Multi-electron reduction of sulfur and carbon disulfide using binuclear uranium(III) borohydride complexes†

Polly L. Arnold,*a Charlotte J. Stevens,a Nicola L. Bell,a Rianne M. Lord,a Jonathan M. Goldberg,b Gary S. Nichola and Jason B. Love*a

The first use of a dinuclear U(III)/U(III) complex in the activation of small molecules is reported. The octadentate Schiff-base pyrrole, anthracene-hinged ‘Pacman’ ligand L4 combines two strongly reducing U(III) centres and three borohydride ligands in [(M(THF))2(U(BH4))2(μ-BH4)(L4)](THF)2 1- M, (M = Li, Na, K). The two borohydride ligands bound to uranium outside the macrocyclic cleft are readily substituted by aryloxide ligands, resulting in a single, weakly-bound, encapsulated endo group 1 metal borohydride bridging the two U(III) centres in [(U(OAr))2(μ-MBH4)(L4)](THF)2 2-M (OAr = OC6H2–2,4,6, M = Na, K). X-ray crystallographic analysis shows that, for 2-K, in addition to the endo-BH4 ligand the potassium counter-ion is also incorporated into the cleft through η2-interactions with the pyrroles instead of extraneous donor solvent. As such, 2-K has a significantly higher solubility in non-polar solvents and a wider U–U separation compared to the ‘ate’ complex 1. The cooperative reducing capability of the two U(III) centres now enforced by the large and relatively flexible macrocycle is compared for the two complexes, recognising that the borohydrides can provide additional reducing capability, and that the aryloxide-capped 2-K is constrained to reactions within the cleft. The reaction between 1-Na and S8 affords an insoluble, presumably polymeric paramagnetic complex with bridging uranium sulfides, while that with CS2 results in oxidation of each U(III) to the notably high UV oxidation state, forming the unusual trithiocarbonate (CS3)2∧ as a ligand in [(U(CS3))2(μ-κ2,κ2-CS3)(L4)] (4). The reaction between 2-K and S8 results in quantitative substitution of the endo-BH4 by a bridging persulfoxide (S2)2∧ group and oxidation of each U(III) to U(V), yielding [(U(OAr))2(μ-κ2,κ2-2-S2)(L4)] (5). The reaction of 2-K with CS2 affords a thermally unstable adduct which is tentatively assigned as containing a carbon disulfido (CS2)2∧ ligand bridging the two U centres (6a), but only the mono-bridged sulfido (S2)2∧ complex [(U(OAr))2(μ-S)(L4)] (6) is isolated. The persulfoxido complex (5) can also be synthesised from the mono-bridged sulfido complex (6) by the addition of another equivalent of sulfur.

Introduction

The U(III) oxidation state is strongly reducing and its molecular complexes are well known for their ability to activate small molecules1-3 such as arenes,4,5 N2,6-10 CO11-19 and CO2.20-26 The coordination of actinides with chalcogenide ligands has begun to attract increasing interest.27-31 Understanding and controlling the activation and functionalisation of chalcogen elements and their compounds is important in the petroleum industry and in functional polymer technologies, and is increasingly of interest for new methods in organic and biomimetic syntheses32, both with d-block33-41 and rare earth metal42,43 complexes. The kinetically facile nature of the soft atom transfer reactions with the harder metal cations suggests opportunities in catalytic chalcogen atom-transfer processes, yet the binding mode and stoichiometry of the incorporated chalcogen atoms/fragments is as yet unpredictable and so far appears to be primarily dependent on subtle differences in steric accessibility of the reducing metal centre(s). Furthermore, complexes that exhibit different binding modes with polarisable atoms such as these can provide new insight into the role of f- and other valence orbitals in actinide-ligand bonding which is fundamentally important to improving the safe handling of nuclear waste materials.46-49

Almost all instances of the activation of sulfur or sulfur-containing small molecules by an actinide involve the assembly of two mononuclear U(III) centres around one or more...
atoms of elemental sulfur, or an S atom from CS₂, providing two reducing electrons to form \([U^{III}]_2\) products, occasionally with further incorporation of CS₂. Products are observed, e.g. in \([K(18\text{-crown-}6)]_2[U\{SiMe_3(SiMe_2NPh)_{3}tacn]\] and \([U\{(\text{AdArO})_3tacn]\] which can also be formed directly from the UIII precursor and CS₂. Finally, the 1st structurally characterised binuclear \([UIII]_2\) complex incorporating up to four S atoms has also been observed, e.g. in \([K(18\text{-crown-}6)]_2[U\{OSi(O(SiMe_3)_{2})\}_{2}]\), \([U\{(SiMe_2NPh)_{3}tacn]\]}, \([U\{((SiMe_2NPh)_{3}tacn]\}]_2\), and \([U\{(AdArO)_{3}tacn]\]}_2\), \([U\{(SiMe_2NPh)_{3}tacn]\]}_2\].

