(2.2)

where the error term \(\varepsilon \) can follow a multivariate normal distribution in a probit model or a multivariate logistic distribution in a logit model. \(W \) is a spatial lag weights matrix, \(\rho \) the associated scalar parameter, \(X \) a matrix of exogenous variables, and \(\beta \) the associated regression coefficients. \(W \) is typically a normalized matrix, whereby all rows add up to one and the diagonal is zero, but see Neumayer and Plümer (2016) for a critique on this convention. For a spatial stationary process, \(-1 < \rho < 1\).\(^2\) This corresponds to the lattice perspective on spatial data (Anselin, 2002, 255),\(^3\) which can be directly applied to any other (social) network data—any application where the dependent variable represents a binary characteristic of the nodes and the edges (i.e. \(W \)) are exogenously given.

\(^2\)When \(W \) is normalized and maximum likelihood is applied, Anselin (1982) proves that \(1/\omega_{\min} < \rho < 1 \) to ensure invertibility of \((I - \rho W) \), where \(\omega_{\min} \) is the minimum eigenvalue of \(W \).

\(^3\)The alternative, geostatistics, perspective concerns spatial data where space is seen as continuous and observations measured at specific coordinates (Bivand, 1998; Anselin, 2002, 255).
From the model (2.2), the Binary Spatial AutoRegressive model (BSAR) is obtained

\[Y^* = (I - \rho W)^{-1}(X\beta + \varepsilon) = A^{-1}X\beta + e, \]

(2.3)

with \(A = I - \rho W \) and \(e = A^{-1}\varepsilon \) (see also McMillen, 1992, 1995; Fleming, 2004).

The variance of the error term follows as

\[\text{var}(e) = \text{var}[A^{-1}\varepsilon] = A^{-1}\varepsilon\varepsilon'[A^{-1}]'. \]

(2.4)

The inherent heteroskedasticity present in matrix (2.4) renders standard binary regression models inconsistent and inefficient (McMillen, 1992), a problem which has been addressed in the literature by the development of various different estimators for BSAR models. We can identify five main estimators of the spatial autocorelation parameter \(\rho \) in this context (see also Fleming, 2004; LeSage and Pace, 2009).

In the first method, McMillen (1992, 1995) uses an Expectation-Maximization (EM) algorithm. The latent variable \(Y^* \) is replaced with its expected value and the Maximum Likelihood (ML) method is applied. Given the difficulty of estimating both the \(\beta \) and \(\varepsilon \), McMillen (1992) introduces the assumption of homogeneity for the disturbances \(\varepsilon \), assuming that \(\varepsilon\varepsilon' = I \). Analogously to McMillen (1992), LeSage (2000) also replaces the latent variable \(Y^* \) with its expected value, but a Gibbs sampling approach is applied for the parameter estimation. Furthermore, LeSage (2000) removes the assumption of homogeneity, i.e. \(\varepsilon\varepsilon' = \sigma^2 V \) where \(V = \text{diag}(v_1, v_2, \ldots, v_n) \) and \(v_i \) with \(i = 1, 2, \ldots, n \) are the variance parameters to be estimated.

In the third method, since the likelihood function is a multivariate normal distribution, Beron and Vijverberg (2004) suggest to apply recursive importance sampling (RIS) to the ML estimation. Pinkse and Slade (1998) apply a Generalized Method of Moments (GMM) estimator. Finally, Klier and McMillen (2008) suggest an approximation of the method proposed by Pinkse and Slade (1998), whereby an extrapolation is applied based on the estimate of \(\beta \) when \(\rho = 0 \).

Calabrese and Elkink (2014) analyse the properties of the above estimators by Monte Carlo simulations and an empirical application. This study shows that the Gibbs sampler performs best for low values of the spatial autocorrelation parameter and the RIS estimator for high values of \(\rho \). The computationally much more efficient linearized GMM estimator of Klier and McMillen (2008) performs well under low autocorrelation and large sample size conditions. Because of these properties, we propose a modified version of the Gibbs sampling approach to binary spatial autoregression models, modified for rare events data using an asymmetric link function.

