Fission yeast Apc15 stabilises MCC-Cdc20-APC/C complexes ensuring efficient Cdc20 ubiquitination and checkpoint arrest

Citation for published version:

Digital Object Identifier (DOI):
10.1016/j.cub.2017.03.013

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Current Biology

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Fission yeast Apc15 stabilises MCC-Cdc20-APC/C complexes ensuring efficient Cdc20 ubiquitination and checkpoint arrest

Karen M. May, Flora Paldi and Kevin G. Hardwick*

Wellcome Trust Centre for Cell Biology, University of Edinburgh, King's Buildings, Max Born Crescent, Edinburgh, EH9 3BF, UK

* Lead contact:
Email: Kevin.Hardwick@ed.ac.uk
Phone: 44 131 650 7091

Running title: Apc15 stabilises MCC association with APC/C
Summary

During mitosis cells must segregate the replicated copies of their genome to their daughter cells with extremely high fidelity. Segregation errors lead to an abnormal chromosome number (aneuploidy), which typically results in disease or cell death [1]. Chromosome segregation and anaphase onset are initiated through the action of the multi-subunit E3 ubiquitin ligase known as the anaphase-promoting complex or cyclosome (APC/C [2]). The APC/C is inhibited by the spindle checkpoint in the presence of kinetochore attachment defects [3, 4]. Here we demonstrate that two non-essential APC/C sub-units (Apc14 and Apc15) regulate association of spindle checkpoint proteins, in the form of the mitotic checkpoint complex (MCC), with the APC/C. apc14Δ mutants display increased MCC association with APC/C and are unable to silence the checkpoint efficiently. Conversely, apc15Δ mutants display reduced association between MCC and APC/C, are defective in poly-ubiquitination of Cdc20 and are checkpoint defective. In vitro reconstitution studies have shown that human MCC-APC/C can contain two molecules of Cdc20 [5-7]. Using a yeast strain expressing two Cdc20 genes with different epitope-tags, we show by co-immunoprecipitation that this is true in vivo. MCC binding to the second molecule of Cdc20 is mediated via the C-terminal KEN box in Mad3. Somewhat surprisingly, complexes containing both molecules of Cdc20 accumulate in apc15Δ cells and the implications of this observation are discussed.
Results and Discussion

Cdc20^{Slp1} (Slp1 is the fission yeast homologue of Cdc20) was identified several years ago as the key effector of the spindle checkpoint [8, 9], and the mitotic checkpoint complex (Cdc20-Mad3-Mad2-Bub3) was found to be the most potent APC/C inhibitor [10]. The crystal structure of fission yeast MCC has been solved [11], and recently cryo-EM structures of human MCC in complex with APC/C were obtained from recombinant complexes produced in baculovirus-infected insect cells [6, 7]. These models provide an excellent structural framework within which spindle checkpoint inhibition takes place, yet there are several areas requiring further insight.

The Gould lab previously demonstrated that deletion of either the Apc14 or Apc15 sub-unit of fission yeast APC/C did not affect its ubiquitin ligase activity [12]. Apc14 is not well conserved, but in human and budding yeast cells it has been shown that there are spindle checkpoint silencing defects in the absence of Apc15 [13-15]. Therefore we analysed the fission yeast aprc14\Delta and aprc15\Delta strains for defects in checkpoint establishment, maintenance and/or silencing.

apc15\Delta mutants display spindle checkpoint defects

First we employed the cold-sensitive beta-tubulin mutant nda3-KM311 to analyse the ability of cells to arrest in mitosis in the absence of spindle microtubules [16]. Fig. 1A demonstrates that whilst aprc14\Delta cells arrest like wild-type the aprc15\Delta cells display severe defects in this checkpoint assay. We also analysed the ability of these apc mutants to arrest in response to Mad2 and Mps1^{Mph1} (Mph1 is the fission yeast homologue of Mps1 kinase) overexpression [17, 18], and once again found that aprc15\Delta strains were significantly defective in arrest (Fig. 1B). The inability to respond to Mad2 overexpression places Apc15 function downstream in the spindle checkpoint pathway as the only other checkpoint protein required for the Mad2 overexpression arrest is Mad3, the other key component of fission yeast MCC [19].

This suggested that Apc15 might have a role in MCC assembly and/or its association with the APC/C. To test this we analysed MCC assembly in an unperturbed mitosis, having synchronised cells at G2-M using the cdc25-ts allele. Fig. 1C shows that there is little effect on MCC assembly in the absence of either Apc14 or Apc15. However, we note that in the aprc15\Delta mutant the levels of Cdc20^{Slp1} and the MCC complex are 2-3 fold higher and stay high for longer, even though they display no delay in anaphase (see Fig S1A-C).

When we analysed the ability of the MCC complex to bind to the APC/C we saw striking effects in both aprc14\Delta and aprc15\Delta strains (Fig. 2A). Cells were synchronised at G2-M and then released into mitosis. The levels of MCC bound to the APC/C in aprc15\Delta strains were reduced to a level similar to those in the absence of Mps1^{Mph1} kinase activity [20]. Conversely, the MCC
levels bound in apc14Δ strains were 2-3 fold higher than in wild-type cells (see Fig S2 for quantitation). The simplest interpretation of these data is that Apc15 is required for stable MCC binding to APC/C, which is consistent with the checkpoint defects observed in apc15Δ strains (Fig 1), whereas Apc14 function is required for efficient MCC release and checkpoint silencing.

apc14Δ mutants display checkpoint silencing defects

To analyse the apc14Δ phenotype in more detail, we employed a checkpoint silencing assay that we previously developed during studies of protein phosphatase 1 [21]. Cells are arrested without microtubules using the nda3 mutation [16] and then Aurora activity is inhibited using the ark1-as3 allele [22]. Because Ark1 activity is necessary to maintain spindle checkpoint arrests [21, 23] these cells rapidly degrade cyclin B. Fig. 2B shows that there is a clear delay in cyclin B degradation in apc14Δ cells, consistent with the hypothesis that Apc14 has a role in checkpoint silencing. This Apc14 silencing function is the subject of ongoing work, but was not analysed further in this study.

Apc15 is cell cycle regulated

Transcript data in PomBase [24] show that Apc15 expression is tightly cell cycle regulated with highest expression at G2/M. Therefore we analysed the cell cycle levels of the Apc15 protein. Apc15 is a rather small protein and we were concerned that epitope tags might perturb its function. Therefore we generated specific, polyclonal antibodies to Apc15. Fig. S2B shows that the levels of Apc15 increase ~2-fold during mitosis and Fig. 2C demonstrates that Apc15 levels increase further during prolonged checkpoint arrest. As is the case for many APC/C sub-units, Apc15-GFP accumulates in the nuclei of mitotic cells [25]. We carried out several experiments to test whether the Apc15 newly synthesised at G2/M is important for checkpoint function and whether Apc15 is itself subject to ubiquitin-mediated degradation. As yet we have found no clear evidence that this regulation is physiologically important for mitosis (see Fig S2).