The larger of the two UIII siloxide complexes \([U\{(SiMe_2NPh)_{3}tacn]\]}_2\) was also used as a starting material for the synthesis of other \([UIII]_2\) complexes, including \([K\{(SiMe_2NPh)_{3}tacn]\}U\{(SiMe_2NPh)_{3}tacn]\}U\{(SiMe_2NPh)_{3}tacn]\}]_2\), \([U\{K(18\text{-crown-}6)_{2}U\{OSi(O(SiMe_3)_{2})\}_{2}]\}]_2\), and \([U\{(AdArO)_{3}tacn]\}]_2\), \([U\{(SiMe_2NPh)_{3}tacn]\]_2\].

We reasoned that the preorganisation of two UIII centres could enhance the rate and selectivity of small molecule activation in the now two-body problem. In light of this we reported the first structurally characterised binuclear \([UIII]_2\) complex of a single ligand using the small cavity macrocycle \(trans\)-calix[2]benzene[2]pyrrole. We further showed that the reaction between \([U\{(SiMe_2NPh)_{3}tacn]\}U\{(SiMe_2NPh)_{3}tacn]\}U\{(SiMe_2NPh)_{3}tacn]\}]_2\), \([U\{(AdArO)_{3}tacn]\}]_2\), \([U\{(SiMe_2NPh)_{3}tacn]\}]_2\), and \([U\{(AdArO)_{3}tacn]\}]_2\) can also be formed directly from the UIII precursor and CS₂. Finally, the ‘ate’ UIII siloxide complex \([K\{18\text{-crown-}6\}]_2[U\{OSi(O(SiMe_3)_{2})\}_{2}]\) has been shown to react with CS₂ to form a variety of potassium-bound reduction products including \([K\{18\text{-crown-}6\}]_2[U\{O(SiMe_2NPh)_{3}tacn]\}]_2\), \([U\{(AdArO)_{3}tacn]\}]_2\), \([U\{(SiMe_2NPh)_{3}tacn]\}]_2\), which can also be formed directly from the UIII precursor and CS₂.

Results and discussion

The reaction of \(H_4L^A\) with \(KN(SiMe_3)_{2}\), followed by \(U(BH_4)^{2-}(THF)^{2-}\) affords \([K\{THF\}]_2[U\{(BH_4)^{2-}(THF)^{2-}\}]_2[1-K\text{ in good yield; 1-K is the potassium analogue of our recently reported sodium complex }1\text{-Na}]. Reactions of 1-K to target exo-X ligand substitution with amide, alkoxide, aryloxide, cyclopentadienyl, alkyl and allyl anions were investigated (see ESI).