3 Rare events and symmetric link functions

Let \(Y \) be a Bernoulli random variable with parameter \(\pi = P\{Y = 1\} \) and \(x \) a covariate vector. The most used regression models for a binary dependent variable are the Generalized Linear Models (GLMs). In GLMs the link function \(g(\cdot) \) is a monotonic function such that

\[g(\pi) = \beta'x, \]

where \(\pi \) is the probability of observing the rare event.

For simplicity, the most used link functions are symmetric functions. For example, in the logistic regression model the link function \(g(\cdot) \) is the quantile function of a logistic random
variable
\[g(x) = \logit(\pi(x)) = \ln\left(\frac{\pi(x)}{1 - \pi(x)}\right) = \beta'x, \]
which is a symmetric function.

In the probit model, the link function \(g(\cdot) \) is the quantile function of a standard normal random variable, which is also symmetric
\[g(x) = \Phi^{-1}(\beta'x). \]

When the link function is symmetric, the response curve \(\pi(x) \) approaches zero at the same rate it approaches one. This corresponds to the assumption that the same amount of information is included in the observed zeros and ones of the dependent variable \(Y \). On the contrary, if \(Y \) is a rare event with a low number of ones in the sample, the observed ones are more informative than the observed zeros and should be weighted accordingly in the estimation of the model (Calabrese and Osmetti, 2013; King and Zeng, 2001b). Weighting the zero and one observations equally, when the dependent variable \(Y \) is a rare event, by using a GLM with a symmetric link function, potentially underestimates the probability \(\pi \) for the observed ones (Calabrese and Osmetti, 2015; King and Zeng, 2001b).

Furthermore, when the probability of an event is low and the sample size reasonably large, the binomial distribution can be, and commonly is, approximated by a Poisson distribution (Falk, Hüsler and Reiss, 2010, 4–5), which is a skewed distribution. It is therefore more consistent to also choose an asymmetric link function for binary regression models dealing with such rare events.

In order to overcome these drawbacks, different methods have been proposed in the literature. The most widely used approach is choice-based or case-control sampling with a correction on the parameter estimates (David H. Good and Sickles, 1986; King and Zeng, 2001a; Manski and Lerman, 1977; McCullagh and Nelder, 1989; Scott and Wild, 1986). In the survival analysis context, the cure model (Lambert and Thompson, 2007) and the mixture hazard model (Almanidis and Sicles, 2015) are also used. Instead, Wang and Dey (2010) and Calabrese and Osmetti (2013) propose to focus the attention on the right tail of the response curve that represents the features of ones.

Since the GEV distribution function is used in the literature (e.g. Kotz and Nadarajah, 2000; Falk, Hüsler and Reiss, 2010) to represent the tail of a random variable, Wang and Dey (2010) and Calabrese and Osmetti (2013) propose the quantile function of a GEV random variable as a link function in a GLM. The main difference between these two proposals is that Wang and Dey (2010) use a Bayesian approach to estimate \(\beta \) and the shape parameter of the GEV distribution and Calabrese and Osmetti (2013) estimate \(\beta \) by the ML method, while they keep the shape parameter fixed. Instead of estimating the shape parameter, Calabrese and Osmetti (2013) propose to fit as many models as the number of chosen values of the shape parameter and select the model that yields the highest predictive accuracy.

4 The Spatial Generalized Extreme Value (SGEV) regression model

The aim of this section is to propose a new spatial regression model for binary responses with unequal sample frequencies of the two outcomes that overcome the drawbacks outlined in
Section 3. Following Wang and Dey (2010) and Calabrese and Osmetti (2013), we consider a quantile function of a GEV distribution as the link function in a binary regression model and extend this to model spatial interdependence. Hence, we propose the Spatial Generalized Extreme Value (SGEV) regression model

\[\pi(x) = \exp \left\{ - \left[1 + \tau D^{-1} A^{-1} X \beta \right]^{1/\tau} \right\}, \]

(4.5)

where \(x_+ = \max(x, 0) \) and \(D = \text{diag}(\sigma_e) \) is the diagonal matrix, with elements \(\sigma_e \) that represent the root square of the diagonal elements in matrix (2.4).

