Ensemble Clustering for Result Diversification

Citation for published version:

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Proceedings of The Twenty-First Text REtrieval Conference, TREC 2012, Gaithersburg, Maryland, USA, November 6-9, 2012

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
ABSTRACT
This paper describes the participation of the University of Twente in the Web track of TREC 2012. Our baseline approach uses the Mirex toolkit, an open source tool that sequentially scans all the documents. For result diversification, we experimented with improving the quality of clusters through ensemble clustering. We combined clusters obtained by different clustering methods (such as LDA and K-means) and clusters obtained by using different types of data (such as document text and anchor text). Our two-layer ensemble run performed better than the LDA based diversification and also better than a non-diversification run.

1. INTRODUCTION
Web queries are often short and ambiguous. Result diversification, which aims to diversify queries to cover the multiple facets or subtopics of a query, can improve the quality of these queries. A common strategy is to estimate the aspects/subtopics of the top ranked documents, and rerank these documents based on the estimated subtopics. Usually the subtopics are discovered by clustering the (top ranked) documents. Two well known methods to rerank results are IA-select [1] and xQuAD [12].

Recently, researchers have explored combining multiple clusterings to improve result diversification. Dou et al. [6] used four methods to obtain subtopics: anchor texts, query logs, search result clusters and hosts. They proposed a reranking framework that incorporated the subtopics from these multiple dimensions. Contrary to our work, they only experimented with clusterings obtained using different data sources, and not with different clustering methods for a particular data source. He et al. [8] proposed a framework to combine clusters of external resources to regularize implicit subtopics based on pLSA using random walks.

In this work, we explore the use of clustering ensembles to obtain better clusterings for result diversification. Clustering ensembles can combine arbitrary clusterings, for example based on different data sources (e.g. full document text, anchor text, urls) or by using different clustering methods (such as k-means and LDA [2]). Experiments were done on Category B of ClueWeb09.

We first discuss related work and the track in which we participated. We then describe our experimental setup and discuss the results. We conclude with a summary and suggest future work.

2. WEB TRACK
The Web track of TREC 2012 consists of an adhoc and a diversity track. In this paper we focus on the diversity track. Participants initially only have access to plain queries. However, the evaluation of the runs are evaluated using the full topic descriptions.

Topics are classified either as ambiguous or faceted [5]. Ambiguous queries have several unrelated interpretations. For example, an ambiguous query in TREC 2010 was the sun, which could refer to the newspaper or the star in the solar system. Faceted queries have a primary interpretation. The subtopics then reflect several aspects related to this interpretation. For example, a faceted query was Neil Young, with aspects such as Neil Young’s albums, biographical information, lyrics and tour dates.

The adhoc task is evaluated using Expected Reciprocal Rank (ERR) [3]. The diversity track is evaluated using an Intent Aware version [1] of Expected Reciprocal Rank (ERR-IA) where the score for the different subtopics are weighted by the probability of that specific subtopic for the given query. In the Web track, these measures are calculated at rank 20. In this paper we also report nDCG@20[10] and α-nDCG@20[4].

3. AD HOC RETRIEVAL
In this section we describe our approach to obtain a baseline ranking. Next, we rerank these results to improve result diversification.

We use Mirex [9], a tool that sequentially scans the documents. Built on Hadoop, sequential scanning becomes a viable approach. In addition, it allows researchers to easily experiment with different retrieval models, because the framework is easy to extend. Documents were scored using a language model with linear interpolation smoothing and a document length prior. We decided to only use anchor text, since previous experiments indicated that this gave high precision and still enough recall for this task.

We use $\lambda = 0.90$ as our baseline for further reranking, after experimenting with different smoothing parameters on data from the Web track of 2009, 2010 and 2011. The baseline run is referred to as utw2012lm09.

1http://mirex.sourceforge.net
4. RESULT DIVERSIFICATION
We make the simplifying assumption that a document only
belongs to one topic. However, our described methods can
easily be extended to support methods where documents
belong to multiple topics.