At this point we had two simple hypotheses for Apc15 function: 1) Apc15p could act as a loading factor, by first binding to MCC and then helping it associate with the APC/C core particle, or 2) Apc15 might form an important part of the MCC docking site on the APC/C. To distinguish between these modes of action, we analysed the association of Apc15 with the APC/C and with MCC proteins in yeast lysates. To test whether there was a free pool of Apc15p and if this could interact with the MCC, we carried out immunodepletion of Apc1-GFP from mitotic extracts. As expected, Apc15 co-immunoprecipitates with Apc1-GFP (Fig. 2D). No Apc15 remains associated with Apc1-GFP in an extract after three rounds of Apc1-GFP immunodepletion, yet there is still a significant pool of free Apc15. Importantly, when we immunoprecipitated this free pool of Apc15 it was not associated with Mad3, Mad2 or Cdc20 (Fig. 2D). This experiment
indicates that whilst there was a significant non-APC/C bound pool of Apc15, it was not associated with the MCC complex or proteins therein. This argues against the model where Apc15 acts as an MCC loading factor, as it would be expected to bind MCC components independently of APC/C binding. The role of the free Apc15 pool remains unclear, but its existence likely explains why there was no significant phenotype upon transcriptional depletion of Apc15 (Fig. S2D-F).

Fission Yeast Apc15 is required for efficient Cdc20 ubiquitination
Deletion of Apc15 had no effect on the ability of cells to assemble the MCC, but we noted that the levels of Cdc20 and MCC remained high for longer in apc15Δ than in wild type cells (Fig 1C). This suggested that Apc15 might regulate Cdc20 protein levels and that it could be required for efficient Cdc20 ubiquitination and/or degradation. To determine if this was the case we arrested cells in metaphase using mts3-1 [26], a proteasome mutant that does not require a functional checkpoint for arrest, then immunoprecipitated Cdc20-FLAG. It was hoped that the mts3-1 mutation would stabilise ubiquitin-modified forms of Cdc20, due to defective proteasome action. When we probed immunoblots for Cdc20 we could now detect a discrete ladder of slower migrating bands (Fig. 3A&B). Addition of phosphatase had no effect on these bands, but the ladder was removed in extracts treated with the recombinant deubiquitinase USP2 [27]. This demonstrates that Cdc20 accumulates in polyubiquitinated forms in these mitotically arrested mts3 cells. Poly-ubiquitination of Cdc20 is dependent on MCC formation [28, 29]. As expected, in mad3Δ and mad2Δ strains which are unable to form MCC Cdc20 ubiquitination was largely abolished. Importantly, in apc15Δ cells Cdc20 was still ubiquitinated, but there was an accumulation of Cdc20 molecules with shorter (~1-4) Ub chains (Fig. 3B). This suggests that in fission yeast deleting Apc15 does not block the initial binding of MCC to the APC/C and the subsequent ubiquitination of Cdc20, but that Apc15 is required for processive ubiquitination of Cdc20. This is consistent with our observation that less MCC binds to APC/C in apc15Δ cells (Fig. 2A). We propose that MCC frequently ‘falls off’ an APC/C particle lacking Apc15 before longer chains of ubiquitin can be added to Cdc20, leading to reduced processivity of Cdc20 ubiquitination. As a consequence, the Cdc20 protein is stabilised in apc15Δ cells and free MCC levels accumulate (see Fig S1A&B).
Further analysis shows that mad3-ken2 mutants also displayed reduced ubiquitination, and that the mad3-ken2 apc15Δ double mutant is completely unable to poly-ubiquitinate Cdc20 (Fig. 3A). This suggests that Mad3-KEN2 and Apc15 are both involved in stabilising key MCC-APC/C interactions in fission yeast that are required for efficient Cdc20 ubiquitination and for checkpoint arrest. This agrees well with the accompanying manuscript where KEN2 and its conserved
flanking ABBA motifs are all shown to enhance Cdc20-APC/C inhibition and spindle checkpoint arrest [30].

Fission yeast MCC can contain two Cdc20 molecules and binding of the second molecule is Mad3-KEN2 but not Apc15-dependent

Musacchio and co-workers proposed several years ago that a second molecule of Cdc20 in MCC complexes would help explain the need for two conserved KEN boxes in Mad3/BubR1 and aspects of Cdc20 turnover [2, 29]. It was then argued from *in vitro* studies that human MCC can bind a second molecule of Cdc20, enabling it to inhibit active Cdc20-APC/C [5]. Recent cryo-EM studies have demonstrated that when human MCC-APC/C is reconstituted in insect cells there are indeed MCC complexes that contain two Cdc20 molecules [6, 7]. To distinguish the two Cdc20 molecules, we will refer to them as the MCC bound form (Cdc20M) and the APC/C-bound or activator form (Cdc20A).

To provide formal proof of the second Cdc20 molecule in a living system, we generated a fission yeast strain containing a second copy of the Cdc20Slp1 gene. This copy has an internal 3xFLAG tag [31], enabling it to be readily distinguished from the first copy which has a C-terminal 3xHA tag. Both of these forms of Cdc20Slp1 are functional and bind APC/C (see below). If two copies of Cdc20 are present in the MCC then the two proteins would be co-immunoprecipitated from mitotic extracts. Fig. 3B shows that this is the case, that their interaction is dependent on Mad3p, and importantly that their interaction is dependent on both of the conserved Mad3-KEN boxes. The first KEN box (KEN1) is known to be critical for direct Cdc20 binding and MCC formation [11], but the function of the second KEN box (KEN2) is less well understood [32]. KEN2 is widely recognised as being necessary for checkpoint function, but not for MCC formation. In BubR1, it can compete with substrates for APC/C interaction *in vitro* [32]. Our findings that Mad3-KEN2 is needed for interaction with the second molecule of Cdc20 is in agreement with the human study where the D-box and the second KEN box in BubR1 were both found to be necessary [5], and with the recent cryo-EM structures [6, 7]. Importantly, our Cdc20-Cdc20 co-immunoprecipitation experiment is carried out in whole cell extracts made from mitotic fission yeast cells. Our findings are confirmed in the accompanying fission yeast manuscript [30], where two forms of Cdc20 (one tagged and one un-tagged) are shown to interact in mitosis. One way to form these Cdc20-Cdc20 complexes would be for the MCC as a whole to form dimers, either simply with itself or on a larger platform. In this model, all members of the MCC complex would contain two molecules, rather than just Cdc20. To test this we engineered fission yeast strains expressing normal Mad3 and Mad3-GFP, and asked whether the two forms of Mad3 can be co-immunoprecipitated in mitotically arrested cells. Figure S3B shows that this was not the case, ruling out MCC dimerisation.
The model proposed in the human studies [5] was that MCC (Cdc20^M-Mad3-Mad2) binds and inhibits an active Cdc20^A-APC/C complex to form Cdc20^M-Mad3-Mad2-Cdc20^A-APC/C (containing two Cdc20 molecules). Our apc15 mutant allowed us to test this model in fission yeast. If this were the case, one would predict that the apc15 mutant, which impairs the interaction between MCC and APC/C, will reduce or abolish the interaction between the two Cdc20 molecules. Fig. 3B shows that this is not the case as efficient co-immunoprecipitation of Cdc20-FLAG and Cdc20-HA was still observed in apc15^Δ cells, indeed these complexes accumulated in the mutant (see also Fig. S3A). Fig. 2A demonstrates that there was a significant reduction in the level of MCC bound to APC/C in apc15^Δ mutants, yet Fig. 3B reveals complexes containing multiple Cdc20 molecules. To confirm that these Cdc20 complexes were not associated with APC/C, we depleted APC/C from apc15^Δ extracts via four rounds of Cut9-GFP immunodepletion and asked whether the free pool of MCC still contains two molecules of Cdc20 (Cdc20-HA -Mad3-Mad2- Cdc20-FLAG). Fig. 4A shows that this is the case and that there is significantly more of this complex in apc15^Δ mutant extracts compared to wild-type. We note that this observation is not necessarily in line with the proposed human model of Cdc20-APC/C inhibition [5] and we suggest two models to explain our fission yeast observations:

a) Apc15 forms an important part of the MCC binding site on APC/C. As a consequence, in apc15^Δ cells the MCC (Cdc20^M-Mad3-Mad2) might preferentially bind to free Cdc20 rather than Cdc20^A-APC/C complexes. This will sequester Cdc20 and form a free pool of Cdc20^M-Mad3-Mad2-Cdc20^A. Such sequestration may well help inhibit Cdc20 action, and the accompanying manuscript [30] shows this to be the case when Cdc20 levels are reduced. However, we note that the Cdc20^M in these complexes would not be ubiquitinated unless the complex then bound to APC/C.

b) MCC binds to Cdc20^A-APC/C, but their interaction is weakened in the absence of Apc15 and the MCC-Cdc20^A-APC/C complex is rather short-lived. A consequence of this brief interaction with the APC/C is that it would lead to a reduced processivity of Cdc20^M ubiquitination in apc15^Δ cells. This is consistent with the short Ub-chains we have observed on Cdc20 in apc15^Δ (Fig. 3B). Importantly, when the MCC complex dissociates it takes the Cdc20^A activator with it to form free Cdc20^M-Mad3-Mad2-Cdc20^A.

NB. These models are not mutually exclusive. It is important to include the free Cdc20^M-Mad3-Mad2-Cdc20^A complex in overviews of MCC action and Cdc20 inhibition (see Fig. 4B).

Conclusion
At first glance, fission yeast Apc15 appears to have a simple role to play in helping the MCC stably bind to the APC/C core particle and this is consistent with its position in recent high-resolution cryo-EM structures of the APC/C. Budding yeast and *in vitro* human studies argued
that Apc15 is needed for efficient Cdc20 ubiquitination and subsequent MCC release [13, 15]. Based on the cryo-EM models, it was proposed that human Apc15 undergoes a conformational change to shift MCC into a suitable orientation for Cdc20 auto-ubiquitination [6] [7]. Our study is consistent with this, as Cdc20Spt displays reduced ubiquitination and is stabilised in fission yeast apc15Δ cells (Fig. 3A). However, fission yeast Apc15 is also needed for stable MCC binding and thus for spindle checkpoint arrest, which is not the case in human and budding yeast cells.

Importantly we also provide in vivo evidence for complexes containing two Cdc20 molecules in fission yeast. Interaction with the second molecule of Cdc20 is mediated by the C-terminus of Mad3, including its second KEN box and the nearby ABBA motifs [32-34]. Our work and the accompanying manuscript [30] both describe in vivo fission yeast studies which provide an important confirmation of models proposed from in vitro reconstitution studies of human MCC proteins and their interactions with APC/C. New findings are presented here where, paradoxically, whilst apc15Δ mutants display reduced levels of MCC bound to the APC/C (Fig. 2A) they also accumulate Cdc20-Cdc20 complexes (Fig. 3B). We have suggested two models to generate the free pool of Cdc20Δ-Mad3-Mad2-Cdc20Δ that we observe in apc15Δ mutants (see Fig. 4B).

In fission yeast we find that deletion of Apc14 leads to checkpoint silencing defects. In its absence there are higher than normal levels of MCC bound to the APC/C, and experiments are ongoing to understand its mode of action. It will be interesting to see if in the absence of Apc14 the MCC simply binds more tightly to APC/C, or whether Apc14 has an active role similar to p31comet (not conserved in S. pombe), TRIP13 or the CCT chaperone in disrupting MCC-APC/C complexes [35, 36].
Experimental Procedures
See the Supplemental Experimental Procedures.

Supplemental information
This includes four figures, and details of the experimental procedures and yeast strains used.

Author Contributions
K.M.M. conceived and designed experiments, acquired data, performed the analysis and interpretation of data and drafted the figures. F.P. generated Slp1 constructs, yeast strains and performed certain Cdc20 co-immunoprecipitations. K.G.H. conceived the project; helped with analysis and interpretation of data and figure construction; and wrote the manuscript. All authors reviewed the manuscript.

Acknowledgements
We thank Silke Hauf for communicating data prior to publication. We are particularly grateful to Joanna Strachan and Liz Bayne for their advice on ubiquitination analyses and for DUB inhibitors and USP2. We thank Marjolein Mijnders and Kostas Paraskevopoulos for their help in generating anti-Apc15 antibodies; Kathy Gould and Silke Hauf for yeast strains; Shelley Sazer for plasmids; Ivan Yuan for help with the models; and all members of the Hardwick group for their encouragement and comments on the manuscript. This work was supported by a Seed Award from the Wellcome Trust to KGH [108105], the Wellcome Trust Centre for Cell Biology core grant [092076] and a Wellcome Trust PhD Studentship [109091] to FP.
Figure legends

Figure 1. *apc15Δ* mutants are checkpoint defective.
(A) Checkpoint arrest: *nda3* strains were grown to log phase and then shifted to 18°C to de-polymerise microtubules and thereby activate the spindle checkpoint. At the time points indicated, cells were fixed in methanol and the mitotic index scored by analysing the levels and localisation of Cdc13-GFP (cyclin B). Cdc13-GFP localises to the spindle pole bodies in early mitosis. The *apc14Δ* mutant arrests proficiently, but *apc15Δ* and *mad2Δ* mutants do not. This experiment was repeated 3 times (with at least 100 cells scored per strain at each time point) and the data is plotted as the mean +/- SD.

(B) Mad2 and Mph1 overexpression: cultures containing plasmids expressing Mad2 from the *nmt1* promoter or Mph1 from the *nmt41* promoter were induced (- thiamine) for 18 hours and the mitotic index scored by immunostaining of microtubules and spindle length. This experiment was repeated 2 times (with at least 100 cells scored per strain at each time point) and the data is plotted as the mean +/- SD.

(C) MCC assembly is not affected. *cdc25-22 cdc20-FLAG* cultures were synchronised at G2/M by *cdc25* block and release, cell samples taken at 15 minute intervals, Cdc20 immunoprecipitated and analysed for associated checkpoint proteins (Mad3 and Mad2). This experiment was repeated 3 times and a representative example is shown here. See also Figure S1.

Figure 2. *apc14Δ* and *apc15Δ* mutants both perturb the interaction between MCC complexes and the APC/C, but in opposite ways.
(A) APC/C binding time courses: *cdc25-22 apc4-TAP mad3-GFP* cultures were synchronised at G2/M by *cdc25* block and release, cell samples taken at 15 minute intervals, Apc4-TAP pulled down and analysed for associated checkpoint proteins (Mad3 and Mad2). The cells from each time point were fixed in methanol and the number of binucleate cells determined by DAPI staining DNA. This experiment was repeated 2 times and a representative example is shown here.