Since a GEV response curve can be asymmetric, the underestimation of \(P\{Y = 1\} \) for the observation equal to one may be overcome. Another advantage of the GEV distribution is that it is very flexible with the tail shape parameter \(\tau \) controlling the shape and size of the tails, with three different families of distributions subsumed under it. The Type II (Fréchet-type distribution) and the Type III (Weibull-type distribution) classes of the extreme value distribution correspond respectively to the case where \(\tau > 0 \) and \(\tau < 0 \), while the Type I class (Gumbel-type distribution) arises in the limit as \(\tau \to 0 \), Fréchet and Weibull distributions are related by a change of sign. For \(\tau \to 0 \) and \(\rho = 0 \), the SGEV regression model becomes the response curve of the log-log model (e.g. Agresti, 2002).

The main estimators proposed in the literature for spatial regression models are analysed in Section 2. Since the Gibbs sampling approach (LeSage, 2000) provides accurate estimates of the parameter \(\rho \) under a wide range of different Monte Carlo parameters (Calabrese and Elkink, 2014), we propose a modified version of this method to estimate the SGEV model (4.5). We make use of the Gibbs sampler for the non-spatial GEV model proposed by Wang and Dey (2010). While LeSage (2000) makes use of the Metropolis-Hastings algorithm for the estimation of the spatial parameter \(\rho \), Wang and Dey (2010) use this algorithm for all model parameters. We follow Wang and Dey (2010)’s approach, which provides more accurate and computationally more efficient results.\(^4\)

The joint posterior distribution of the parameter vector \(\theta = [\beta', \tau, \rho]' \) is given by

\[\phi(\theta / y, X) \propto L(y/X, \theta) v(\theta) \]

where the likelihood

\[L(y/X, \theta) = \prod_{i=1}^{N} \left\{ \pi_i(\theta)^y [1 - \pi_i(\theta)]^{1-y} \right\} \]

(4.6)

and \(\pi(\cdot) \) is defined in equation (4.5).\(^5\) To assign the priors of the SGEV model, we use LeSage (2000)’s assumption that the priors are independent

\[v(\theta) = v(\rho, \beta, \rho) = v(\rho) v(\beta) v(\nu), \]

where we follow Wang and Dey (2010) in assigning a relatively uninformative prior distribution of \(N(0, 100) \) to all parameters. Using the estimates of a non-spatial log-log model as the initial values \(\beta_0 \), the correlation between \(y \) and \(Wy \) as the initial value \(\rho_0 \), and \(\tau_0 = 0 \),

\(^4\)This will also allow further improvements, since there is a flourishing literature on optimizing Metropolis-Hastings algorithms (e.g. Maclaurin and Adams, 2014; Korattikara, Chen and Welling, 2014; Angelino et al., 2014).

\(^5\)We assume \(\epsilon \epsilon' = \sigma_e^2 I \). The parameter \(\sigma_e^2 \) is kept fixed, because of lack of identifiability when simultaneously estimating the error variance and the linear regression coefficients in a latent variable model—similar to probit and logit regressions.
all estimates are updated in each Markov Chain Monte Carlo (MCMC) iteration through the Metropolis-Hastings algorithm.

The Metropolis-Hastings algorithm (Hastings, 1970) proceeds as follows. For each θ_j, let the value $\theta_{j,t+1}^* = \theta_{j,t} + cZ$ be generated, where Z is a draw from a standard normal distribution, c is a known constant, and t refers to the sampling iteration. Defining the log-likelihood $l(y/X, \theta) = \log [L(y/X, \theta)]$, the acceptance probability

$$a = \min \left\{ 1, \frac{l(y/X, \theta_{t+1}^*)v(\theta)}{l(y/X, \theta_t)v(\theta)} \right\},$$

where $\theta_{t+1}^* = \theta_{t+1}$, except for parameter $\theta_{j,t+1}^*$. A value m is drawn from a continuous uniform distribution with support $[0, 1]$. If $m < a$, the next draw from the density function (4.6) is given by $\theta_{j,t+1} = \theta_{j,t}^*$, otherwise the draw is taken to be the current value $\theta_{j,t+1} = \theta_{j,t}$. Where the parameter is constrained, Z is drawn from a truncated standard normal distribution—in our application this holds for ρ, which is constrained to the $[-1, 1]$ interval. For computational efficiency reasons and following Thomas (2007), we dynamically adapt c throughout the chain for each parameter in θ, such that the acceptance rate of the Metropolis-Hastings algorithm is approximately 20%.6

