Prostaglandin E\textsubscript{2} stimulates adaptive IL-22 production and promotes allergic contact dermatitis

Calum T. Robb, PhD,a Henry J. McSorley, PhD,a Jinju Lee, MScb,c Tomohiro Aoki, MD, PhDb,c Cunjing Yu, PhD,a Siobhan Crittenden, MSc,a Anne Astier, PhD,a Jennifer Felton, PhDa Nicholas Parkinson, MA, MS, VetMBa Adane Ayele, MD,d Richard M. Breyer, PhD,e,f Stephen M. Anderton, PhD,a Shuh Narumiya, MD, PhD,b,c Adriano G. Rossi, PhD, DSca Sarah E. Howie, PhD,a Emma Guttmann-Yassky, MD, PhD,g,h Richard B. Weller, MD, FRCP,a Chengcan Yao, PhD,a

a Medical Research Council (MRC) Centre for Inflammation Research, Queen’s Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK.

b Center for Innovation in Immunoregulative Technology and Therapeutics (AK Project), Kyoto University Graduate School of Medicine, Kyoto 606-8501, Japan.

c Core Research for Evolutional Science and Technology, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto 606-8507, Japan.

d Department of Dermatovenereology, School of Medicine, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia.

e Department of Veterans Affairs, Tennessee Valley Health Authority, Nashville, TN 37212, USA.

f Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA.
g Department of Dermatology and the Laboratory for Inflammatory Skin Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA

h Laboratory for Investigative Dermatology, The Rockefeller University, NY 10065, USA

Corresponding author

Chengcan Yao, PhD

Medical Research Council (MRC) Centre for Inflammation Research,
Queen’s Medical Research Institute,
The University of Edinburgh,
47 Little France Crescent
Edinburgh EH16 4TJ, UK.

Telephone: +4413-1242-6685
Fax: +4413-1242-6578
Email: Chengcan.Yao@ed.ac.uk

Funding:

This work was supported in part by the University of Edinburgh start-up funding and Wellcome Trust Institutional Strategic Support Fund (to C.Yao and H.J.M.), Asthma UK (to H.J.M.), Psoriasis Association UK (to R.B.W.), Medical Research Council (MRC) UK (A.G.R. C.T.R. and J.M.F. were supported by MR/K013386/1, and to S.M.A., R.B.W. and H.J.M.), NIH DK37097 and R56HL127218 and a VA Merit 1BX000616 (to R.M.B.), and Core Research for Evolutinal Science and Technology (CREST) of Japan Science and Technology Agency (to S.N.). C.Yu and C.S. receive scholarship supports from the Chinese
Scholarship Council and the University of Edinburgh, respectively. N.P. is supported by the Wellcome Trust Edinburgh Clinical Academic Training Programme.

Acknowledgements:

We thank P. Ghazal (The University of Edinburgh) for critically reading and editing the manuscript and S. Johnston, W. Ramsay and F. Rossi for assistance with flow cytometry.

Disclosure of potential conflict of interest:

The authors declare that they have no relevant conflicts of interest.
Abstract

Background: Atopic dermatitis (AD) is a chronic inflammatory skin disease with a central role of Th22-derived IL-22 in its pathogenesis. Although prostaglandin E2 (PGE2) is known to promote inflammation, little is known about its role in processes related to AD development, including IL-22 up-regulation.

Objectives: To investigate whether PGE2 has a role in IL-22 induction and development of allergic contact dermatitis (ACD), a disease related to AD.

Methods: T-cell cultures and in vivo sensitization of mice with hapten were used to assess the role of PGE2 in production of IL-22. The involvement of PGE2 receptors and their downstream signals were also examined. The effects of PGE2 were evaluated using the oxazolone (OXA)-induced ACD mouse model. The relationship of PGE2 and IL-22 signaling pathways were also investigated using genomic profiling in human lesional AD skin.

Results: PGE2 induces IL-22 from T cells through its receptors EP2 and EP4 and involves cyclic adenosine monophosphate (cAMP) signaling. Selective deletion of EP4 in T-cells prevents hapten-induced IL-22 production in vivo, and inhibition of PGE2 synthesis limits atopic-like skin inflammation in the OXA-induced ACD model. Moreover, both PGE2 and IL-22 pathway genes were coordinately up-regulated in human AD lesional skin, but were below significant detection levels after corticosteroid or ultraviolet band B (UVB) treatments.

Conclusions: Our results define a crucial role for PGE2 in promoting ACD by facilitating IL-22 production from T-cells.
Clinical Implications: (<30 words)
Atopic dermatitis is a common disabling disease characterized by elevated IL-22. The identification of a tightly regulated PGE$_2$ driven pathway controlling IL-22 dysfunction offers a novel target for therapeutic intervention.

Capsule Summary: (<35 words)
Prostaglandin E$_2$ promotes IL-22 production from T cells that mediates IL-22-driven development of atopic dermatitis.

Key words
Atopic dermatitis, Prostaglandin E$_2$, CD4$^+$ T cells, Th22 cells, Th17 cells, Interleukin 22,

Abbreviations used
ACD: Allergic contact dermatitis
AD: Atopic dermatitis
AHR: Aryl hydrocarbon receptor
ANOVA: Analysis of variance
cAMP: Cyclic adenosine monophosphate
CCR: Chemokine receptor
COX: Cyclooxygenases
Db-cAMP: Dibutyryl cAMP
DC: Dendritic cell
DNFB: Dinitrofluorobenzene
IL-22: Interleukin 22
ILC3: Group 3 innate lymphoid cells
LN: Lymph node
mPGES: Microsomal prostaglandin E synthases
OXA: Oxazolone
PGE₂: Prostaglandin E₂
PKA: Protein kinase A
Th: Helper T cells
UVB: Ultraviolet band B
Introduction

Atopic dermatitis (AD) is a common chronic inflammatory skin disease, with a prevalence of up to 3-7% in adults and up to 25% among children. Histologic features of affected eczematous skin include epidermal hyperplasia and spongiosis, and infiltration of immune cells (T-cells, dendritic cells/DCs, eosinophils, etc) in the dermis. Barrier dysfunction is also recognized as important for development of AD. Environmental allergens can penetrate through the skin in AD due to a dysfunctional epidermal barrier, where they are taken up by antigen presenting cells (such as dendritic cells) which in turn activate and polarize T-cells, resulting in AD initiation. Dysregulation of the balance of type 1 and 2 helper T (Th1 and Th2) cells, characterized by production of IFN-γ or IL-4/IL-13, respectively, has traditionally been thought to contribute to AD pathogenesis. However, recent studies have shown that IL-17 and IL-22, produced by Th17 and other activated T cells including Th22 cells, are also critical in mediating the initiation and progression of AD.