(B) Checkpoint silencing assay. *nda3KM-311 cdc13-GFP* strains were arrested by shifting to 18°C to de-polymerise microtubules and thereby activate the spindle checkpoint. The Ark1-as kinase was then inhibited with 5μM 1NM-PP1 and live cell samples analysed at 15 minute intervals. Ark1 inhibition activates the APC and Cdc13-GFP is rapidly degraded in wild-type cells. The mitotic index was scored in live cells by analysing the levels and localisation of Cdc13-GFP (cyclin B). In arrested cells this is nuclear with a bright signal at the SPBs. The number of cells
that degrade Cdc13-GFP is shown as a percentage of arrested cells at t=0. This experiment was repeated at least 3 times (with at least 100 cells scored per strain at each time point) and the data is plotted as the mean +/- SD.

(C) nda3-KM311 mutants were grown to log phase and then shifted to 18°C for 6 hours, taking time points at 2 hour intervals. Whole cell immunoblots were then analysed for levels of Apc15 Mad3 and tubulin. This experiment was repeated 3 times and the data is plotted as the mean +/- SD. See Figure S2B for quantitation of Apc15 levels through the cell cycle.

(D) Cells were synchronised in mitosis (60 mins post cdc25 block & release), lysates prepared and then immunodepleted for APC/C complexes through four rounds of Apc4-GFP immunoprecipitation. Apc15 was then immunoprecipitated from the final supernatant. The five sets of beads were then analysed for associated Cdc20 and checkpoint proteins, revealing high levels of free Apc15 post-APC/C depletion. This experiment was repeated 2 times. See also Figure S2.

Figure 3. apc15Δ mutants have significant defects in the processivity of Cdc20Slp1 ubiquitination and fission yeast MCC-Cdc20-APC/C contains two molecules of Cdc20

(A) Cdc20 ubiquitination experiments. The indicated strains all contain the mts3-1 proteasome mutation, to block cells in mitosis independently of the spindle checkpoint and to enrich for poly-ubiquitinated forms of cellular proteins. Cultures were shifted to 36°C three hours prior to harvesting. Whole cell lysates were made in the presence of Dub inhibitors and Cdc20-FLAG was immunoprecipitated, then immunoblotted for Cdc20-FLAG. Long exposure reveals a ladder of slow migrating bands, which are reduced in mad3 and apc15 mutants. The indicated lysates were treated with recombinant hsUSP2 (deubiquitinase) or lambda phosphatase prior to running the gel. Lambda phosphatase has no effect, but USP2 abolishes the ladder confirming that this is due to modification with Ubiquitin. Different modified forms of Cdc20 accumulate in the mts3 and apc15Δ mts3 mutants, with shorter chains in the absence of Apc15. These are indicated with green and red markings by the relevant anti-ubiquitin blots. This experiment was repeated 3 times.

(B) The indicated lanes from panel (A) are expanded to highlight the different modified forms of Cdc20 that accumulate in the mts3, apc15Δmts3 and apc14Δmts3 mutants. Most notably there are shorter chains in the absence of Apc15 (boxed in red).

(C) Cdc20-FLAG and Cdc20-HA co-immunoprecipitate. Cells containing both Cdc20 forms were synchronised in mitosis (60 mins post cdc25 block & release), lysates prepared and Cdc20-FLAG was immunoprecipitated. The immunoprecipitates were then immunoblotted and analysed for associated Cdc20-HA, Mad3-GFP, Mad2 and Apc15. * indicates Cdc20-Cdc20 co-
immunoprecipitation. This experiment was repeated 3 times. The % of metaphase cells is indicated below the blot for the six strains. See also Figure S3.

Figure 4. A free pool of Cdc20M-Mad3-Mad2-Cdc20A accumulates in \textit{apc15\textminus} mutants. (A) The MCC (Cdc20M-Mad3-Mad2) - Cdc20A complex can be found in the APC/C-depleted supernatant and the complex accumulates in \textit{apc15\textminus}. Mitotic lysates were prepared from \textit{cdc25-22 cdc20-HA cdc20-FLAG Apc6Cut6}-GFP (60 mins post \textit{cdc25} block & release) and then immunodepleted for APC/C complexes through four rounds of \textit{cut9appc6}-GFP immunodepletion. Cdc20-FLAG was then immunoprecipitated from the resulting supernatant and immunoblotted to look for associated Cdc20-HA and checkpoint proteins. The MCC (Cdc20M-Mad3-Mad2) - Cdc20A is immunoprecipitated without Apc6Cut6-GFP or Apc15. This experiment was repeated 2 times.

(B) Models of MCC binding and Cdc20 ubiquitination, in wild-type cells and \textit{apc15} mutants. (i) When the checkpoint is on, MCC binds to Cdc20-APC/C and in fission yeast this interaction is stabilised by Apc15. The C-terminus of Mad3 (KEN2 and associated ABBA motifs) is critical for this stable interaction with the second molecule of Cdc20 (Cdc20A). (iia) In \textit{apc15\textminus} cells the MCC could preferentially bind free Cdc20A. (iib) In the absence of Apc15 the MCC complex is weakly bound and Cdc20M inefficiently ubiquitinated. It is released with short ubiquitin chains in the form of Cdc20M-Mad3-Mad2-Cdc20A. Note that both molecules of Cdc20 are released from the APC/C. (iii) In wild-type cells Cdc20M is efficiently poly-ubiquitinated, leading to its degradation. Apc14 function is required for efficient release of MCC. (iv) The checkpoint is off: APC/C is now free to be bound by Cdc20A activator, which can catalyse the poly-ubiquitination of securin and cyclin leading to anaphase onset. See also Figure S4.
References

Figure 1

(A) *nda3* checkpoint arrests

- Wild-type
- *apc14Δ*
- *apc15Δ*
- *mad2Δ*
- *mad2Δ, apc15Δ*

(Bar graph showing % mitotic index over time after shift to 18°C)

(B) Overexpression arrests

- Wild-type
- *apc14Δ*
- *apc15Δ*

(Bar graph showing % mitotic index with *Mph1* and *Mad2*)

(C) MCC assembly

<table>
<thead>
<tr>
<th>Time after release (min)</th>
<th>Cdc20^{Slp1}-FLAG IP</th>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 15 30 45 60 75 90 105 120 135</td>
<td>Cdc20-FLAG</td>
<td>wild-type</td>
</tr>
<tr>
<td>Wild type</td>
<td>Mad3-GFP</td>
<td>Mad2</td>
</tr>
<tr>
<td>apc14Δ</td>
<td>Mad2</td>
<td></td>
</tr>
<tr>
<td>apc15Δ</td>
<td>Mad2</td>
<td></td>
</tr>
<tr>
<td>mph1-KΔ</td>
<td>Mad2</td>
<td></td>
</tr>
</tbody>
</table>
Figure 2

A. Apc4-TAP pull down

<table>
<thead>
<tr>
<th>mins after release</th>
<th>wild-type</th>
<th>apc14Δ</th>
<th>apc15Δ</th>
<th>mph1-kd</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Apc4</td>
<td>Apc4</td>
<td>Apc4</td>
<td>Apc4</td>
</tr>
<tr>
<td>15</td>
<td>Mad3-GFP</td>
<td>Mad3-GFP</td>
<td>Mad3-GFP</td>
<td>Mad3-GFP</td>
</tr>
<tr>
<td>30</td>
<td>Mad2-GFP</td>
<td>Mad2-GFP</td>
<td>Mad2-GFP</td>
<td>Mad2-GFP</td>
</tr>
<tr>
<td>45</td>
<td>60</td>
<td>75</td>
<td>90</td>
<td>105</td>
</tr>
<tr>
<td>120</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B. Silencing assay