5 Monte Carlo simulations

In order to evaluate the performance of the proposed estimator, we perform Monte Carlo analyses whereby the estimator is applied to data of which the underlying data generation mechanism, and its associated parameters, are known. While the Monte Carlo analysis in Calabrese and Elkink (2014) focuses primarily on the estimation of the intensity of the spatial autocorrelation, ρ, we focus primarily on the prediction quality of the estimator.

The data generation process results in four continuous independent variables, with for each $X \sim N(0, 4\sigma_x^2)$, with $\sigma_x = 1$. The residuals vector ε is generated from a multivariate normal distribution $N_4(0, I)$.

We performed the simulations using $N = 500$ as sample size and a parameter vector $\beta = [0, 1, 1, -1, -1]'$. The level of spatial autocorrelation is varied from entirely absent to high autocorrelation, $\rho \in \{0, 0.1, 0.45, 0.8\}$. Finally, as we handle two-class classification problems with highly unbalanced class sizes, the dependent variable Y is constructed by applying a threshold different from the zero in (2.1), such that the proportion of ones is predetermined, in these simulations to 20% and 5%. We thus end up with eight different configurations of the data generation parameters. We perform estimations on 60 replications of each parameter configuration.

In order to generate the matrix W, we apply the method suggested by Beron and Vijverberg (2004, 179). We assign each observation randomly to a coordinate in the unit square using a uniform distribution. For each observation, those observations that are within a fixed radius, excluding the observation itself, are considered neighbours. The radius d is set such that the average number of neighbours for each observation is approximately 5, identical to Beron and Vijverberg (2004), which implies $d = 0.06$ for $N = 500$.

The main aim of the SGEV model is to improve the accuracy of predicting the rare events, the ones. Hence, the applications of our proposal are classification problems where performing an incorrect prediction of the rare event may have grave consequences. For example, in

6We constrain c to remain in the $[0.0005, 10]$ interval.
mushroom classification judging a poisonous mushroom to be edible is far worse than judging an edible mushroom to be poisonous. In the context of our empirical example, the prediction of state failure, it is also reasonable to assume that it is more important not to miss a potential future failed state than that it is to slightly overestimate the probability of state failure for a state that is less at risk. A similar rationale applies to the risk of bank defaults, currency defaults or default on credits, where (central) banks will be more concerned with correctly identifying those cases that are truly at risk than with incorrectly identifying some cases as at risk while they are not. Applying a similar logic to credit defaults, Calabrese and Osmetti (2013) therefore calculate the Mean Absolute Error (MAE) and Mean Squared Error (MSE) for the subset of cases where \(Y = 1 \)

\[
MAE^+ = \frac{1}{N} \sum_{\{y_i = 1\}} |y_i - \hat{\pi}_i| \quad MSE^+ = \frac{1}{N} \sum_{\{y_i = 1\}} (y_i - \hat{\pi}_i)^2. \tag{5.7}
\]

We compare the SGEV model with the predictive performance of the estimators proposed by Klier and McMillen (2008) (denoted as KM) and LeSage (2000) (denoted as GibbsT). Within a certain range of values of the shape parameter \(\tau \), the usual regularity conditions for the estimator of this parameter do not hold (Smith, 1985). For this reason, we report the results of the SGEV model with the estimation of \(\tau \) (denoted as SGEV), as explained in the previous Section, and fixing the parameter \(\tau \) to 25 (denoted as SGEVfix).\(^7\) Finally, three GLMs with asymmetric link functions that ignore the spatial interdependence are considered: the cloglog model, the GEV model proposed by Calabrese and Osmetti (2015) \(^8\) (denoted as BGEV A) and the GEV model proposed by Wang and Dey (2010) (denoted as GEV WD).\(^9\)

The plot in Figure 1 provides a graphical depiction of the MSE\(^+\) defined in equation (5.7). This plot shows that for 20% of ones, the SGEV model outperforms the other models when the spatial autocorrelation \(\rho \) increases. When the sample is strongly unbalanced (i.e. 5% of ones) and in the presence of spatial interdependence, the accuracy of identifying the ones in the data set is notably better for the SGEV estimator. This is of course not surprising, given that the proposed model is designed to address the prediction of rare events in the presence of spatial interdependence.