IL-22 levels in serum from patients with AD are higher than those from healthy individuals, and IL-22+ T cells infiltrate into lesional AD skin where IL-22 induces epidermal hyperplasia and inhibits epidermal differentiation. Importantly, a neutralizing anti-IL-22 antibody (NCT01941537) or targeting components of the IL-23/Th17 pathway, are currently being tested in clinical trials. To refine future therapies, there is a need to better understand the mechanisms that drive IL-22 production in response to cutaneous antigen stimulation.

Prostanoids, including prostaglandin D2 (PGD2), PGE2, PGF2α, PGI2 and thromboxane A2, are bioactive lipid mediators that are generated from arachidonic acid by cyclooxygenases (COX) and then respective PG synthases. PGs have various roles in inflammatory skin diseases through regulating functions of immune cells, including Th1/Th17 T-cells, T regulatory cells, mast cells and DCs. PGE2 is synthesized by...
microsomal prostaglandin E synthases (mPGES1 and mPGES2) and has essential roles in
modulating various inflammatory responses by binding to PG receptors (EP1-4) on cell
surfaces. Many cutaneous cells, including keratinocytes, mast cells, eosinophils, fibroblasts,
DCs and lymphocytes, express PGs and PG receptors
Increased PGE2 expression in
biologically active amounts has been reported in both lesional and non-lesional skin from AD
patients. Blockade of PG production by a COX2 inhibitor was reported to enhance
eosinophil infiltration and elevate IL-4 expression in lesions of an OVA-sensitized mouse
model. In contrast, PGE2 was also suggested to induce AD by favoring a Th2 immune
milieu and directly enhancing B-cell production of IgE.
Furthermore, we and others have
recently reported that PGE2 through EP2 and EP4 receptors augmented IL-17 and IL-22
productions, and blockade of PGE2 signaling during T-cell differentiation limited acute
contact hypersensitivity. These findings suggest that PGE2 may have both suppressive
and provocative roles in the development of AD. However, it is unclear how PGE2
regulates IL-22 production and chronic, atopic skin inflammation.

Here we report that PGE2 promotes IL-22 production from Th17 and Th22 T-cells
through its receptors EP2 and EP4. This effect is mediated by cAMP-protein kinase A (PKA)
signaling and induction of aryl hydrocarbon receptor (AHR), a transcription factor critical for
both adaptive and innate IL-22 expression. T-cell specific EP4 deficiency diminishes
hapten-induced IL-22-expressing T cells in skin-draining lymph nodes (LNs). Accordingly,
inhibition of PGE2 production limits skin inflammation in an animal model for ACD induced
by repeated OXA challenges in mice. Furthermore, genes related to PGE2 signaling are over-
expressed in human atopic lesional skin, and positively correlate with expression of IL-22
pathway genes. This relationship between expression of PGE2 and IL-22-related genes is no
longer evident after successful corticosteroid or UVB treatments. These findings suggest that
PGE2 facilitates ACD through promoting adaptive IL-22 signaling.
Methods

Mice

Wild-type C57BL/6 mice were purchased from Harlan UK. Lck-Cre mice were crossed to lox-flanked Ptger4 (EP4-floxed) mice30 to generate mice with selective EP4 deficiency in T cells (EP4cKO) as previously reported27,28. All mice were bred and maintained under specific pathogen-free conditions in accredited animal facilities in the University of Edinburgh and Kyoto University. Mice were aged \(> 7 \) weeks old at the beginning of use and sex-matched. All experiments were conducted in accordance with the UK Scientific Procedures Act of 1986 and had local institutional ethical approval.

Reagents

Antibodies to mouse CD3 (clone 145-2C11), CD28 (clone 37.51), CD45 (clone 30-F11), CD4 (clone L3T4), CD8 (clone 53-6.7), IL-17A (clone eBio17B7), IL-22 (clone IL22J0P), and to human CD3 (clone OKT3) and IL-22 (clone 142928) were from eBioscience or Biolegend. Anti-human IL-22 was from R&D Systems. Mouse CD4 microbeads were from Miltenyi Biotec. Recombinant human TGF-\(\beta \)1 and recombinant mouse IL-6 and IL-23 were purchased from Biolegend. PGE\(_2\), 17-phenyl trinor PGE\(_2\) (EP1/3 agonist), Butaprost (EP2 agonist), CAY10598 or L-902,688 (EP4 agonist), PF-04418948 (EP2 antagonist), and L-161,982 (EP4 antagonist) were from Cayman. Db-cAMP, PKA Inhibitor 14-22 (PKI), CH-223191, oxalozone, indomethacin, phorbol myristate acetate (PMA), Ionomycin were from Sigma or Calbiochem.