- mitotic arrest
- inactivate AuroraB
- checkpoint silenced (escaped)

C. nda3 arrest

- 0 2 4 6 hours
- Apc15
- Mad3
- Tubulin

D. Metaphase arrest

<table>
<thead>
<tr>
<th>beads</th>
<th>lysate</th>
</tr>
</thead>
<tbody>
<tr>
<td>GFP IP</td>
<td>Apc1-GFP</td>
</tr>
<tr>
<td>Apc15 IP</td>
<td>Cdc20</td>
</tr>
<tr>
<td>pp1</td>
<td>pp2</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

- * Apc15
Figure 3

A

anti-FLAG pull down (Cdc20^{Slp1})

<table>
<thead>
<tr>
<th>USP2</th>
<th>PPase inhibitor</th>
</tr>
</thead>
<tbody>
<tr>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

α-FLAG whole membrane long exp

α-FLAG Ub ladder

α-FLAG short exp

Ub

Cdc20

B

Ub chains in wt and <i>apc14Δ</i>

Ub chains in <i>apc15Δ</i>

C

α-FLAG pull down

<table>
<thead>
<tr>
<th>Cdc20<sup>Slp1-HA</sup></th>
<th>Cdc20<sup>Slp1-FLAG</sup></th>
<th>Cdc20<sup>Slp1-HA</sup></th>
<th>Cdc20<sup>Slp1-FLAG</sup></th>
<th>Mad3-GFP</th>
<th>Mad2</th>
<th>Apc15</th>
</tr>
</thead>
<tbody>
<tr>
<td>wild-type</td>
<td>wild-type</td>
<td>mad3Δ</td>
<td>mad3-ken1</td>
<td>mad3-ken2</td>
<td>apc15Δ</td>
<td>+</td>
</tr>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

input

<table>
<thead>
<tr>
<th>wild-type</th>
<th>wild-type</th>
<th>mad3Δ</th>
<th>mad3-ken1</th>
<th>mad3-ken2</th>
<th>apc15Δ</th>
<th>% metaphase cells</th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>68 50 38 44 50 59</td>
</tr>
</tbody>
</table>

% metaphase cells
Figure 4

A

<table>
<thead>
<tr>
<th>Protein</th>
<th>no tag</th>
<th>wild-type</th>
<th>apc15Δ</th>
<th>Cdc20 α-FLAG IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cut9-GFP</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cdc20^β1^-FLAG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cdc20^β1^-HA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mad3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mad2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apc15</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B

Anaphase onset

Checkpoint ON
(i)

MCC

Checkpoint OFF
(iv) Securin/cyclin
Cdc20

apc15Δ
(ii)

MCC

apc15Δ
(iia)

Cdc20 degradation
Figure S1

A

% binucleate cells

Time (mins)

mhd1kd
apc15Δ
apc14Δ
wild-type

B

Cdc20 levels relative to wild-type (a.u.)

apc14Δ apc15Δ mhd1KD wild-type

C

MCC (Mad2) complex levels relative to wild-type

apc15Δ apc14Δ mhd1KD wild-type
Figure S2

A. % binucleate cells over time for different strains: mph1kd, apc15Δ, apc14Δ, and wild-type.

B. Bound MCC levels (a.u.) for different strains: wild-type, apc14Δ, apc15Δ, mph1-KD, and % increase in Apc15.

C. Checkpoint dependant arrest with Thiamine switch off.

D. Diagram of cdc25 block release with time after release (mins).

E. Apc15 switch off with % arrested cells over time (hrs).

F. nmt81-apc15-myc expression with Apc15 and Mad2 levels.
Figure S3

A

<table>
<thead>
<tr>
<th></th>
<th>α-HA IP</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WT</td>
<td>WT</td>
<td>madΔ</td>
<td>madΔken1</td>
<td>madΔken2</td>
<td>apc15Δ</td>
<td>WT</td>
<td>WT</td>
</tr>
<tr>
<td>Cdc20-HA</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Cdc20-FLAG</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>α-HA</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>α-FLAG</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>α-GFP</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>α-Mad2</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>α-Apc15</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

α-FLAG (long exposure) α-HA (long exposure)

B

<table>
<thead>
<tr>
<th></th>
<th>α-GFP IP</th>
<th></th>
<th></th>
<th>Input</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mad3-GFP</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Mad3</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Apc15</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
</tbody>
</table>

α-Mad3

α-Mad2

Mad3-GFP

Mad3

Mad2

Figure S3
<table>
<thead>
<tr>
<th>Cut9-GFP IP</th>
<th>Cdc20-FLAG IP</th>
</tr>
</thead>
<tbody>
<tr>
<td>no tag</td>
<td>Input</td>
</tr>
<tr>
<td>wild-type</td>
<td>unbound</td>
</tr>
<tr>
<td>apc15Δ</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>total</th>
<th>total</th>
<th>sup1</th>
<th>sup2</th>
<th>sup3</th>
<th>total</th>
<th>sup1</th>
<th>sup2</th>
<th>sup3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cut9-GFP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cdc20-FLAG</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cdc20-HA</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mad3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Apc15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tubulin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure S4
Figure S1, related to Figure 1C

(A) cdc25 strains containing wild-type, apc14Δ, apc15Δ and mph1-kd were synchronised in G2 then released in mitosis. Progression through mitosis was monitored by scoring the number of binucleate cells. This shows that the majority of cells in Figure 1C had entered anaphase by 90mins.

(B) Cdc20 levels are increased in apc15Δ. The levels of Cdc20 in lysates from Figure 1C were quantitated and normalised for loading. The plot shows the amount of Cdc20, relative to the level in wild-type, at the time points when Cdc20 levels peaked in each mutant. Plotted as mean with standard deviation (n = 3 experiments).

(C) MCC levels are increased in apc15Δ. The levels of the MCC subunit Mad2 in immunoprecipitations from Figure 1C were quantitated and normalised against immunoprecipitated Cdc20 levels. The plot shows the amount of Mad2 relative to the level in wild-type at the time points when Cdc20 levels peaked in each mutant. Plotted as mean with standard deviation (n = 3 experiments).

Figure S2, related to Figure 2

(A) cdc25 strains along with those containing apc14Δ, apc15Δ or mph1-kd were synchronised in G2 then released into mitosis. Progression through mitosis was monitored by scoring the number of binucleate cells. This data shows that the majority of cells in Figure 2A had entered anaphase by 75mins, and had completed mitosis by 120mins.

(B) Quantitation of MCC levels bound to APC/C. The levels plotted for the 3 strains are the combined levels of bound Mad3 and Mad2, relative to wild-type levels (set at 1.0), at the three time points indicated after cdc25 block/release. This experiment was repeated twice and data is plotted as the mean +/- SD.