While we emphasise the importance of correctly predicting high probabilities for the rare outcome of \(Y = 1 \), the estimator still needs to classify the cases for both positive and negative outcomes. In other words, while we can prioritize a low true positive rate over a low false positive rate, we still need to make sure that our classifier identifies both negative and positive cases. The plot in Figure 2 therefore provides the overall Mean Squared Error, including both \(y_i = 1 \) and \(y_i = 0 \) cases. It is clear from this plot that, while positive cases are generally better identified by the SGEV estimator, this is combined with a relatively high false positive rate.

Since the prediction of ones and zeros can be sensitive to the choice of the prediction threshold—the predicted probability \(P(Y = 1) \) above which we predict a 1—alternative statistics are available that consider the entire range of potential threshold values. A common procedure is to sort all predicted values \(\hat{y}^* \), then move the decision threshold along the range of values, and plot the proportion of correctly classified ones against the proportion of incorrectly classified ones. This is referred to as the Receiver Operating Characteristic (ROC) curve (see, e.g., Hand and Anagnostopoulos, 2014) and is often used to compare the classification quality

\(^7\) We considered different values of the parameter \(\tau \) and we chose the one that shows the best predictive performance.

\(^8\) The R package BGEVA (Marra, Calabrese and Osmetti, 2013) is used to estimate the GEV model.

\(^9\) Analogously to LeSage (2000) we consider a maximum number of loops equal to 3,000 for the Gibbs estimator.
Figure 1: Distribution of the MSE for $y = 1$ defined in equation (5.7) for different configurations of the parameters, across 60 replications.

Figure 2: Distribution of the Mean Squared Error for different configurations of the parameters, across 60 replications.
of different models or algorithms. The curve will generally be above the 45 degree diagonal line, since otherwise we could simply create a better classifier by swapping the labelling of the predictions. The further the ROC curve from the diagonal line, the better the classifier. A numerical indicator for this prediction quality is the Area Under Curve (AUC) statistic, which is the area under the ROC curve, and thus ranges typically from 0.5 to 1—an AUC below 0.5 indicates a classifier performing worse than random classification of cases.

The AUC statistic suffers from a number of deficiencies as a measure to evaluate the performance of different estimators. A particular feature of the statistic that is of concern to our Monte Carlo study is the fact that this statistic amounts to a weighted average minimum loss measure. This average loss is determined by the relative cost of misclassifying zeros or ones, whereby the cases are weighted depending on the cumulative density function of the two classes across the range of scores (that is,

$$F_0(t) = Pr[\hat{y}^*(x) < t | Y = 0]$$

and

$$F_1(t) = Pr[\hat{y}^*(x) < t | Y = 1],$$

with score \(\hat{y}^*(x) \) the prediction of the classifier and \(t \) the threshold value) (Hand, 2009, 108–111). In other words, the relative cost of misclassifying ones or zeros—and thus the evaluation of the relative performance of the classifier—are dependent on the classifier used, as opposed to being dependent on the underlying application, which is incoherent. Hand (2009) and Hand and Anagnostopoulos (2013, 2014) outline this complication and provide an alternative to the AUC score, the so-called \(H \)-index, which addresses this deficiency. The \(H \)-index has a range of 0 to 1, with high values indicating improved performance. We use the hmeasure package in R (Anagnostopoulos and Hand, 2012) to calculate the \(H \)-index statistics, the results of which are summarized in Figure 3.

Coherently with the results shown in Figure 1, we again see a relatively better performance for the SGEV model compared to the others in Figure 3, when the sample is strongly imbalanced and the spatial autocorrelation parameter \(\rho \) increases.

Figure 3: Distribution of the \(H \)-index, for different configurations of the parameters, across 60 replications.
6 Empirical application to state failure

We investigate the performance on empirical data by using an application from comparative politics, on state failure. State failure refers to a state losing the capacity to control its territory and implement domestic policies, due to for example civil war. The prediction of state failure is also the core example of the earlier work on models for rare events by King and Zeng (2001a).

State failures can be expected to be “contagious” for a number of reasons (Iqbal and Starr, 2008). Indeed, there is extensive research on the spatial diffusion of civil war (see, e.g., Buhaug and Gleditsch, 2008; Starr, Darmofal and Iqbal, 2008). Instability in one country and lack of capacity by the state can create a safe haven for potential rebels in a neighboring country. Civil conflict is often related to ethnic divisions, which tend to cross national boundaries. Reduced state capacity due to extreme natural events, such as droughts, will also typically affect adjacent countries. Finally, rebellion and civil war in a neighboring country can act as an example for groups within a country. Such effects are clearly visible in, for example, the Arab Spring in 2011, when rebellious behavior in one state soon affected similar acts in a wide region. The spatial clustering of instability and civil war is well established, but the debate on the causal explanations of this clustering ongoing.

To test the model on data related to state failure, we use a definition of W that is based on the inverse distance between two states, whereby the distance is defined as the shortest distance between the two state borders. Since the inverse of the distance is undefined when the distance is zero, and because the inverse has a very fast decay, with slightly larger distances having minimal effect, we use a slowly decaying function by distance, $w_{ijt} = 1/(d_{ijt} + 100)$, with $w_{ii} = 0$ and d_{ijt} the minimum geographical distance between countries i and j at time t. This W matrix is a block-diagonal matrix, with the inverse distances on the blocks along the diagonal and zeros otherwise – i.e. one block for each time period t. This W is subsequently normalized such that all rows add up to one.

The model specification we use is inspired by, but does not closely follow, Goldstone et al. (2010). In their replication data, specific matched samples are used to address the rare events nature of the data, while we estimate our models on a full data set of all countries and years where we have data on the relevant variables. All independent variables are lagged by one year relative to the dependent variable. To account for world-wide shocks, year dummies are included. The independent variables are sourced from the Nations, Development, and Democracy data set by Wejnert (2007) and the data used is from 1975 onwards.

Table 1 provides the regression estimates for the four models on identical data, with in addition the H-index measure of prediction quality. Strikingly, while for the Monte Carlo analysis the SGEV estimator performed well in the presence of spatial autocorrelation, in this empirical data the results appear weaker—for the within-sample prediction of the outcome variable, the H-index suggests a marginally better classifier than logistic regression without accommodation of spatial or skewed effects.

The estimate for the autoregression parameter ρ by the regular Gibbs sampler, which it is generally good at estimating (Calabrese and Elkink, 2014), suggests an absence of, or even negative spatial autocorrelation—the 95% Highest Posterior Density interval is $[-0.37, 0.22]$, with 82% of the posterior samples providing an estimate of ρ below zero. The same negative coefficient is identified by the SGEV estimator when τ is fixed. The weak predictive results of the SGEV estimator might therefore be due to lack of actual spatial autocorrelation in this data.

10 The minimum distance is calculated using the cshapes package in R (Weidmann and Gleditsch, 2010).
11 For computational efficiency reasons, the data is a subset of the overall data set.
Table 1: Regressions explaining state failure as classified in Goldstone et al. (2010), using a slowly decaying inverse of the distance to define the adjacency matrix. Models include year fixed effects and the dependent variable is observed at \(t + 1 \). For the BGEVA and SGEVfix models, \(\tau \) is fixed a priori.

<table>
<thead>
<tr>
<th></th>
<th>Logistic</th>
<th>Gibbs</th>
<th>BGEVA</th>
<th>SGEVfix</th>
<th>SGEV</th>
</tr>
</thead>
<tbody>
<tr>
<td>intercept</td>
<td>-17.08</td>
<td>-3.50</td>
<td>-3.69</td>
<td>-6.43</td>
<td>-134.78</td>
</tr>
<tr>
<td>Polity IV</td>
<td>-0.03</td>
<td>-0.01</td>
<td>-0.04</td>
<td>-6.48</td>
<td>-0.34</td>
</tr>
<tr>
<td>Polity IV squared</td>
<td>-0.01</td>
<td>-0.02</td>
<td>-0.02</td>
<td>5.43</td>
<td>5.25</td>
</tr>
<tr>
<td>Log of infant mortality</td>
<td>0.17</td>
<td>0.44</td>
<td>0.51</td>
<td>-41.97</td>
<td>-4.09</td>
</tr>
<tr>
<td>Log of GDP per capita</td>
<td>-0.51</td>
<td>0.06</td>
<td>-0.02</td>
<td>3.76</td>
<td>-4.88</td>
</tr>
<tr>
<td>(\rho)</td>
<td>-0.17</td>
<td>-0.10</td>
<td>0.28</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(\tau)</td>
<td>25.00</td>
<td>25.00</td>
<td>126.92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>(N)</td>
<td>1653</td>
<td>324</td>
<td>324</td>
<td>324</td>
<td>324</td>
</tr>
<tr>
<td>(H)-index</td>
<td>0.467</td>
<td>0.432</td>
<td>0.433</td>
<td>0.471</td>
<td>0.471</td>
</tr>
</tbody>
</table>

at least when the spatial contiguity matrix is defined as a matrix of inverse distances between countries.

While the paper is primarily concerned with the accurate prediction of the rare event, the empirical results do raise the question whether the estimation of \(\tau \) in particular is problematic. Figure 4 provides some insight into the performance of the SGEV estimator when it comes to correctly identifying the shape parameter \(\tau \). Strikingly, under the absence of any spatial autocorrelation, the estimates of \(\tau \) are reasonably accurate, albeit with high variance. Under spatial autocorrelation, however (\(\rho = 0.5 \)), the estimates of \(\tau \) are nearly always zero, which is the initial value \(\tau_0 \).

7 Conclusion

In this paper we propose a spatial regression model for highly imbalanced binary data, i.e. data whereby the classification categories are not approximately equally represented. Specifically, the category less represented is considered a rare event with its percentage in the sample lower than 5%. In this context, a symmetric link function, such as the logit or the probit function can underestimate the probability that the rare event occurs. To overcome this drawback, a generalized linear model with a flexible link function given by the GEV distribution is proposed in the literature (Calabrese and Osmetti, 2013; Wang and Dey, 2010).

Many applications where such rare events occur also contain spatial or network interdependencies. Examples include systemic risk for banks, eruption of international conflict, or currency crises. We therefore propose a generalized linear model based on the GEV distribution, taking into account spatial or network interdependence, the SGEV model. We provide a modified version of the Gibbs sampling method LeSage (2000); Wang and Dey (2010) to estimate the parameters of the proposed model. The shape parameter of the GEV distribution regulates the skewness. In this paper, we both estimate the shape parameter and fix it in order to obtain lower errors.

Monte Carlo simulations are used to evaluate the performance of the SGEV model. We
compare the predictive accuracy of our proposal with that of the spatial Gibbs sampler LeSage (2000) and the linearized Generalized Method of Moments Klier and McMillen (2008). The current implementation provides a high true positive rate—the rare events are generally correctly identified—but also a relatively high false positive rate. The H-index however, which is used for the evaluation of the overall prediction quality for imbalanced samples, shows a slightly better performance of our estimator than existing estimators, in the presence of spatial autocorrelation.

A brief example from the political science literature is used to demonstrate the applicability of the model, namely by investigating the rare occurrence of state failure. This is based on the data used in published work on rare events. The SGEV estimator outperforms the other estimators as measured by the H-index. Future work will include applications to systemic risk for banks and credit risk. Furthermore, future research should be able to improve the estimation of the shape parameter τ. One direction of research in this regard might be the use of Bayesian model selection. Finally, while this paper, in line with Calabrese and Elkink (2014), focuses on the spatial autoregressive model, a similar extension can also be developed for the spatial error model, whereby the network interdependence is modeled in the error term as opposed through the spatially lagged dependent variable.

Figure 4: Distribution of the estimates of τ, for different configurations of the parameters, across 60 replications.

References

URL: http://www.timthomas.net

URL: http://doi.org/10.3886/ICPSR20440.v1