The most successful reactions, as evidenced by \(^1\text{H} NMR\) spectroscopy are those between 1-K and two equivalents of the aryloxide MOAr where \(M = K, Na\) and \(Ar = C_6H_2^{2}(5\text{-Bu})\)_2, 1-K (Scheme 1). The \(^1\text{H} NMR\) spectra of both reaction mixtures are very similar and each display a new set of very broad, paramagnetically shifted resonances of low intensity, which nevertheless are consistent with a single, symmetric macrocyclic ligand environment. A large quantity of dark green crystals formed over 4 h in the 1-Na/KOAr reaction mixture. Analysis of these by X-ray diffraction revealed their composition to be \([U(OAr)]_2[endo-\mu-\text{KBH}_4]_2[L^A]\) \(2\text{-K}\) in which the two exo \(BH_4^-\) ligands have been exchanged for aryloxides and the Na’ cation of 1-Na has been exchanged for a K’ cation which notably now binds within the macrocyclic cleft (Fig. 1). Single crystals also formed in the 1-Na/NaOAr reaction mixture, but only after standing for two weeks. These were characterised as the analogous Na’-containing product \([U(OAr)]_2[endo-\mu-\text{KBH}_4]_2[L^A]\) \(2\text{-Na}\) in which again the Na’ cation is also located within the macrocyclic cleft (Fig. 1). The in situ NMR scale reaction between 1-K and NaOAr yielded resonances consistent with the formation of only 2-K. Interestingly, no reaction occurs between 1-K and two equivalents of LiOAr. On a preparative scale, the reaction of 1-Na with KOAr in THF allows crystalline 2-K to be isolated in 59% yield. Crystalline 2-K is insoluble in THF and pyridine but sparingly soluble in toluene and hot benzene. The \(^1\text{H} NMR\) spectrum of 2-K in C_dH_4 is sharper than that of the crude product formed from an in situ synthesis in d_3-THF and contains paramagnetically shifted resonances corresponding to a symmetric macrocycle and two equivalent aryloxide ligands. One resonance that integrates to 18H is seen at 4.1 ppm for the protons of the aryl-ortho-Bu groups and one of integral 36H at 0.1 ppm for the four para-Bu groups of the two aryloxides. The resonance corresponding to the four equivalent meta protons of the aryloxides cannot be distinguished from the macrocycle resonances of equal integral. A single broad resonance appears in the \(^{11}\text{B} NMR\) spectrum at 188 ppm, attributed to the endo-\text{KBH}_4, in comparison to the two resonances seen at 212 ppm (1B, endo-\text{BH}_4) and 207 (2B, exo-\text{BH}_4) for 1-K. The solution state IR for complex 2-K in THF shows a single stretch at 2280 cm^-1 corresponding to a symmetric \(U\{\mu^2-\eta^2, \mu^2-\eta^2\text{-H}_2\text{BH}_4\}\)U ionic
binding mode in solution, identical to that observed in the solid state for 1-Na.

The geometry of each UIII centre in 2-K (Fig. 1) is best described as a distorted pentagonal bipyramid. The coordination environment of the UIII centre shows five equatorial donor atoms, comprising the four nitrogen atoms of the macrocycle and one oxygen atom of THF solvent, which sits between the macrocyclic hinges, and the borohydride. The aryloxide ligand occupies the exo axial coordination site and the BH₄ ligand (hydrogens not located) sits within the macrocyclic cleft bridging the two UIII centres with long U–B distances of about 3.3 Å (Table 1).

The phenyl rings of the aryloxide ligands are perpendicular to the anthracenyl hinges of the macrocycle and the angle at the O atom (U1–O1–Cipso = 154.0(5)° (2-K), 153.3(6)° (2-Na)) orients the ortho-°Bu groups away from the THF donor. The UIII cations are considerably displaced out of the macrocycle N₄ donor planes, away from the intermetallic cleft, by 0.70 Å in 2-K and 0.69 Å in 2-Na, and the sum of the four N–U–N angles in the two structures is 337.9(8)° and 338.1(8)° respectively. The separation of the bulky aryloxide ligand from the N₄ plane of the macrocycle is imposed by steric demand. Therefore, the displacement of the UIII centres out of the N₄ plane is a compromise between optimised U–OAr and U–N bond lengths. The resulting mean U–N(imine) distances of 2.65 Å in both complexes and the mean U–N(pyrrolide) distances of 2.50 Å (2-K) and 2.51 Å (2-Na) are lengthened compared to those observed in 1-Na (2.62 Å and 2.49 Å). The U1–O1 bond lengths in 2-K and 2-Na are 2.231(5) Å and 2.245(6) Å respectively (Table 1). These are longer than the UIII–OAr distances in [U(OC₆H₃iPr₂-2,6)₃]⁵⁴ and [U(OC₆H₃tBu₂-2,6)₃]⁵⁹ which range from 2.149(4) to 2.214(7) Å but similar to the mean U–OAr distance of 2.22 Å observed in the constrained aryloxide TACN complexes U[[RArO]₃(TACN)]⁶⁰,⁶¹.