(C) Apc15 levels increase in mitosis. Cultures were synchronised at G2/M by cdc25 block and release, cell samples taken at 15 minute intervals and immunoblots analysed for levels of Apc15 and Mad2 as a loading control. This experiment was repeated 4 times and a representative example is shown here. The fold increase of Apc15 levels is shown for each time point and the data is plotted as the mean +/- SD. Previous work has shown that whilst the abundance of several APC/C sub-units remain constant through the cell cycle (e.g. Nuc2 and Cut9 [S1]) others (eg. Cut23 [S2]) also increase in mitosis.

(D) Apc15 'switch OFF' experimental scheme. nda3-KM11 cells with apc15 under the control of the inducible nmt81 promoter were grown in minimal media with (Apc15 OFF) or without (Apc15 ON) thiamine. To ‘switch off’ Apc15 expression the Apc15 ON culture was split into 2 flasks and thiamine added to one of the flasks (Apc15 Switch OFF), then all were incubated for 2hrs at 30°C before shifting their temperature to 17.5°C to induce mitotic arrest. Samples were taken every 2hrs and processed for protein extraction and microscopy.

(E) Mitotic expression of Apc15 is not required for checkpoint arrest. The nda3 mutant Apc15 ON, Apc15 OFF and Apc15 'switch off' cultures (as described in S3C), along with apc15Δ and apc15Δ controls, were shifted to 17.5°C to induce mitotic arrest. Their ability to arrest was determined by cdc13-GFP localisation (this cyclin B accumulates in nuclei and at spindle poles in arrested cells). apc15Δ and Apc15 OFF did not arrest, but the Apc15 'switch OFF' strain was able to arrest as well as Apc15 ON and apc15Δ+ expressed from the endogenous promoter.

(F) Protein extracts from the cells in Figure S3D were prepared and Apc15 levels analysed by immunoblotting (anti-Apc15). No Apc15 was detected in Apc15 OFF (* indicates a non-specific band recognised by the anti-Apc15 antibody). Importantly, the Apc15 levels in Apc15 ON were comparable to levels expressed from the endogenous promoter and the Apc15 levels had decreased 2 hrs after expression was repressed (Switch OFF) and thus before the checkpoint was activated using the nda3 mutant.

Figure S3, related to Figure 3B

(A) Cdc20-FLAG and Cdc20-HA co-immunoprecipitate (related to Figure 4A). Cells containing both Cdc20 forms were synchronised in mitosis (60 mins post cdc25 block & release), lysates prepared and Cdc20-FLAG or Cdc20-HA was immunoprecipitated. The immunoprecipitates were then immunoblotted and analysed for associated Cdc20-HA (or Cdc20-FLAG), Mad3-GFP, Mad2 and Apc15. The second Cdc20 form is associated
with each immunoprecipitated Cdc20, and mad3 mutants abolish this interaction. Importantly, the interaction with between two Cdc20 molecules is dependent on KEN2, as well as KEN1. It is not dependent on Apc15. This experiment was repeated 3 times.

(B) Mad3 and Mad3-GFP do not co-immunoprecipitate. Cells expressing both Mad3 forms were synchronised in mitosis (60 mins post cdc25 block & release), lysates prepared and Mad3-GFP was immunoprecipitated. No untagged Mad3 protein was detectable in these IPs. This argues against the presence of MCC dimers.

Figure S4, related to Figure 4A

(A) Mitotic lysates from Figure 4A. These were immunoblotted for the indicated proteins, with tubulin being used as a loading control.
Supplemental Experimental Procedures

Deletion of apc14 and apc15
To replace the entire open reading frame with NatR, KanR or HphR, the resistance cassettes were amplified from pFA6 vectors by PCR using compatible long primers [S3] with 5’ sequences homologous to the 5’ and 3’ UTRs of apc14 or apc15. Resulting PCR products were transformed [S4] into RA366 and the gene deletions confirmed by PCR.

Mitotic arrests
nd3-KM311 (cs) cells were grown overnight in YES media at 30°C to mid-log phase then shifted to the restrictive temperature of 17.5°C. Cells were fixed in 100% ice cold methanol at each time point. For microscopy, cells were mounted with 20 μg/ml DAPI (Sigma) and visualized using an Intelligent Imaging Innovations Marianas microscope (Zeiss Axiovert 200M, using a 100x 1.3NA objective lens), CoolSnap CCD, and Slidebook software (Intelligent Imaging Innovations, Inc., Boulder, CO).

Mph1 was overexpressed [S5] from the nmt41 promoter at the endogenous locus. To induce Mph1 expression cells were precultured in minimal medium with supplements (PMGS) and 15μM thiamine, cells were washed 3 times in H2O to remove thiamine then grown in PMGS at 30°C for 18 hours before analysis. Mitotic arrest was determined by immunostaining microtubules with TAT1 antibody (kindly provided by Keith Gull, Oxford, UK). Mad2 was overexpressed from the multicopy pRep1-Mad2 in the same way [S6].

To synchronise cells in mitosis temperature sensitive (ts) cdc25-22 cells were grown overnight in YES medium at 25°C to mid-log phase and then shifted to 36°C for 3.5 hrs to arrest cells in G2. To release into mitosis, cultures were rapidly cooled down to 25°C in iced-water and then incubated at 25°C for the experimental time course. Progression through mitosis was monitored by DAPI staining and counting binucleate cells.

Silencing Assay
The silencing assay was carried out as in [S7]. Briefly, cells were arrested in metaphase using nd3-KM311 grown at 17.5°C for 5.5hrs 5µM 1NM-PP1 was added and the degradation of Cdc13-GFP analysed by microscopy of live cells every 15mins. The number of cells degrading Cdc13-GFP was determined as a percentage of the number of metaphase arrested cells before 1NM-PP1 addition.

Immunoprecipitations
MCC (Cdc20⁵⁶¹-FLAG) immunoprecipitation
Cells expressing Cdc20⁵⁶¹-FLAG [S8] were pre-synchronised in G2 by cdc25-22 arrest then release into mitosis. Harvested cells were pelleted at 4°C and snap frozen on dry ice. Proteins were extracted in lysis buffer (50 mM HEPES pH 7.5, 75 mM KCl, 1 mM MgCl₂, 1 mM EGTA, 0.1% TritonX-100, 1 mM sodiumvanadate, 0.1 μM microcystin, 10 µg/ml CLAAPE (chymostatin, leupeptin, aprotinin antipain pepstatin, E64) ‘mini complete EDTA-free protease inhibitor’ tablet (Roche) and 1 mM pefabloc). Cells were resuspended in lysis buffer and bead-beaten twice for 20 seconds. Extracts were incubated for 20 min with anti-FLAG (M2, Sigma) antibodies that had been pre-coupled to Dynabeads (Invitrogen). The immunoprecipitated complexes were washed three times with lysis buffer, twice in PBS and then analysed by immunoblotting with sheep anti-GFP antibody and sheep anti-Mad2 antibody.

Anaphase promoting complex interaction
Cells expressing TAP-tagged Lid1 (Ape4) (original strain kindly provided by Kathy Gould, Vanderbilt, USA) immunoprecipitated as above, but were incubated for 30 min with IgG-coupled Dynabeads (Invitrogen), which bind to Apc4-TAP.