Oxazolone-induced ACD model

The OXA-induced mouse ACD model was induced as reported11. Briefly, mice were sensitized with 3\% OXA in EtOH on shaved abdominal skin and after 5 days were repeatedly...
challenged with 0.6% OXA in EtOH on one ear once every two days for a total of 5
challenges. The opposing ear was challenged with vehicle (pure EtOH) to serve as a control.
Mice were culled at 6 h after the last challenge and the ears and ear-draining LNs collected
for further analysis. Ear samples were fixed with 10% neutral buffered formalin solution
(Sigma), embedded in paraffin wax, and 5µm sections used for staining with hematoxylin and
eosin (H&E). In some experiments, EP4cKO or control mice were sensitized with 0.5%
dinitrofluorobenzene (DNFB), and 5 days later skin-draining LNs were collected for further
analysis.

T-cell isolation and culture

Mouse CD4+ T-cells were isolated from spleens using autoMACS (Miltenyi). Cells were
cultured in complete RPMI1640 medium containing 10% FBS and stimulated with plate-
bound anti-CD3 (5 µg/ml) and anti-CD28 (5 µg/ml) antibodies plus various cytokines and
other compounds as indicated in figures. For certain experiments, Th17 cells were
differentiated from CD4+ T-cells by TGF-β1 and IL-6 for 3-4 d. IL-22 levels in supernatants
were measured using mouse IL-22 enzyme-linked immunosorbent assay (ELISA) Ready-
SET-Go!® kits (eBioscience).

Surface and intracellular staining

For surface staining, cells were stained on ice for 30 min with anti-CD45, anti-CD3e, anti-
CD4 and anti-CD8 Abs. For intracellular staining of IL-22, cells were stimulated with PMA
and ionomycin for 4-5h in the presence of GolgiPlug (BD Bioscience). Cells were then
harvested and fixed by BD Cytofix/Cytoperm Fixation Buffer (BD Bioscience) for 30min
and then stained with anti-human/mouse IL-22 (clone IL22JOP, eBioscience) or anti-human
IL-22 in BD Perm/Wash Buffer for 1h. Flow cytometry was performed on a BD LSRFortessa (BD Bioscience) and analyzed by FlowJo software (Tree Star).

Real-time PCR

RNA purification from T-cells was performed using the Rneasy Mini Kit (Qiagen). cDNA was obtained by reverse transcription using High-capacity cDNA Reverse Transcription Kits (ABI). Samples were analyzed by real-time PCR with SYBR Premix Ex Taq II (Tli RNase H Plus) kit (Takara) or GoTaq qPCR Master Mix (Promega) on the Applied Biosystem 7900HT Fast machine. The following primers were used. Gapdh forward, 5’-TGAACGGAAGCTCCTGG-3’; Gapdh reverse, 5’-TCCACCACCTGTGGTCTGTA-3’.

Il22 forward, 5’-CATGCAGGAGGTGGTACCTT-3’; Il22 reverse, 5’-CAGACGCAAGCATTTCTCAG-3’. Ahr forward, 5’-TGCACAAGGAGTGGACGA-3’; Ahr reverse, 5’-AGGAAGCTGGTCTGGGGTAT-3’. Ccr4 forward, 5’-TGTCCTCAGGATCACTTTCAGA-3’; Ccr4 reverse, 5’-GGCATTCATCTTTGGAATCG-3’. Expression was normalized to mouse glyceraldehyde-3-phosphate dehydrogenase (Gapdh) and presented as relative expression to control group by the 2^–ΔΔCt method.

Gene expression of human skin biopsies from microarray datasets

Microarray gene expression data of human skin biopsies were retrieved from Gene Expression Omnibus datasets (GSE16161, GSE32924, GSE36842, GSE32473 and GSE27887). Patients information and skin sample have been described previously. In brief, skin biopsy specimens were collected from patients with moderate-to-severe AD (Scoring of Atopic Dermatitis 20-97) and healthy volunteers under institutional review board–approved protocols (written consent obtained). Patients (age 16-81, mean age 40 from three cohorts) with an acute exacerbation of chronic AD and without any therapy for more
than 4 weeks were included. Biopsy specimens were obtained from acute lesional skin which was actively involved, and erythematous lesions with atopic dermatitis and were frozen in liquid nitrogen for RNA extraction31-33,35. To standardize data across a wide range of experiments and to allow for the comparison of microarray data independent of the original hybridization intensities, gene expression levels were transformed to z-score values36. \(P\) values were calculated by nonparametric Wilcoxon-Mann-Whitney test, paired nonparametric tests with post-hoc Dunn’s multiple comparisons or paired 2-way analysis of variance (ANOVA) test with post-hoc Bonferroni’s multiple comparisons test. Correlations between expression levels of two genes were calculated by nonparametric Spearman correlation test.

\textbf{Statistical analyses}

All data were expressed as mean \(\pm\) SEM or scatter dot-plots in which each dot represents one mouse, one AD patient or healthy individual. Statistical significance between two groups was examined by the Student’s \(t\)-test or Mann-Whitney test, while the one-way and two-way ANOVA with post-hoc Bonferroni’s multiple comparisons test were used to evaluate multiple groups unless otherwise indicated in figure legends. Statistical analyses were performed using Prism 6 software (GraphPad) and a \(P<0.05\) was considered as statistically significant.
Results

PGE\(_2\) promotes IL-22 production *in vitro* through its receptors EP2 and EP4

We have recently reported that PGE\(_2\) promotes IL-22 production from group 3 innate lymphoid cells (ILC3s). We thus evaluated whether PGE\(_2\) also promoted IL-22 production from T-cells. To address this question, we isolated CD4\(^+\) T-cells from mouse spleens, activated with anti-CD3 and anti-CD28 antibodies (Abs), and co-cultured with various cytokines. Addition of exogenous PGE\(_2\) enhanced Il22 gene expression with IL-6 or IL-23 alone, IL-6 + IL-23 (Th22 priming condition) or IL-6 + IL-23 + TGF-β (Th17 priming condition) (Fig 1A). IL-22 protein production in supernatants of primary cell cultures was also elevated by PGE\(_2\) in the presence of IL-23 or IL-23 + IL-6 (Fig 1B). It is important to note that these data are in agreement with previous findings that TGF-β inhibits IL-22 production even in the presence of PGE\(_2\) (Fig 1A,B). Moreover, when same numbers of PGE\(_2\)-stimulated T-cells and control T-cells were washed and then re-stimulated with T-cell receptors (i.e. anti-CD3 and anti-CD28), PGE\(_2\)-stimulated T-cells produced more IL-22 than control T-cells even in the presence of TGF-β (Fig 1C), suggesting that PGE\(_2\)-treated cells have higher capability to produce IL-22 at the single cell level.