The main difference between the structures of 2-K and 2-Na is the binding of the K⁺ and Na⁺ cations within the cleft. The larger K⁺ ion is sandwiched symmetrically between all four pyrrolide rings (Fig. 1a) with K1–[pyr]centroid separations of 3.154(2) Å and 3.153(2) Å. By contrast, the smaller Na⁺ ion is disordered over two sites about the crystallographic C₂ axis, presumably because it cannot effectively bridge all four

Table 1 Comparison of selected distances (Å) and angles (°) in the structures of 2-K and 2-Na

<table>
<thead>
<tr>
<th></th>
<th>2-K</th>
<th>2-Na</th>
</tr>
</thead>
<tbody>
<tr>
<td>U1···U1’</td>
<td>6.5881(3)</td>
<td>6.5265(7)</td>
</tr>
<tr>
<td>Mean U–Nun</td>
<td>2.65</td>
<td>2.65</td>
</tr>
<tr>
<td>Mean U–Npyr</td>
<td>2.50</td>
<td>2.51</td>
</tr>
<tr>
<td>U1–N₄ plane</td>
<td>0.70</td>
<td>0.69</td>
</tr>
<tr>
<td>U1–O1</td>
<td>2.231(5)</td>
<td>2.245(6)</td>
</tr>
<tr>
<td>U1–B1</td>
<td>3.312(1)</td>
<td>3.269(1)</td>
</tr>
<tr>
<td>U1–O2</td>
<td>2.554(5)</td>
<td>2.592(6)</td>
</tr>
<tr>
<td>B1–M1</td>
<td>3.036(11)</td>
<td>2.747(2)</td>
</tr>
<tr>
<td>M1–[pyr]centroid</td>
<td>3.154(2), 3.153(2)</td>
<td>2.85(4), 3.04(2), 3.08(4), 3.61(2)</td>
</tr>
<tr>
<td>U1–B1–U1’</td>
<td>168.2(4)</td>
<td>173.0(6)</td>
</tr>
<tr>
<td>O1–U1–B1</td>
<td>178.3(2)</td>
<td>177.6(1)</td>
</tr>
<tr>
<td>U1–O1–Cipso</td>
<td>154.0(5)</td>
<td>153.3(6)</td>
</tr>
</tbody>
</table>

Fig. 1 Solid-state structure of 2-K showing side view (a) and front view (b), and solid-state structure of 2-Na, side view (c). For clarity, the major orientation of the disordered °Bu groups in 2-K is shown in (a) and the meso methyl groups, aryloxide substituents, THF molecules, and tert-butyl groups are omitted from (b); all H atoms and lattice solvent are also omitted (displacement ellipsoids are drawn at 50% probability). Full details for 2-Na are in the ESI.†
The effect of the out-of-eclft distortion of the UIII centres is a marked lengthening of both the \(\ldots \) and the \(\ldots \) (endo-BH4) separations. The \(\ldots \) and \(\ldots \) separation is 6.5881(3) \(\AA \) in \(2-K \) and 6.5265(7) \(\AA \) in \(2-Na \) compared to 5.9243(3) \(\AA \) in \(1-Na \). This raises the question of whether there is a bond between the UIII ions and the endo BH4 group in \(2-K \) and \(2-Na \) or whether the BH4− group is held within the eclft by association with its M+ counter-ion. The observed \(^{11} \)B NMR shift of the endo BH4− group in \(2-K \) (188 ppm) is significantly paramagnetically shifted from that of free KBH4 (−40 ppm) indicating that there is some electronic overlap between the UIII centres and the BH4− group in solution. Therefore, it is likely that in-clft cation binding in \(2-K \) and \(2-Na \) contributes to the stabilisation of a very weak and long U(BH4)−U interaction.

Reactions of 1 and 2

Reactions to compare the small molecule activation chemistry of \(1-Na \) and \(2-K \) were carried out, noting both the high number of potential reducing equivalents in \(1 \) and the weak binding of the central, and unsolvated MBH4 in \(2 \).

Complex \(1-Na \) was dissolved in THF and 0.75 equivalents of \(S_8 \) was added, immediately forming a red solution of a product we assign as \(\text{[U}_2\text{S}_2(L)^4]_m \), \(m \) from elemental analysis, and analysis of the boron–sulfur–containing by-products of the reaction, Scheme 2. The \(^1 \)H NMR spectrum of a freshly made solution shows paramagnetically shifted resonances between +34 and −23 ppm that correspond to a symmetrical macrocycle environment; some H2 is also seen in solution. The \(^11 \)B NMR spectrum contains two triplets in a 4 : 1 ratio at −6.2 and −16.5 ppm, the latter of which can be assigned to \(\text{Na}_2[\text{BH}_2\text{S}_4] \), the caesium analogue of which has previously been made from the reaction between CsBH4, BH3 and H2S (eqn (1)).

The initially-soluble reaction product precipitates from the reaction mixture over a 12 h period and remains insoluble in common polar aprotic solvents. This observation and the rarity with which S binds as a terminal multiply bonded ligand led us to assign a polymeric structure for \(3 \) as drawn in Scheme 2.

\[
\text{CsBH}_4 + 2\text{THF}:\text{BH}_3 + 2\text{H}_2\text{S} \rightarrow [\text{Cs}_2(\text{BH}_3)_2\text{S}_4] + 4\text{H}_2 \quad (1)
\]

A THF solution of \(1-Na \) was treated with an excess (>9 equivalents) of \(S_8 \), upon which the reaction mixture immediately turned bright orange, and quantitative deposition of the product characterised as \(\text{[U}(\text{CS}_3)_2[\mu-\kappa^2:\kappa^2-\text{CS}_3]_n \}) \) as an orange solid is observed after ca. 15 min. The \(^1 \)H NMR spectrum of the reaction mixture before precipitation shows a single symmetrical paramagnetically shifted macrocycle environment with resonances between +25 and −44 ppm. The IR spectrum of solid \(4 \) shows no absorptions in the region 2500–2000 cm−1 confirming that no borohydride ligands remain. The \(^{11} \)B NMR spectrum of the supernatant shows two sharp singlets at 0.29 and 0.5 ppm, attributed to boron–sulfide-containing by-products, and shows that the BH4 ligands have provided additional reducing capability to the UIII centres in \(1 \). Related borohydride reduction reactions from simple group 1 salts are shown in eqn (2)–(5). Both resonances appear at a higher frequency than known reaction products of NaBH4 and BH3 with \(S_8 \), namely \([\text{CH}_3(\text{BH}_2)_2\text{S}_4]^- \) (−13.7/15.8 ppm)\(^9\) and \([\text{BH}_2(\text{SCH}_2\text{S})_3]^- \) (−17.0 ppm).\(^8\) The \(^{11} \)B NMR resonance at 0.5 ppm is attributed to the known anion \([\text{B}(\text{SCH}_2\text{S})_3]^- \) (eqn (4)) which is formed from the sub-stoichiometric reaction of NaBH4 with \(S_8 \). The corresponding \(\text{CH}_2 \) group is observed as a quartet at 3.97 ppm in the \(^1 \)H NMR spectrum.\(^7\) The second species in the \(^{11} \)B NMR appears closer to the polymeric species, formulated as \([\text{B}(\text{SCH}_2\text{S})_3]^- \) \(\text{Na}_0 \) (0.0 ppm, eqn (5)) suggesting a similar formulation for the resonance at 0.29 ppm possibly with an intermediate charge \((e.g. [\text{B}(\text{SCH}_2\text{S})_3]^{3-})\).\(^7\)

\[
\begin{align*}
\text{NaBH}_4 + 2\text{BH}_3 + 2\text{CS}_2 & \rightarrow \text{Na}([\text{BH}_2\text{S}_4(\text{SCH}_2\text{S})] + 3\text{H}_2 \\
2\text{BH}_3 + \text{CS}_2 & \rightarrow [\text{B}(\text{SCH}_2\text{S})_3] \\
5\text{NaBH}_4 + 4\text{CS}_2 & \rightarrow \text{Na}([\text{B}(\text{SCH}_2\text{S})_3] + 2\text{BH}_6 \\
\text{NaBH}_4 + 2\text{CS}_2 & \rightarrow [\text{Na}([\text{B}(\text{SCH}_2\text{S})_3])]
\end{align*}
\]

Small orange crystals of \([\text{[U}(\text{CS}_3)_2[\mu-\kappa^2:\kappa^2-\text{CS}_3]_n \}) \) were obtained from the concentrated THF solution. X-ray crystallographic analysis of \(4 \) shows the incorporation of the rare trithiocarbonate \((\text{CS}_3)^{3-} \) motif in the endo and both of the exo uranium coordination sites from which charge balancing arguments assign the notably high formal oxidation state of \(U^{V} \) (Fig. 2). While the crystallographic data are poor and prevent a full discussion of structural parameters, the \(\ldots \text{U} \ldots \) separation is 5.85 \(\AA \) (from an average of the three structures in the unit cell). This is the first case in which two uranium centres have been shown to provide a total of four reducing electrons (rather than just one each) in the rare formation of the \((\text{CS}_3)^{3-} \) ligand, and the first time that more than one trithiocarbonate ligand has been formed through reductive activation by a single molecule.

The reactivity of the more soluble complex \(2-K \) provides an interesting comparison with that of \(1-M \). Reactions of \(2-K \) were carried out with both \(S_8 \) and \(\text{CS}_2 \) in the anticipation of displacing the single, weakly bound endo-KBH4 molecule.
Addition of an excess of S8 to a slurry of 2-K in toluene resulted in the immediate formation of a pale orange solution and a pale yellow precipitate of KBH4. Addition of hexanes to the filtrate results in the deposition of orange crystals of the thermally stable product \([U(OAr)_{2}(\mu-\kappa^{2}:\kappa^{2}-S_{2})(L^{4})]\) (5) in 41% yield (Scheme 2). In the solid-state structure (Fig. 3) the intermetallic cleft is occupied by a bridging persulfido ion, \((S_{2})^{2-}\) suggesting that both uranium centres have been oxidised to UIV. This is reinforced by the reduction of the U–L bond lengths (cf. 2-K), in keeping with the values for known UIV complexes (see below). The \(^1H\) NMR spectrum of a solution of 5 displays paramagnetically shifted resonances corresponding to a single \(C_{2}\)-symmetric macrocycle environment and two equivalent aryloxide ligands, as was observed in the \(^1\)H NMR spectrum of 2-K. However, in contrast to 2-K, the aryloxide rings appear to be rotating freely in solution as only three resonances in a 36 : 18 : 4 ratio are seen. No resonances are seen in the \(^{1}B\)
X-ray crystal structures of the endo-chalcogenido complexes 5 and 6

Orange single crystals of 5 suitable for X-ray structural analysis were obtained from a C₆D₆/hexane solution. In the solid-state, the U⁴⁺ cations in 5 are seven coordinate, binding to the four N donors of the macrocycle, the exo-aryloxide ligand and both S atoms of the endo-bridging persulphido ion (Fig. 4). The solid-state structure of 5 confirms that, in contrast to 2, the aryloxide rings are indeed approximately coplanar with the anthracene hinges of the macrocyle with one ortho⁴⁻Bu group on each ring sitting between the hinges. Also, the two THF molecules which were bound to the U centres in the equatorial sites in 2-K have dissociated during formation of 5. The U₁–O₁ bond length in 5 is 2.091(3) Å, which is reduced from 2.231(5) Å in 2-K and supports the oxidation of the U⁴⁺ centres to U⁵⁺. The angle at the O atom of the aryloxides (U₁–O₁–Cipso = 169.0(3)°) is less acute than that observed in 2-K (154.0(5)°). The mean U₁–N(pyrrrole) distance has contracted from 2.50 Å in 2-K to 2.41 Å in 5, though the difference in the mean U₁–N(imine) distances is less marked (Table 2).

The (S₈)²⁻ unit in 5 is symmetry defined to be equidistant from the two U⁴⁺ centres but the U₁–S₁ bond length of 2.8229(8) Å is longer than the U₁–S₂ length of 2.707(3). S₂ is disordered over two sites related by rotation about the C₂ axis and the occupancy of each site was fixed at 0.5. U₁, U₁', S₁ and S₂ are not coplanar but instead the {U₂S₂} unit forms a bent diamond with a dihedral angle of 165.4°. Bridging persulphido uranium complexes are rare, with the only two examples having been reported very recently, and both featuring a persulphido ion bridging symmetrically between two U⁴⁺ centres in [U₂S₂{(η⁶-arene)(η⁶-arene)}₂] and [U₂S₂{(η⁶-arene)₂}].

Orange block-shaped crystals of 6 suitable for X-ray crystallography were obtained by addition of hexanes to a toluene solution (Fig. 4). The coordination environment about the two