4.1 Clustering
We experiment with several methods to cluster the docu-
ments obtained from the baseline ranking.

Methods
I K-means. An iterative algorithm where documents are
assigned to the cluster with the nearest mean.
II Ward. A hierarchical clustering method, where clusters
are merged to minimize the total within-cluster vari-
ce.
III LDA [2]. A generative model that aims to uncover la-
tent topics.
IV LSA [11]. A method based on singular value decompo-
sition to uncover latent concepts.

We also vary the data source.

Data
I Full text. Cluster documents based on the full text as
extracted from the HTML.
II Anchor. Cluster documents based on the anchor text.
III Host. Documents are assigned to the same cluster when
they come from the same host.

In our experiments, we use the same number of clusters for
all clustering methods (except for host clustering, for which
the number of clusters is dependent on the results). An
optimized system that would vary the number of clusters
based on the used clustering method or particular query
could potentially provide better results.

4.2 Combining Multiple Clusterings
Clustering ensembles combine multiple clusterings into a sin-
gle clustering. Advantages include more robustness, novelty
(a combined solution that may not have been found by the
individual clustering algorithms), more stability and confi-
dence, and support of parallelization and scalability [7]. In
this paper we cluster the documents using multiple meth-
ods and across several dimensions, and combine these into
a single, more robust clustering.

We experiment with assigning weights to the specific clus-
terings. For example, if a certain method has an assigned
weight of 0.8, the similarity matrix will have a value of 0.8
if the two documents appear in the same cluster (and zero
otherwise). We set the weight such that the total weights for
the different clusterings add up to 1. We then apply a clus-
tering method on this induced similarity matrix to make a
final clustering. In this paper we use hierarchical clustering
using the centroid method, where distances are calculated
based on the centroids of the clusters.

The advantage of this approach is that it is independent
of the clusterings used. In addition, by combining multiple
clusterings into one new clustering, we are also free to choose
any reranking algorithm we like to use. And by finding
weights for the different clusterings, we obtain insight into
what dimension or which clustering methods are effective for
result diversification.

I Two-layer Ensemble Clustering
We experiment with an ensemble clustering over ensemble
clusterings. The final clustering is an ensemble clustering
over three clusterings:

1. Text clustering. Ensemble clustering based on cluster-
ings obtained using K-means, Ward, LDA and LSA on
the full text.
2. Anchor clustering. Ensemble clustering based on clus-
terings obtained using K-means, Ward, LDA and LSA
on the anchor text.
3. Host clustering.

II Simple Ensemble Clustering
Preliminary experiments on previous TREC data found LDA
to be the most effective of the clustering algorithms. There-
fore, in this variant we only use LDA as the clustering method
for the text and anchor data:

1. LDA text clustering.
2. LDA anchor clustering.
3. Host clustering.

III One-layer Ensemble Clustering
This ensemble clustering uses the same clusterings as the
Two-layer Ensemble Clustering, however the clusters are di-
rectly combined into a new clustering, instead of applying
two layers. Thus we create an ensemble clustering over the
following:

2. Text - LSA.
4. Anchor - LSA.
5. Host clustering.
late V

calculations are selected yet, and updated for every added doc-
marginal utility:

given a query and subtopic,

given the query

Where

The weights for this run were not optimized. Cluster-
ing based on anchor text (weight 0.8; ensemble cluster of Ward:
0.2; LDA: 0.6, LSA: 0.2) and text (weight: 0.2; ensemble cluster of Ward: 0.2, LDA: 0.8).