To define which PGE\(_2\) receptor mediates IL-22 production, we cultured T-cells under Th22-priming conditions and selectively activated EP2 and EP4. Both EP2 and EP4 agonists individually mimicked augmentation of IL-22 production (Fig 1D). To further confirm the roles of PGE\(_2\)-EP2/EP4 signaling in inducing IL-22 production of T-cells, we also cultured differentiated Th17 T-cells and found that PGE\(_2\) still promotes IL-23-driven IL-22 gene and protein expression (Fig 1E and 1F). Moreover, enhancement of IL-22 production by EP2 or EP4 agonists was prevented by co-treatment of antagonists against EP2 or EP4, respectively (Fig 1F); elevated IL-22 production by PGE\(_2\) was also diminished by co-administration of
EP2 and EP4 antagonists (Fig 1F). In addition, PGE2 also increased IL-22 production in Th17 cells in the absence of other cytokines (Fig 1E and 1F), suggesting a potentially direct action of PGE2 to promote Il22 gene expression. These data indicate the involvement of EP2 and EP4 in PGE2 facilitation of IL-22 production from T cells in vitro.

Cyclic AMP promotes IL-22 production from T cells through the transcription factor aryl hydrocarbon receptor (AHR).

As both EP2 and EP4 receptors activate cAMP-PKA pathway in T cells, we next examined whether cAMP mediates PGE2 facilitation of adaptive IL-22 production. Like PGE2, db-cAMP promoted IL-22 production in a concentration-dependent manner in either presence or absence of IL-23 (Fig 2A), confirming a direct action of cAMP on IL-22 induction. The increased IL-22 production by cAMP was prevented by PKI, a PKA inhibitor, in a concentration-dependent manner (Fig 2B). Cyclic AMP also up-regulated Il22 gene expression in IL-23-stimulated T-cells, which was prevented by cycloheximide, an inhibitor for eukaryote protein synthesis (Fig 2C and 2D), suggesting that the PGE2-cAMP pathway promoted adaptive IL-22 production through synthesis of new protein(s).

The transcription factor AHR has been reported to regulate IL-22 production in both T-cells and ILC3s. We thus investigated whether AHR contributes to PGE2-cAMP signaling-dependent increase in adaptive IL-22 production. We first checked that both PGE2 and cAMP up-regulated AHR gene expression in T-cells independently of cytokine stimuli (Fig 2E and 2F). Importantly, a small-molecule AHR inhibitor CH-223191 effectively suppressed cAMP-dependent IL-22 gene expression and protein production from T cells (Fig 2G and 2H) although it had no effect on AHR expression itself (Fig 2F). These results suggest that PGE2-cAMP signaling promotes IL-22 production from T-cells through induction of AHR.
PGE$_2$-EP4 signaling promotes adaptive IL-22 production in vivo

To investigate whether PGE$_2$ promotes adaptive IL-22 production in vivo, we topically sensitized the abdominal skin of control mice and mice with specific EP4 deletion in T cells (EP4cKO mice27) with DNFB and measured IL-22-producing T-cells in skin-draining LNs 5 days after sensitization using flow cytometry. Both percentages and absolute numbers of IL-22-producing T-cells were markedly reduced in EP4cKO compared to control mice (Fig 3A and 3B). Furthermore, EP4 deficiency reduced Il22 gene expression in skin-draining LN CD4$^+$ T cells (Fig 3C). These data indicate that PGE$_2$-EP4 signaling promotes adaptive IL-22 production in vivo.

Endogenous PGE$_2$-EP4 signaling in T cells promotes allergic contact dermatitis

We next investigated whether PGE$_2$ has a pathogenic role in development of allergic skin inflammation. To address this question, we used an animal model mimicking human ACD. We sensitized wild-type C57BL/6 mice with 3% oxalozone (OXA) on abdominal skin and after 5 days we repeatedly challenged mice with 0.6% OXA every two days for a total of 5 challenges. Indomethacin was administrated to mice in drinking water to inhibit endogenous PGE$_2$ production. Once DCs in the skin capture the antigen OXA, they migrate to skin dLNs and present antigen to T cells for their activation. Because the migration of antigen-capturing DCs to skin dLNs peaks between 18-24h requires PGE$_2$-EP4 signaling38, we only treated mice with indomethacin 24 h post the OXA sensitization (Fig 4A). Consistent with previous reports11, repeated challenge with OXA induced allergic skin inflammation (Fig 4B and 4C). Ears of OXA-challenged, indomethacin-treated mice showed decreased swelling compared to vehicle-treated mice (Fig 4B). Indomethacin had no effect on the thickness of vehicle (EtOH)-challenged ears. Compared to EtOH-challenged ears, histology of OXA-challenged
ear skin showed features of eczema, namely parakeratosis, acanthosis and focal spongiosis with a dense and diffuse dermal infiltrate containing eosinophils (Fig 4C). However, in skin from the indomethacin-treated mice the epidermal changes are less pronounced, and the dermal infiltrates are markedly reduced (Fig 4C). Furthermore, whilst repeated OXA challenge recruited CD4+ and CD8+ T cells to ear-draining LNs (Fig 4D), indomethacin treatment reduced both this recruitment and the T-cell capacity to produce IL-22 (Fig 4E). To further investigated whether this pro-inflammatory effect of PGE2 on OXA-induced ACD development was mediated by EP4 and T cells, we performed this model on EP4cKO and control (EP4fl/fl) mice. OXA induced significantly less ear skin inflammation in EP4cKO mice compared to control mice (Fig. 4F), suggesting that PGE2-EP4 signaling in T cells promotes ACD development.