Table 2 Selected structural parameters of complexes 5 and 6

<table>
<thead>
<tr>
<th></th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>U₁–U₁'</td>
<td>5.1571(5)</td>
<td>5.1899(5)</td>
</tr>
<tr>
<td>Mean U–N(imine)</td>
<td>2.63</td>
<td>2.59</td>
</tr>
<tr>
<td>Mean U–N(pyrr)</td>
<td>2.41</td>
<td>2.42</td>
</tr>
<tr>
<td>U–N–O plane</td>
<td>–0.07</td>
<td>–0.10/–0.03</td>
</tr>
<tr>
<td>U–O</td>
<td>2.091(3)</td>
<td>2.081(6)/2.099(6)</td>
</tr>
<tr>
<td>U₁–S₁</td>
<td>2.8229(8)</td>
<td>2.608(2)/2.594(2)</td>
</tr>
<tr>
<td>U₁–S₂</td>
<td>2.707(3)</td>
<td></td>
</tr>
<tr>
<td>S₁–S₂</td>
<td>2.118(3)</td>
<td></td>
</tr>
<tr>
<td>O₁–U₁–S₁</td>
<td>125.7(1)</td>
<td>140.1(2)/143.2(2)</td>
</tr>
<tr>
<td>O₁–U₁–S₂</td>
<td>166.6(1)</td>
<td></td>
</tr>
<tr>
<td>S₁–O₁–U₁</td>
<td>131.98(7)</td>
<td></td>
</tr>
<tr>
<td>S₁–U₁–S₁</td>
<td>135.0(1)</td>
<td>172.0(1)</td>
</tr>
<tr>
<td>S₂–S₂–U₁</td>
<td>70.40(8)</td>
<td></td>
</tr>
<tr>
<td>U₁–(Cipso)–U₁'</td>
<td>165.4</td>
<td></td>
</tr>
<tr>
<td>U₁–O₁–Cipso</td>
<td>169.0(3)</td>
<td>170.4(5)/167.8(6)</td>
</tr>
</tbody>
</table>
UIV ions in 6 is distorted octahedral and the four N donors of the macrocycle occupy the equatorial plane with the \textit{exo} arylxide and \textit{endo} bridging sulfido ligands axial. There is, however, a large deviation from idealised octahedral geometry; the angles between the \textit{trans} axial ligands O1–U1–S1 and O2–U2–S2 are 143.2(2)° and 140.1(2)°, respectively. As with 5, the arylxides are tilted back toward the hinges of the macrocycle to avoid unfavourable steric interactions between their \textit{ortho}-Bu groups and the \textit{exo} \textit{meso} ethyl groups of the macrocycle. At 2.594(2) Å and 2.608(2) Å, the U–S bond lengths in 6 are reduced by ca. 0.16 Å compared to the mean U–S distance observed in the persulfido complex 5 (Table 2).

The geometry of the \{U-(μ-S)-U\} core in 6 is approaching linear (U1–S1–U2 is 172.0(1)°) and the U1…U2 separation is 5.1899(5) Å. Other mono-sulfido bridged complexes prepared to date include \{[U[N(SiMe\textsubscript{3})\textsubscript{3}]]\}\textsubscript{2}μ-S2 ([U(OAr)]\textsubscript{2}μ-S)2 ([Ar = 2,6-\textsubscript{C\textsubscript{6}}\textsubscript{H\textsubscript{5}}(\textsubscript{Bu})\textsubscript{3}]) and \{[U[AdArO]N(DME)]\}μ-S2. In these compounds the U–S bond lengths range from 2.588(1) Å to 2.736(2) Å, the U…U separations vary from 5.176(3) Å to 5.4407(6) Å and the U–S–U angles range from 165.2(2)° to 180°. The structural parameters of the \{U-(μ-S)-U\} unit in 6 lie within these limits and so the rigid environment of the Pacman macrocycle does not appear to cause an excessive distortion.

We attribute the formation of complex 6 to the slow reducing cleavage of the bound CS\textsubscript{2} molecule in 6\textsubscript{a} to form S2 and release CS. This is an unusual transformation since CS\textsubscript{2} is not expected to be stable, and so not prone to eliminate, in contrast to reactions of CO\textsubscript{2} with reducing metal complexes that often eliminate CO and form an oxo bridge.77-79 Despite this, CS\textsubscript{2} has been trapped previously.41,42 To probe whether this transformation is accelerated by heating, a solution of 6\textsubscript{a} in C\textsubscript{6}D\textsubscript{6} was boiled for 2.5 hours forming an orange solution and a brown precipitate. The subsequent 1H NMR spectrum displayed one major set of symmetric Pacman product consistent with the transformation of 6\textsubscript{a} into 6. The 1H NMR spectrum of 6 exhibits just five arylxide resonances in the ratio 18 : 18 : 18 : 2 : 2, as was seen for the similarly persulfido complex 5.

Conclusions

The reactions of [Na(THF)\textsubscript{3}][U(BH\textsubscript{4})\textsubscript{2}μ-BH\textsubscript{4}](LA)(THF)\textsubscript{2}] (1-\textsubscript{Na}) with two equivalents of MOAr (where M = K or Na and OAr = OC\textsubscript{6}H\textsubscript{5}Bu\textsubscript{2}-2,4,6) result in the exclusive substitution of the exo-BH\textsubscript{4} for an arylxide, yielding \{[U(OAr)]\}μ-endo-BH\textsubscript{4}M(LA)(THF)\textsubscript{2}] (K = 2-K and Na = 2-Na). An unusual binding mode for MBH\textsubscript{4} is seen in which the M+ counter-ion sits adjacent to the BH\textsubscript{4} ligand in a cavity formed by the \textit{π}-systems of four pyrrolide rings of the macrocycle. The U…U separation is increased by over 0.6 Å, presumably due to this additional endo-bound ion pair.

The reaction of [Na(THF)\textsubscript{3}][U(BH\textsubscript{4})\textsubscript{2}μ-BH\textsubscript{4}](LA)(THF)\textsubscript{2}] (1-\textsubscript{Na}) with excess S\textsubscript{8} formed an insoluble paramagnetic species 3, with a molecular formula suggesting the formation of a bridging uranium(\textit{v}) sulfido coordination polymer. In addition, treatment of 1-\textsubscript{Na} with CS\textsubscript{2} results in the formation of \{[U(CS\textsubscript{2})\]2μ-μ-η1:η1:η1-CS\textsubscript{2}](L\textsubscript{A})\} in which unusual

trithiocarbonate (CS\textsubscript{3})2 motifs are seen in both the \textit{endo} and \textit{exo} positions. To our knowledge, this is the first case in which two uranium(\textit{u}) centres have been able to provide a total of four reducing electrons rather than just one each in the rare incorporation of the (CS\textsubscript{3})2 ligand, and the first time that more than one thiocarbonate has been formed through reductive activation by a single molecule.

The larger cleft size and more loosely-bound endo-BH\textsubscript{4} in 2 also provides a good site for the activation of S\textsubscript{8} and CS\textsubscript{2}, affording endo-S\textsubscript{2} \{[U(OAr)]\]2μ-μ-η1:η1:η1-S\textsubscript{2}](LA)\} (5) and endo-S\textsubscript{2} \{[U(OAr)]\]2μ-S](LA)\} (6) complexes, respectively. It is clear that the addition of the arylxide ligand in 2-K promotes the activation of the CS\textsubscript{2} exclusively between the two UIII centres. In contrast, when the arylxides are not present i.e. in 1, the BH\textsubscript{4} groups are easily replaced and activation of CS\textsubscript{2} occurs in both the \textit{exo} and \textit{endo} positions. Therefore, to control and localise the activation of CS\textsubscript{2}, the \textit{exo} arylxide ligands are essential.

The unusual reactivity of 2-K is attributed to the unique environment imposed by the Pacman macrocycle. It is concluded that the endo persulfido ion may be comfortably incorporated in 5 but further incorporation of sulfur is restricted. Similarly, the sulfido ion bridges the UIV centres effectively in 6 but in-cleavage formation of the bulky thiocarbonate ion is disfavoured. Similarly to related UIV systems,79 sulfoxide 6 can be converted into persulfido 5 by the addition of elemental sulfur, suggesting the optimum cavity size between the two UIV centres that fits this polarisable anion has been found. These first small molecule activations within the di-uranium(\textit{u}) Pacman cleft exemplify the flexibility of the anthracenyl-hinged macrocycle, with U…U separations ranging from 4.1927(3) Å to 6.5881(3) Å, and that the use of different endo ligands and bridging modes could lead to a wider application of these systems towards other less readily reducible molecules.

Acknowledgements

We thank EaStCHEM, the University of Edinburgh and the Engineering and Physical Sciences Research Council EPSRC, grants EP/H004823/1 and EP/M010554/1, and the European COST network CM1205. We thank Dr Markus Zegke for additional X-ray crystallographic analysis. We thank the NSF CCI Center for Enabling New Technologies through Catalysis (CENTC, CHE-1205189) and the EPSRC Centre for Doctoral Training in Critical Resource Catalysis (CRITICAT, Grant code EP/L016419/1) for funding the researcher exchange visit (JMG). PLA also thanks the Technische Universität München – Institute for Advanced Study, funded by the German Excellence Initiative.

Notes and references