Blot quantitation
Samples from all strains were collected on one day and then analysed the next day in parallel. Time course samples were processed at the same time and the full set of IPs were run on gels and transferred to membrane in parallel (whole cell lysates were typically run the following day). eg. Membrane organisation for Fig 1: wild-type and apc14A IPs were on one membrane, mphp1-KD and apc15A IPs on another. The input lysates were run and transferred to membranes as for the IPs. Note, for Fig1 the same membrane was first probed with anti-FLAG (Cdc20⁵⁶¹) and anti-Mad2, then stripped and re-probed with anti-GFP (Mad3), so one pipetted IP sample was being analysed for all 3 proteins. For Fig2, anti-GFP antibody recognised lid1-TAP, Mad2-GFP and Mad3-GFP. For each antibody all of the membranes were exposed at the same time to a single piece of film for each exposure.

Supplemental Experimental Procedures

Deletion of apc14 and apc15
To replace the entire open reading frame with NatR, KanR or HphR, the resistance cassettes were amplified from pFA6 vectors by PCR using compatible long primers [S3] with 5’ sequences homologous to the 5’ and 3’ UTRs of apc14 or apc15. Resulting PCR products were transformed [S4] into RA366 and the gene deletions confirmed by PCR.

Mitotic arrests
nd3-KM311 (cs) cells were grown overnight in YES media at 30°C to mid-log phase then shifted to the restrictive temperature of 17.5°C. Cells were fixed in 100% ice cold methanol at each time point. For microscopy, cells were mounted with 20 μg/ml DAPI (Sigma) and visualized using an Intelligent Imaging Innovations Marianas microscope (Zeiss Axiovert 200M, using a 100x 1.3NA objective lens), CoolSnap CCD, and Slidebook software (Intelligent Imaging Innovations, Inc., Boulder, CO).

Mph1 was overexpressed [S5] from the nmt41 promoter at the endogenous locus. To induce Mph1 expression cells were precultured in minimal medium with supplements (PMGS) and 15μM thiamine, cells were washed 3 times in H2O to remove thiamine then grown in PMGS at 30°C for 18 hours before analysis. Mitotic arrest was determined by immunostaining microtubules with TAT1 antibody (kindly provided by Keith Gull, Oxford, UK). Mad2 was overexpressed from the multicopy pRep1-Mad2 in the same way [S6].

To synchronise cells in mitosis temperature sensitive (ts) cdc25-22 cells were grown overnight in YES medium at 25°C to mid-log phase and then shifted to 36°C for 3.5 hrs to arrest cells in G2. To release into mitosis, cultures were rapidly cooled down to 25°C in iced-water and then incubated at 25°C for the experimental time course. Progression through mitosis was monitored by DAPI staining and counting binucleate cells.

Silencing Assay
The silencing assay was carried out as in [S7]. Briefly, cells were arrested in metaphase using nd3-KM311 grown at 17.5°C for 5.5hrs 5µM 1NM-PP1 was added and the degradation of Cdc13-GFP analysed by microscopy of live cells every 15mins. The number of cells degrading Cdc13-GFP was determined as a percentage of the number of metaphase arrested cells before 1NM-PP1 addition.

Immunoprecipitations
MCC (Cdc20⁵⁶¹-FLAG) immunoprecipitation
Cells expressing Cdc20⁵⁶¹-FLAG [S8] were pre-synchronised in G2 by cdc25-22 arrest then release into mitosis. Harvested cells were pelleted at 4°C and snap frozen on dry ice. Proteins were extracted in lysis buffer (50 mM HEPES pH 7.5, 75 mM KCl, 1 mM MgCl₂, 1 mM EGTA, 0.1% TritonX-100, 1 mM sodiumvanadate, 0.1 μM microcystin, 10 µg/ml CLAAPE (chymostatin, leupeptin, aprotinin antipain pepstatin, E64) ‘mini complete EDTA-free protease inhibitor’ tablet (Roche) and 1 mM pefabloc). Cells were resuspended in lysis buffer and bead-beaten twice for 20 seconds. Extracts were incubated for 20 min with anti-FLAG (M2, Sigma) antibodies that had been pre-coupled to Dynabeads (Invitrogen). The immunoprecipitated complexes were washed three times with lysis buffer, twice in PBS and then analysed by immunoblotting with sheep anti-GFP antibody and sheep anti-Mad2 antibody.

Anaphase promoting complex interaction
Cells expressing TAP-tagged Lid1 (Ape4) (original strain kindly provided by Kathy Gould, Vanderbilt, USA) immunoprecipitated as above, but were incubated for 30 min with IgG-coupled Dynabeads (Invitrogen), which bind to Apc4-TAP.

Blot quantitation
Samples from all strains were collected on one day and then analysed the next day in parallel. Time course samples were processed at the same time and the full set of IPs were run on gels and transferred to membrane in parallel (whole cell lysates were typically run the following day). eg. Membrane organisation for Fig 1: wild-type and apc14A IPs were on one membrane, mphp1-KD and apc15A IPs on another. The input lysates were run and transferred to membranes as for the IPs. Note, for Fig1 the same membrane was first probed with anti-FLAG (Cdc20⁵⁶¹) and anti-Mad2, then stripped and re-probed with anti-GFP (Mad3), so one pipetted IP sample was being analysed for all 3 proteins. For Fig2, anti-GFP antibody recognised lid1-TAP, Mad2-GFP and Mad3-GFP. For each antibody all of the membranes were exposed at the same time to a single piece of film for each exposure.
Immunoprecipitates from such time courses were analysed by ImageJ and corrected for loading (and normalized for the level of Cdc20Slp1 in the IP).

For analysis of Cdc20\(^{\text{Slp1}}\)-ubiquitin
Cells were synchronised in mitosis as above and harvested 60 min after release from the G2/M block. Lysates were prepared as above with addition of 10mM MG132, 40mM PR-619 200mM 1,10-phenanthroline, 500mM iodoacetamide and 400mM NEM to the lysis buffer.

Analysis of Cdc20\(^{\text{Slp1}}\)-Cdc20\(^{\text{Slp1}}\) complexes
A second copy of Cdc20 was inserted in the genome by integrating cdc20\(^{\text{Slp1}}\)-FLAG with 5’ and 3’ regulatory regions into the ura4 locus. An 800bp cdc20\(^+\) promoter sequence and the cdc20-FLAG-hyg\(^+\) open reading frame (with 3’UTR sequences) was amplified by PCR and cloned to the Stu1 site of pBluescript-ura4\(^+\) by Gibson assembly reaction (Gibson et al., 2009). Endogenous cdc20\(^{\text{Slp1}}\) was HA tagged. Cells were synchronised in mitosis and lysates prepared as above, then extracts were incubated for 20 min with anti-FLAG (M2, Sigma) or anti-HA (12CA5) antibodies that had been pre-coupled to Dynabeads (Invitrogen).

APC depletions
nda3-KM311 apc1-GFP cells were grown at 30°C in concentrated rich medium to high densities then arrested in mitosis by rapid cooling on iced-water and shifting cultures to 18°C for 8 hours. Cells were harvested by centrifugation at 3,500g for 8 minutes at 4°C. Pelleted cells were frozen into pea-sized drops using liquid nitrogen and stored at -80°C. Approximately 15 g of cell mass was disrupted using a mixing mill (MM400; Retsch, Germany) with grinding balls under cryogenic conditions (5 cycles of 3 minutes at 30 Hz).