<table>
<thead>
<tr>
<th>Run</th>
<th>nDCG@20</th>
<th>ERR@20</th>
<th>ERR-IA@20</th>
<th>α-nDCG@20</th>
</tr>
</thead>
<tbody>
<tr>
<td>Language modeling baseline (utw2012lm09)</td>
<td>0.122</td>
<td>0.218</td>
<td>0.404</td>
<td>0.505</td>
</tr>
<tr>
<td>Diversification using LDA (utw2012lda)</td>
<td>0.111</td>
<td>0.215</td>
<td>0.402</td>
<td>0.499</td>
</tr>
<tr>
<td>Two-layer ensemble clustering (utw2012c1)</td>
<td>0.120</td>
<td>0.220</td>
<td>0.405</td>
<td>0.508</td>
</tr>
<tr>
<td>Simple ensemble clustering (utw2012sc1)</td>
<td>0.107</td>
<td>0.207</td>
<td>0.398</td>
<td>0.498</td>
</tr>
<tr>
<td>One-layer ensemble clustering (utw2012fc1)</td>
<td>0.113</td>
<td>0.219</td>
<td>0.400</td>
<td>0.497</td>
</tr>
<tr>
<td>Two-layer ensemble clustering (utw2012c2)</td>
<td>0.117</td>
<td>0.219</td>
<td>0.399</td>
<td>0.499</td>
</tr>
</tbody>
</table>

Table 1: Results

5. RESULTS

The results are presented in Table 1. We find that the base-
line, with no diversification, performs very well. We sus-
pect that our reranking algorithm is not very effective, since
only clustering based on LDA performs worse than the non-
diversification run. However, we do find that our two-layer
ensemble clustering (utw2012c1) performs better than LDA
on all measures, and also better than the non-diversification
baseline on all measures except nDCG@20. When comparing
based on ERR-IA@20, it performs better than or equal
to LDA for 32/50 queries, and for 29/50 queries when com-
paring with the LM baseline.

The one-layer ensemble clustering (utw2012fc1), performs
not as well as the two-layer ensemble clustering, however,
since we only did a partial parameter sweep it is hard to draw
any conclusions from this. The simple ensemble clustering
(utw2012sc1) performs the worst. We would expect this
method to perform better than LDA, since LDA is one of the
clustering methods. However, we only did a coarse parameter
sweep, and perhaps have not find the optimal weights yet.
But this also illustrates that the used method is sensitive
to the weights that are used. In addition, the performance
might be degraded because of the used clustering method to
obtain an ensemble clustering based on the similarity matrix.

We will further analyze the performance of our best run
(utw2012c1) by comparing with the diversification run us-
ing LDA (utw2012lda). The difference in ERR-IA@20 when
comparing LDA and the LM baseline (no diversification) can
be found in Figure 1. A positive value means that the LDA
run performed better. A similar graph comparing the two-
layer ensemble model and the LM baseline can be found in
Figure 2.

A query that performed well when comparing ERR-IA@20
is query 154 ‘figs’ (Find information on nutritional or health
benefits of figs), with subtopics on nutritional/health bene-
fits, recipes, varieties and growing figs. The LDA run ob-
tained an ERR-IA@20 of 0.384, the LM baseline a score of
0.402 and the utw2012c1 run scored 0.430.

We expect that when using a better reranking algorithm,
the results can benefit more from improved clusterings. We
also encountered some drawbacks with ensemble clusterings.
First, we found it to be sensitive to the weights that were
used. In addition, given a similarity matrix, we need to
decide on a clustering method. More experiments should be
done to assess what clustering method is the most suitable
for this task.
6. CONCLUSION

In this paper we presented the participation of the University of Twente in the Web track of TREC 2012. This year, we focused on the diversity track. We used an ensemble clustering approach aimed to improve the quality of the document clusters. Our ensemble run performed better than the LDA based diversification and also better than a non-diversification run.

The main advantage of this approach is that it is simple, it can be applied on any clustering algorithm, and it is also applicable for any reranking method based on clusters. However, a lot more parameters are introduced, and during development we found the results to be sensitive to the specific parameters used.

Results suggest that the used reranking algorithm might not be effective enough, therefore reducing the possible improvement when better clusters are obtained. For future work other reranking approaches should be explored. In addition, in our experiments we used the same weights across all queries for the different clustering methods and data sources. We expect better results could be obtained by estimating the quality of clusters at query time and adapting the weights per query.

7. ACKNOWLEDGEMENTS

This research was supported by the Netherlands Organization for Scientific Research, NWO, grants 640.005.002 and 639.022.809.

8. REFERENCES