PGE2-dependent IL-22 production and signaling in human atopic lesional skin

We next investigated whether PGE2-dependent adaptive IL-22 production and signaling can be found in human atopic skin. We analyzed mRNA expression of genes related to PGE2 metabolism (Fig 5A) and IL-22 signaling pathways in human lesional AD and normal skin biopsies. As reported previously32, mRNA expression levels for Th17/Th22 related genes (IL17A, IL22, IL23R, AHR), IL-22-induced products (e.g. S100A7, S100A8, S100A9), and skin-homing chemokines (CCR4) were over-expressed in lesional AD compared to normal skin (Fig 5B). Strikingly, mRNA expression levels for PGE2 synthases (PTGS2, PTGES, PTGES2) were also up-regulated in human atopic lesional skin, and expression levels for the PGE2 degradation enzyme HPGD (hydroxyprostaglandin dehydrogenase 15-(NAD)) was in contrast down-regulated in lesional AD skin (Fig 5B). These gene expression data are consistent with previous reports showing increased PGE2 levels in lesional AD skin21. There was a trend that expression of PTGER4 gene (encoding PGE2 receptor EP4) was up-regulated
in lesional AD skin, but expression of \textit{PTGER2} (encoding PGE$_2$ receptor EP2) was significantly down-regulated in lesional AD skin (Fig. 5B). Expression of Th2 cytokines (e.g. IL4, IL5, IL13) were not significantly up-regulated in lesional AD skin, however Th2 chemokines such as CCL26, CCL18, CCL22, CCL17, CCL11 and CCL5 were up-regulated in lesional AD skin compared to normal skin (Fig 5B). Interestingly, expression of IL-22 pathway genes showed strongly positive correlation with those of \textit{PTGES} in biopsy samples from lesional AD but not normal skin (Fig 5C). There were no correlations between \textit{PTGES} expression and Th2 cytokines (data not shown). However, weak correlations between \textit{PTGES} gene expression and Th2 chemokines in lesional AD skin were observed (Fig 5D). These results suggest that PGE$_2$ signaling is activated and positively correlates with the IL-22 signaling pathway and, probably, the Th2 pathway in human atopic skin.

Finally, we investigated whether current therapies for atopic dermatitis modulate PGE$_2$ signaling in human AD. We analyzed changes in expression levels of IL-22 and PGE$_2$ signaling genes in lesional AD skin before and after treatments such as betamethasone (a corticosteroid) by re-analyzing a public microarray dataset34. Compared to baseline levels, treatments with betamethasone reduced \textit{IL22} gene expression in atopic lesional skin. Betamethasone also significantly reduced expression of IL-22-related genes such as \textit{AHR}, \textit{S100A8}, \textit{S100A9} (Fig 6A). Expression of PGE$_2$ synthases (e.g. \textit{PTGES}, \textit{PTGES2}) and EP4 receptor (\textit{PTGER4}) was significantly downregulated by betamethasone treatment, while EP2 receptor (\textit{PTGER2}) expression was not changed (Fig 6A). This observation is consistent with findings that betamethasone treatment reduces PGE$_2$ production39,40. Interestingly, expression of \textit{PTGES}, \textit{PTGES2} and \textit{PTGER4}, but not \textit{PTGER2}, positively correlated with \textit{IL22} expression in atopic biopsies at baseline, while expression of \textit{HPGD}, which mediates PGE$_2$ degradation, negatively correlated with \textit{IL22} expression (Fig 6B). Furthermore, we have also
reanalyzed gene expression of skin biopsies before and after treated with UVB from our previous dataset35. Expression of PGE\textsubscript{2} synthases \textit{PTGS1} and \textit{PTGES} in lesional AD skin were down-regulated after treatment with UVB (Fig 6C). Interestingly, although IL-22 gene expression was not changed by UVB treatment, most likely due to the small number of samples, changes in expression of IL-22 activated genes (e.g. \textit{S100A8} and \textit{S100A9}) positively correlated with changes in expression of PGE\textsubscript{2} synthases (i.e. \textit{PTGS1}, \textit{PTGES} and \textit{PTGES2}) in atopic lesional, but not in non-lesional biopsies (Fig 6D and data not shown). Together, these data indicate that PGE\textsubscript{2}, most likely through the EP4 receptor, plays a role in IL-22 regulation in human skin.
Discussion

The cytokine IL-22, notably produced by Th22 and Th17 T-cells, is emerging as a key player in AD, leading to a new therapy targeting IL-22 signaling in AD clinical trials (NCT01941537). Genome-wide association studies have identified that gene polymorphisms of the PGE$_2$ receptor EP4 were associated with T cell-mediated human autoimmune and allergic inflammatory diseases. However, the role of PGE$_2$ in promoting IL-22 production and development of AD remain to be determined. Therefore, in this study, we examined this using *in vitro* cell cultures and *in vivo* ACD mouse model as well as interrogating gene expression in human AD lesional skin before and after common treatments for AD.

We show that PGE$_2$ markedly stimulates IL-22 production from T-cells, which complements our previous findings that PGE$_2$ promotes innate IL-22 production from ILC3s. It is worth noting that PGE$_2$ promotes IL-22 production from freshly activated CD4$^+$ T-cells under various conditions including Th17 and Th22-priming conditions. The effect of PGE$_2$ was mimicked by activation of EP2 and EP4 receptors and was prevented by antagonists against these receptors, confirming the involvement of these two receptors in adaptive IL-22 production *in vitro*. Further studies showed that the cAMP-PKA signaling pathway, activated by engagement of EP2 and EP4, mediates PGE$_2$ enhancement of IL-22 production through induction of newly expressed AHR. Our results thus uncover a new, targetable molecular mechanism for regulation of adaptive IL-22 by the PGE$_2$-cAMP-AHR axis.

The role of PGE$_2$ in promoting adaptive IL-22 production was also confirmed *in vivo*. T-cell specific EP4 deficiency led to large reduction of IL-22$^+$ T-cells in skin-draining LNs in response to hapten sensitization and attenuated repeated OXA challenge-induced allergic skin inflammation in the mouse model of ACD, indicating a critical role of endogenous EP4.
signaling in T-cells for IL-22 expression and function \textit{in vivo}. This is similar to innate IL-22 expression which also requires PGE$_2$-EP4 signaling28, suggesting a shared mechanism for regulating both the adaptive and innate IL-22 responses. Inhibition of endogenous PGE$_2$ production by a COX inhibitor successfully prevented accumulation of T-cells in ear-draining LNs, reduced T-cell production of IL-22 and attenuated allergic skin inflammation induced by repeated OXA challenges. Given that PGE$_2$ also promotes IL-17 production from both mouse and human Th17 T-cells26,43 and that IL-17 may participate in creating the ACD phenotype9-12, IL-17 may also be involved in the PGE$_2$-facilitated ACD pathogenesis.

Facilitation of IL-22 production by PGE$_2$ may contribute to several human inflammatory diseases such as AD and psoriasis44. Indeed, parallel up-regulations of IL-22 pathway genes, PGE$_2$ synthases were observed in human atopic lesional skin, whereas the PGE$_2$ degrading enzyme 15-PGDH (encoded by \textit{HPGD}) was down-regulated in AD skin. This is consistent with previous observations showing increased PGE$_2$ levels in lesional AD skin22. Moreover, our data indicate that IL-22 signaling positively correlated with PGE$_2$ signaling in atopic lesional skin, and these correlations were absent in both normal skin or in lesional AD skin following successful steroid or UVB treatments. These findings potentially suggest a PGE$_2$-dependent IL-22 production and signaling in human atopic skin.

Besides IL-227 T-cells, Th2 cells (especially cutaneous lymphocyte antigen-positive population with skin-homing capacity) are expanded in severe AD45. Th2 cells suppress major terminal differentiation proteins (i.e. filaggrin and loricrin) and predominates in the acute phase of AD through production of cytokines (e.g. \textit{IL4} and \textit{IL13}) and chemokines (e.g. \textit{CCL17, CCL18, CCL26}, etc)33,46. The Th2 response is thus critical for AD pathogenesis. Inhibition of COX2 has been reported to enhance Th2 cytokine production and Th2 response
to ovalbumin-induced epicutaneous sensitization23, suggesting a potential inhibitory role of PGs in Th2 cell-driven allergic inflammation. In human lesional AD skin, however, there was no correlations between the PGE\textsubscript{2} pathway and Th2 cytokines and, in contrast, weak positive correlations between the PGE\textsubscript{2} pathway and Th2 chemokines, suggesting a possible promoting role of PGE\textsubscript{2} in Th2 response in AD. This may be because PGE\textsubscript{2} promotes IL-17 and IL-22 production26-28,42 and subsequently IL-17 exacerbates Th2 type inflammation during the initiation of AD11,47.

We acknowledge this report has several limitations. For example, our analysis of gene expression profiles in human skin biopsies were retrieved from public GEO datasets and confirmation of these findings was not performed by methods with higher sensitivity such as real-time PCR using fresh biopsies. Moreover, cytokine expression in protein levels in different T-cell subsets were not measured by flow cytometry in skin of patients and animals. Furthermore, although in mice, the OXA-repeated challenge-induced chronic allergic skin inflammation represents a robust model, additional animal models are required in attempt to fully mimic most pathogenic and physiologic processes during the development of human AD. In addition, due to limitation of resources, the effects of PGE\textsubscript{2} signaling in T cells, especially the involvement of both EP2 and EP4 in T cells, on initiation and progression of ACD could not be interrogated, e.g. using mice with T cell-specific deficiency of both EP2 and EP4 receptors. Future prospective studies are therefore required to further understand not only the role of PGE\textsubscript{2} during perpetuating AD skin inflammation but also during its onset.

In conclusion, our data ascertain that PGE\textsubscript{2} acts as a potent promoter of both adaptive and innate IL-22 production. We have previously found that PGE\textsubscript{2} signaling promotes DC production of IL-23, a cytokine essential for IL-22 expression, as well as for proliferation and
maturation of Th17 T-cells26. Taken together, our results highlight the PGE\textsubscript{2} signaling pathway as an important stimulus of T-cell responses and AD development. Thus targeting PGE\textsubscript{2} synthesis or its receptors may represent a possible therapeutic strategy for the treatment of AD, and other inflammatory skin diseases such as psoriasis with an active role for IL-22, such as psoriasis.
References

29. Cella M, Colonna M. Aryl hydrocarbon receptor: Linking environment to immunity.

46. Sehra S, Yao Y, Howell MD, et al. IL-4 regulates skin homeostasis and the

Figure Legends

Figure 1. PGE$_2$ promotes T cell production of IL-22 through its receptors EP2 and EP4.

A, Il_{22} mRNA expression in naïve CD4$^+$ T cells stimulated with anti-CD3 and anti-CD28 (anti-CD3/CD28) antibodies (Abs) with indicated cytokines in the absence or presence of PGE$_2$ (100 nM) for 3 days. B, IL-22 levels in supernatants of cultures in A. C, IL-22 levels in supernatants of naïve CD4$^+$ T cells were cultured as in A and then the same numbers of T cells were re-stimulated with anti-CD3/CD28 Abs for another 3 days. D, IL-22 levels in supernatants of naïve CD4$^+$ T cells were stimulated with anti-CD3/CD28 Abs with IL-6+IL-23 with or without an EP2 agonist (butaprost, 1 µM) or EP4 agonist (L-902,688, 1 µM) for 3 days and then the same numbers of T cells were re-stimulated with anti-CD3/CD28 Abs for another 3 days. E, IL-22 levels in supernatants from Th17 cells re-stimulated with anti-CD3/CD28 Abs without or with IL-23 and various small molecule compounds activating or inhibiting PGE$_2$ receptors for 3 days. F, Il_{22} mRNA of re-stimulated Th17 cells with PGE$_2$ and/or IL-23 for 3 days. EP1/3 agonist 17-phenyl trinor PGE$_2$ was used at 1 µM while EP2 antagonist PF-04418948 and EP4 antagonist L-161,982 were used at 10 µM. All experiments were performed in duplicates or triplicates and repeated for 2-3 times independently. $^{*}P<0.05$, $^{**}P<0.01$, $^{***}P<0.001$ and $^{****}P<0.0001$.

Figure 2. Cyclic AMP promotes IL-22 production from T cells through induction of aryl hydrocarbon receptor (Ahr). A, IL-22 levels in supernatants from Th17 cells re-stimulated with anti-CD3/CD28 Abs without or with IL-23 and indicated concentrations of db-cAMP for 3 days. B, IL-22 levels in supernatants from Th17 cells re-stimulated with anti-CD3/CD28 Abs with IL-23, db-cAMP (100 µM) and indicated concentrations of PKI for 3 days. C,D, Il_{22} mRNA expression levels in Th17 cells re-stimulated with anti-CD3/CD28 Abs with IL-23 and db-cAMP in the absence (C) or presence (D) of cycloheximide (CHX, 1
µM) for 3 days. E, Ahr mRNA expression in naïve CD4⁺ T cells cultured with anti-CD3/CD28 Abs and indicated cytokines in the absence or presence of PGE₂ for 3 days. F-H, Ahr (F) and Il22 (G) mRNA expression and IL-22 levels (H) in supernatants of Th17 cells cultured with anti-CD3/CD28 Abs, IL-23, db-cAMP and CH-223191 (10 µM) for 3 days. All experiments were performed in duplicates or triplicates and repeated for 2-3 times independently. *P<0.05, **P<0.01, ***P<0.001 and ****P<0.0001. ns, non significant.

Figure 3. PGE₂-EP4 signaling in T cells facilitates IL-22 production in vivo. A, Representative flow cytometry dot-plot of IL-22 and IL-17 expression in skin-draining LN CD4⁺ T cells from T cell-specific EP4 deficient (EP4cKO, n=9) mice or control mice (n=10) 5 days post sensitization with 0.5% DNFB. B, Percentages and numbers of IL-22⁺ CD4⁺ T cells. Each dot represents one mouse. C, Il22 mRNA expression levels in CD4⁺ T cells isolated from skin-draining LNs of EP4cKO (n=6) or control (n=6) mice. Each dot represents one mouse. *P<0.05.

Figure 4. PGE₂ exacerbates atopic skin inflammation in the repeated oxalozone (OXA) challenge model. A-E, WT C57BL/6 mice were sensitized with 3% OXA on abdominal skin on (day 0) and then challenged with 0.6% OXA or EtOH on ears 5 days later. Challenge with OXA was repeated once every two days for a total of 5 challenges. Ears and ear-draining LNs were collected 6 h after the last OXA challenge (n=4-5). A, Schematic representation of the experimental protocol. B, Ear thickness. C, Ear histology. Scale bar, 50 µM. D, CD4⁺ and CD8⁺ T cells in ear-draining LNs. E, IL-22 production by ear-draining LN cells cultured with soluble anti-CD3 or medium only in vitro for 3 days. F, Swelling of ears from control and EP4cKO mice (n=9-13) sensitized and repeatedly challenged with OXA as in A but without indomethacin treatment. *P<0.05; ***P<0.001 and ****P<0.0001.
Figure 5. Over-expression of PGE₂ signaling genes in human lesional AD skin which positively correlate with expression of IL-22 signaling genes. A, Schematic depicting synthesis and metabolism of PGE₂ mediated by COX2 (encoding by *PTGS2*), PGE synthases (encoding by *PTGES* or *PTGES2*) and 15-PGDH (encoding by *HPGD*), respectively. A PGE₂ receptor EP4 (encoding by *PTGER4*) is also shown. B, Heat map of expression profiles of Th2 cytokine and chemokine genes and genes related to IL-22 and PGE₂ pathways in human lesional AD skin (n=38) and normal skin (n=32). A color scale bar indicates the Z-score transformed values of microarray gene expression data. Z-ratios represent the changes in gene expression levels between the normal and AD lesional groups. *P* values were calculated by nonparametric Wilcoxon-Mann-Whitney tests. Probes with the largest Z-ratios were chosen when several probes represented single genes. C, D, Correlations of *PTGES* gene expression versus expression of IL-22 pathway genes (C) or Th2 chemokines (D) in atopic lesional and normal skins. *P* value was calculated by nonparametric Spearman correlation test.

Figure 6. Steroid and UVB therapies down-regulate PGE₂ and IL-22 signaling pathway genes in human atopic lesional skin. A, Expression profiles of genes related to PGE₂ and IL-22 pathways in human lesional AD skin (n=10) at baseline (AD Base) or after treatment with betamethasone for 3 weeks. The z-score transformed values of microarray gene expression data were used. *P* value was calculated by paired nonparametric tests with post-hoc Dunn’s multiple comparisons test. B, Correlations of *PTGES, PTGES2, HPGD, PTGER4* gene expression versus that of *IL22* gene in human atopic lesional skins at baseline. *P* value was calculated by nonparametric Spearman correlation test. C, Expression of genes related to PGE₂ and IL-22 signaling in human atopic lesional (AL, n=8) and non-lesional (ANL, n=7)
skin before (PRE) or 12 weeks after (POST) treatment with UVB. The z-score transformed values of microarray gene expression data\(^3\) were used. \(P\) value was calculated by paired 2-way ANOVA test with post-hoc Bonferroni's multiple comparisons. \(D\), Correlations of changes in expression of IL-22-induced genes (\(S100A8, S100A9\)) and PGE\(_2\) synthase genes (\(PTGS1, PTGES\) and \(PTGES2\)) before (PRE) and after (POST) UVB therapy in atopic AL or NL skins. \(P\) value was calculated by nonparametric Spearman correlation test.
Fig. 1

A 1st culture

B 1st culture

C 2nd TCR-restimulation

D

E

F
Fig. 3

A

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>EP4cKO</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-22</td>
<td>0.98</td>
<td>0.30</td>
</tr>
<tr>
<td>IL-17A</td>
<td>4.75E-3</td>
<td>4.13E-3</td>
</tr>
</tbody>
</table>

B

IL-22+ (% of CD4+ T cells)

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>EP4cKO</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>2.0</td>
<td>30</td>
</tr>
<tr>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C

IL-22 mRNA (a.u.)

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>EP4cKO</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Fig. 4

A

Indomethacin or Vehicle in drinking water

Sensitization (3% OXA) Ear challenge (0.6% OXA or EtOH)

d0 1 5 7 9 11 13

B

Ear thickness (µm)

Veh Indo

C

Veh Indo

EtOH

OXA

D

CD4\(^+\) T cells

CD8\(^+\) T cells

E

IL-22 (pg/ml)

Medium anti-CD3

F

Ear swelling (µL)

d5 d7 d9 d11 d13

OXA - Control OXA - EP4\(_{ko}\) EtOH - Control EtOH - EP4\(_{ko}\)
Fig. 5

A

Arachidonic acid

\[\text{COX2 (PTGSEP)} \]

\[\text{PGH}_2 \]

\[\text{mPGES (PTGES)} \]

\[\text{mPGES2 (PTGES2)} \]

\[\text{PGE}_2 \quad \text{EP4 (PTGER4)} \]

\[\text{15-PGDH (HPGD)} \]

\[15\text{-keto PGE}_2 \quad \text{(Biologically inactive)} \]

B

<table>
<thead>
<tr>
<th></th>
<th>Normal skin</th>
<th>Lesional AD skin</th>
<th>Z-ratio</th>
<th>P value</th>
</tr>
</thead>
<tbody>
<tr>
<td>CCL26</td>
<td>1.55</td>
<td>2.0E-13</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCL18</td>
<td>1.18</td>
<td>1.2E-07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCL22</td>
<td>1.13</td>
<td>3.5E-07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCL17</td>
<td>1.03</td>
<td>1.1E-05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCL11</td>
<td>0.78</td>
<td>2.2E-04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCL5</td>
<td>0.63</td>
<td>3.8E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL17A</td>
<td>0.59</td>
<td>4.8E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCL13</td>
<td>0.37</td>
<td>0.14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL13</td>
<td>0.35</td>
<td>0.38</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL5</td>
<td>0.27</td>
<td>0.35</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL4</td>
<td>-0.24</td>
<td>0.46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S100A7</td>
<td>1.35</td>
<td>1.2E-09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S100A8</td>
<td>1.35</td>
<td>1.2E-09</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S100A9</td>
<td>1.23</td>
<td>1.2E-07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL22</td>
<td>1.02</td>
<td>2.1E-06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CCR4</td>
<td>0.85</td>
<td>1.5E-04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IL23R</td>
<td>0.85</td>
<td>8.3E-04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AHR</td>
<td>0.52</td>
<td>7.8E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTGES2</td>
<td>1.31</td>
<td>3.9E-11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTGES</td>
<td>1.03</td>
<td>2.2E-05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTGES2</td>
<td>0.73</td>
<td>2.3E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTGER4</td>
<td>0.44</td>
<td>0.057</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PTGER2</td>
<td>-0.92</td>
<td>6.6E-05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>HPGD</td>
<td>-1.40</td>
<td>3.8E-11</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

C

\[r_s = 0.606 \quad P < 0.0001 \]

\[r_s = 0.089 \quad r_s = 0.093 \]

\[r_s = 0.056 \quad P = 0.614 \]

\[r_s = 0.11 \quad P = 0.57 \]

\[r_s = 0.08 \quad r_s = 0.033 \]

\[r_s = 0.505 \quad P = 0.030 \]

\[r_s = 0.38 \quad P = 0.030 \]

\[r_s = -0.38 \quad P = 0.030 \]

D

\[r_s = 0.406 \quad P = 0.011 \]

\[r_s = 0.366 \quad P = 0.024 \]

\[r_s = 0.20 \quad P = 0.027 \]

\[r_s = 0.13 \quad P = 0.50 \]

\[r_s = 0.20 \quad P = 0.27 \]

\[r_s = 0.04 \quad P = 0.81 \]

\[r_s = 0.04 \quad P = 0.81 \]

\[r_s = 0.373 \quad P = 0.021 \]
Fig. 6

A

Relative Expression (Z-score)

- AD Base
- Betamethasone

B

C

D

PTGES
PTGES2
HPGD
PTGER4
PTGER2
IL23A
IL22
AHR
IL17A
S100A8
S100A9

IL22 (Z-score)

PTGES (Z-score)

PTGES2 (Z-score)

HPGD (Z-score)

PTGER4 (Z-score)

PTGER2 (Z-score)

AD Base

$\gamma = 0.842$

$P = 0.0037$

$\gamma = 0.073$

$P = 0.039$

$\gamma = 0.057$

$P = 0.022$

$\gamma = 0.758$

$P = 0.015$

$\gamma = 0.156$

$P = 0.81$

$\gamma = 0.74$

$P = 0.046$

$\gamma = 0.62$

$P = 0.011$

$\gamma = 0.39$

$P = 0.066$

$\gamma = 0.39$

$P = 0.066$