Lysates were reconstituted with 2.5g of yeast powder and 5ml lysis buffer (50 mM HEPES pH 7.5, 75 mM KCl, 1 mM MgCl\(_2\), 1 mM EGTA, 1 mM sodium vanadate, 0.1 µM microcystin, 10 µg/ml CLAAPE (chymostatin, leupeptin, aprotinin antipain pepstatin, E64), a ‘mini complete EDTA-free protease inhibitor’ tablet (Roche) and 1 mM Pefabloc). Triton X100 (0.1% final) was added after lysates were resuspended. Following further lysis, by sonication, cell debris was pelleted at 14,000g for 15 min at 4°C and the supernatant was filtered through a 1.6 µm syringe filter. Cleared lysates were incubated with precoupled anti-GFP antibodies, that had been pre-coupled to Dynabeads (Invitrogen), for 30 min. The resulting supernatant was incubated with fresh GFP Dynabeads for 30min and Dynabeads with bound proteins were washed three times with lysis buffer before eluting proteins in 1x SDS sample buffer. This process was repeated 3 times, then the 4\(^{\text{th}}\) supernatent was incubated with pre-coupled anti-Apc15 Dynabeads for 30 min at 4°C

Ap\(^{Cut9}\)-GFP depletions were carried out as above except, cdc25-22 cut9-GFP cells were grown at 25°C, synchronised at G2/M, then cells were harvested 60min after release into mitosis. Lysates were prepared as for MCC immunoprecipitation by bead beating 0.2g cell pellets twice for 30 sec in lysis buffer with 0.1% TritonX-100. Lysates were incubated for 15 min with anti-GFP antibodies that had been pre-coupled to Dynabeads (Invitrogen) and then 20min with anti-FLAG (M2, Sigma) Dynabeads.

Apc15 Switch OFF
The apc15 promoter was replaced by the nmt81 promoter. Cells were grown in PMGS–thiamine at 30°C for 24 hours to ensure full expression of Apc15, then 15uM thiamine was added to repress transcription of Apc15. The cells were incubated for a further 2 hrs to ensure complete repression before inducing mitotic arrest using the cold sensitive nda3-KM311 mutation. Samples were taken every 2 hrs and snap frozen on dry ice for protein extraction and immunoblot analysis of Apc15 levels, or fixed in ice cold methanol for microscopy. Ability to arrest in mitosis was determined by Cdc13-GFP localisation.

Apc15 antibodies
Polyclonal anti-Apc15 antibodies were generated in sheep using 6xHis-Apc15 as antigen. These sera were affinity purified as described previously [S9] using Apc15-MBP coupled to Affigel 10 (Bio-Rad).
List of fission yeast strains used in this study

Figure 1

- **JZ108** nda3-KM311 cdc13-GFP::leu2+ leu1-32 ura4D18
- **KM905** nda3-KM311 cdc13-GFP::leu2 apc14Δ::kanR leu1-32 ura4D18
- **KM916** nda3-KM311 cdc13-GFP::leu2 apc15Δ::kanR leu1-32 ura4D18
- **VV1369** nda3-KM311 cdc13-GFP::leu2 mad2Δ::kanR leu1-32 ura4D18
- **KM936** nda3-KM311 cdc13-GFP::leu2 mad2Δ::kanR apc13Δ::kanR leu1-32 ura4D18
- **KM910** nmt41Mph1::NAT leu1-32 ura4D18
- **KM903** nmt41Mph1::NAT apc14Δ::kanR leu1-32 ura4D18
- **KM910** nmt41Mph1::NAT apc15Δ::kanR leu1-32 ura4D18
- **KP114** leu1-32 ura4D18 ade6-216
- **KM888** apc15Δ::kanR leu1-32 ura4D181 pRep1-Mad2

Figure 2

- **MS304** cdc25-22 slp1-FLAG::hph mad3-GFP::his3 Δ leu1-32 ura4D18
- **YJ2917** cdc25-22 slp1-TAP::KalT mad3-GFP::his3 Δ mph1-Δ leu1-32 ura4D18
- **KM986** cdc25-22 slp1-TAP::KalT mad3-GFP::his3 Δ apc15Δ::NAT leu1-32 ura4D18
- **KM989** cdc25-22 slp1-TAP::KalT mad3-GFP::his3 Δ apc14Δ::NAT leu1-32 ura4D18
- **VV1381** arkl-a3::hyg cdc13-gfp::leu nda3-KM11 leu1-32 ura4D18
- **VV1403** arkl-a3::hyg cdc13-gfp::leu nda3-KM11 bub3::ura4+ leu1-32 ura4D18
- **KM870** arkl-a3::hyg cdc13-gfp::leu nda3-KM11 apc14Δ::kanR leu1-32 ura4D18

Figure 3

- **KM1146** cdc25-22 slp1-FLAG::hph mad3-GFP::his3 Δ leu1-32 ura4D18
- **KM1319** mts3-1 slp1-FLAG::hpyR leu1-32 ura4D18
- **KM1320** mts3-1 slp1-FLAG::hpyR apc15Δ::NAT leu1-32 ura4D18
- **KM1321** mts3-1 slp1-FLAG::hpyR apc14Δ::NAT leu1-32 ura4D18
- **KM1336** mts3-1 slp1-FLAG::hpyR apc15Δ::NAT mad3-KEN2-GFP::his3 leu1-32 ura4D18
- **KM1344** mts3-1 slp1-FLAG::hpyR apc15Δ::NAT mad3-GFP::his3 leu1-32 ura4D18
- **KM1358** mts3-1 slp1-FLAG::hpyR mad3Δ::ura4 leu1-32 ura4D18
- **KM1364** mts3-1 slp1-FLAG::hpyR apc15Δ::NAT mad3-KEN1-GFP::his3 leu1-32 ura4D18
- **FP3** cdc25-22 slp1-HA::kanR ura4::slp1-FLAG::hpyR mad3-GFP::his3 Δ leu1-32 ura4D18
- **KM1313** cdc25-22 slp1-HA::kanR ura4::slp1-FLAG::hpyR mad3Δ::ura4 leu1-32 ura4D18
- **KM1314** cdc25-22 slp1-HA::kanR ura4::slp1-FLAG::hpyR mad3-KEN2-GFP::his3 leu1-32 ura4D18
- **KM1315** cdc25-22 slp1-HA::kanR ura4::slp1-FLAG::hpyR apc15Δ::NAT mad3-GFP::his3 Δ leu1-32 ura4D18
- **KM1316** cdc25-22 slp1-HA::kanR ura4::slp1-FLAG::hpyR mad3-KEN1-GFP::his3 leu1-32 ura4D18

Figure 4

- **KM1465** cdc25-22 slp1-HA::kanR ura4::slp1-FLAG::hpyR cut90Δv::GFP::kanR leu1-32 ura4D18
- **KM1466** cdc25-22 slp1-HA::kanR ura4::slp1-FLAG::hpyR cut90Δv::GFP::kanR apc15Δ::NAT leu1-32 ura4D18

Figure S2

- **KM1179** nda3-KM311 cdc13-GFP::leu1 nat:mm81-apc15-stry::kanR

Figure S3

- **KM1470** cdc25-22 mad3Δ::ura4D18
- **KM1471** cdc25-22 mad3Δ::ura4 leu1::mad3-GFP ura4D18
Supplemental References:

