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the tracts; Hsu et�al. 2010; Muæoz Maniega et�al. In press). 
Alterations in these key neural parameters have been linked 
to decreases in cognitive ability (Kloppenborg et�al. 2014; 
LövdØn et�al. 2014; Ritchie et�al. 2015a, b), and thus may 
form part of the neural basis of ageing-related cognitive 
decline (Salthouse 2011). Since cognitive decline�even 
without dementia�is an increasing economic and social 
burden in Western countries (Brayne 2007), understand-
ing the predictors of later-life brain changes is of growing 
importance. Understanding why some individuals� brains 
age more healthily than others��that is, investigating 
what some researchers have termed �brain maintenance� 
(Nyberg et� al. 2012)�is a critical step toward design-
ing treatments and interventions to ameliorate cognitive 
decline.

Previous cross-sectional studies have discovered correla-
tions between di�erences in adult brain macro- and micro-
structure and lifestyle factors such as smoking and alco-
hol consumption (Hudkins et�al. 2012; Oscar-Berman and 
Marinkovi� 2007), health conditions (Qiu 2014; Raz et�al. 
2003), physical �tness (Sexton et�al. 2015), allostatic load 
(a measure of accumulated stress; Booth et�al. 2015), and 
genetic factors such as the APOE e4 allele (Laukka et� al. 
2015) and genetic risk for schizophrenia (Staal et�al. 2000). 
Although there is mixed evidence regarding this latter asso-
ciation (Liu et�al. 2016; van der Auwera et�al. 2015), there 
is reason to hypothesize that a higher load of schizophre-
nia-related genes may predispose individuals to poorer 
brain health, since strong genetic correlations have been 
found between schizophrenia and various cognitive abili-
ties (Hagenaars et�al. 2016).

Importantly, only some of these variables have been 
investigated as predictors of longitudinal changes in brain 
structure, and they have rarely been examined simultane-
ously. Poorer physical �tness (Tian et� al. 2015), higher 
levels of glycated haemoglobin (Enzinger et� al. 2005), 
and hypertension (Raz et�al. 2003) have individually been 
associated with accelerated rates of brain atrophy. There is 
con�icting evidence for the role of the APOE e4 allele in 
brain tissue loss in individuals without dementia (Josephs 
et�al. 2008; Wishart et�al. 2006). Risk factors for the accu-
mulation of white matter hyperintensities, which have been 
studied in more depth than changes in healthy brain tissues, 
tend to be vascular-related (Wardlaw et�al. 2015). Very few 
longitudinal studies have examined predictors of later-life 
change in white matter di�usion parameters (see Köhncke 
et� al. 2016, for the one example of which we are aware). 
The distinction between cross-sectional and longitudinal 
analyses of brain ageing is important: in cross-sectional 
studies, it is not possible to di�erentiate between develop-
mental processes that occur in earlier periods of life from 
e�ects that are speci�cally ageing-related (Tucker-Drob 
and Salthouse 2011).

The present study reports an analysis of predictors of 
change in brain volumes (grey matter, normal-appearing 
white matter, and white matter hyperintensities) and di�u-
sion parameters (latent general factors of fractional anisot-
ropy and of mean di�usivity, extracted from di�usion ten-
sor imaging of multiple white matter tracts across the brain; 
see Methods) between age 73 and 76�years. We selected a 
wide range of potential predictors on the basis of the lit-
erature surveyed above, examining health, �tness, lifestyle, 
cognitive, socioeconomic, and genetic variables. In order to 
reduce the numerous predictor variables to a manageable 
number, where possible we extracted latent variables that 
indexed shared variance between groups of predictors. The 
�nal predictor list was the following: sex, physical �tness, 
allostatic load, health conditions, socioeconomic status, 
prior intelligence, education, smoking, alcohol consump-
tion, APOE e4 status, and polygenic risk for schizophrenia. 
We tested the predictors� relation to brain changes. First, we 
examined the value of each predictor individually. Second, 
we used penalized regression (Zou and Hastie 2005) to cre-
ate parsimonious multivariate models that predicted each 
brain outcome from an optimal combination of predictors.

Materials and�methods

Participants

The Lothian Birth Cohort 1936 (Deary et�al. 2007, 2012) 
is a longitudinal study of ageing based in the Edinburgh 
and Lothians area of Scotland, United Kingdom. Partici-
pants were invited to join the study on the basis of their 
participation, at age 11, in the Scottish Mental Survey of 
1947, during which most had completed a test of general 
intelligence (see below). They were followed up in later 
life and have so far completed three waves of later-life test-
ing. At the �rst wave, in 2004�2007, participants were aged 
69.53�years on average (SD = 0.83; n = 1,091; 543 females). 
At the second wave, in 2007�2010, they were aged 72.49 
years (SD = 0.71; n = 866; 418 females). At the third wave, 
in 2011�2014, they were aged 76.25� years (SD = 0.68, 
n = 697; 337 females). The majority of the �predictor� vari-
ables in the present study, described below, were measured 
at the second testing wave.

At the second and third waves, the participants were also 
invited to attend for a structural and di�usion tensor brain 
scan (Wardlaw et�al. 2011). 731 participants (343 females) 
were scanned at the second wave (mean age: 72.68�years; 
SD = 0.72), and 488 (228 females) were scanned at the 
third wave (mean age: 76.38� years; SD = 0.65). Di�er-
ent amounts of usable data were obtained for each of the 
brain measures: the valid sample sizes for each measure are 
shown in Table�2.
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The study was approved by the Multi-Centre Research 
Ethics Committee for Scotland (MREC/01/0/56) and the 
Lothian Research Ethics Committee (LREC/2003/2/29). 
All participants completed written informed consent forms 
before any cognitive, MRI, or other measurements were 
taken.

Measures

MRI scanning

All participants were scanned using the same scanner 
(1.5�T GE Signa Horizon HDx; General Electric, Milwau-
kee, WI, USA), using the same protocol, at both waves. 
The full imaging protocol is described elsewhere (Wardlaw 
et�al. 2011).

Brain volumetric measures

We measured brain volumes (speci�cally grey matter, 
normal-appearing white matter, and white matter hyperin-
tensity volumes) using a validated multispectral image pro-
cessing method that combines T1-, T2-, T2*-, and FLAIR-
weighted MRI sequences for segmentation (based on a 
previous method; ValdØs HernÆndez et� al. 2010). Accord-
ing to STandards for ReportIng Vascular changes on nEu-
roimaging (STRIVE), we explicitly de�ned white matter 
hyperintensities as punctate, focal, or di�use lesions in all 
subcortical regions (Wardlaw et� al. 2013). We manually 
checked all segmented images for accuracy blinded to all 
participant characteristics, corrected errors, and excluded 
imaging-detected infarcts from white matter hyperintensity 
volumes (Wang et� al. 2012). White matter hyperintensity 
volume was log-transformed before inclusion in the analy-
ses, since it had a right�skewed distribution (that is,�many 

participants had few hyperintensities). White matter hyper-
intensities are illustrated as the crosshatched areas in Fig.�1, 
alongside the di�usion-tensor measures described below. 
Note that the analyses below are performed on the total 
tissue volumes; when adjusting these volumes for intracra-
nial volume, the pattern of results�especially for longitu-
dinal changes (the main focus of the report)�was nearly 
identical.

White matter di�usion-tensor measures

All di�usion MRI data were converted from DICOM 
(http://dicom.nema.org/) to NIfTI-1 (http://nifti.nimh.
nih.gov/nifti-1/) format using TractoR tools (http://www.
tractor-mri.org.uk; Clayden et�al. 2011), and pre-processed 
with FSL tools (http://www.fmrib.ox.ac.uk/fsl/; Jenkinson 
et� al. 2012) in order to extract the brain, eliminate bulk 
patient motion and eddy current-induced artifacts, and esti-
mate FA and MD in each brain voxel. The underlying con-
nectivity data was generated using BedpostX/ProbTrackX 
(Behrens et� al. 2007), with a two-�ber model and 5000 
streamlines to reconstruct tracts of interest.

As described in detail previously (Ritchie et�al. 2015a), 
12 tracts of interest were identi�ed in each participant using 
probabilistic neighborhood tractography, an automatic tract 
segmentation method with good reproducibility (Clayden 
et� al. 2009). The 12 tracts segmented were the genu and 
splenium of corpus callosum; the bilateral cingulum cin-
gulate gyri; the�arcuate, uncinate, and inferior longitudinal 
fasciculi; and the anterior thalamic radiations. Tract-aver-
aged values of MD and FA, weighted by connection prob-
ability, were generated for each pathway in those tracts that 
were visually assessed to be anatomically plausible repre-
sentations of the fasciculus of interest. The tracts are illus-
trated in color in Fig.�1.

Fig. 1   Illustration of the 12 white matter tracts (�ve bilateral; two 
from the corpus callosum) measured using probabilistic neighbor-
hood tractography in one Lothian Birth Cohort 1936 study participant 
(in color). Also shown are the volumetrically-estimated white matter 

hyperintensities observed in this participant (crosshatched). Tracts 
and hyperintensities are displayed inside the participant�s spatially-
registered T1-weighted brain volume
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At each scanning wave, we estimated latent general fac-
tors of FA and MD from tract-averaged estimates from each 
of the measured tracts. These general factors capture the 
shared variance in FA or MD across multiple tracts. Simi-
lar analyses have been used in several previous studies of 
white matter microstructure (Ritchie et� al. 2015a; Bender 
et� al. 2016). All latent variable loadings were highly sig-
ni�cant and mostly moderate-to-large in size, except for the 
loading of MD in the splenium of the corpus callosum on 
general MD at each wave, which were weak (0.200 at age 
73 and 0.275 at age 76). For this reason, we did not use this 
tract as part of the general MD factor, reducing the number 
of indicators for MD at each wave to 11. All 12 tracts were 
used to indicate the general FA factor at both waves.

Predictors of�brain change

We selected 11 candidate predictors of brain change. For 
four of the predictors, we created latent variables from 
multiple manifest indicators. Physical �tness comprised 
grip strength in the dominant hand (measured on a Hydrau-
lic Hand Dynamometer), forced expiratory volume in 1s 
(measured using a Micro Medical Spriometer), and 6-metre 
walk time, all measured at age 73. All three physical vari-
ables were adjusted for height. Allostatic load, a variable 
theoretically representing �wear and tear� on bodily systems 
(McEwen 1998), was indicated by a variety of in�amma-
tory biomarkers (�brinogen, C-reactive protein, interleu-
kin-6) and metabolic biomarkers (triglycerides, glycated 
haemoglobin, low- and high-density lipoprotein, and body 
mass index), all derived from blood samples or direct 
measurements taken at age 73 (Booth et�al. 2015). Socio-
economic status was indicated by the participant�s father�s 
occupational class at their birth in 1936, the participant�s 
own highest achieved occupational class before retirement, 
and the Scottish Index of Multiple Deprivation, a govern-
ment-collected, neighborhood-level indicator of social dep-
rivation, estimated for the present participants at age 70 
(Executive 2006). Prior intelligence was indicated by the 
participant�s scores on three tests: the Moray House Test 
No. 12 (Scottish Council for Research in Education 1949), 
taken at age 11, the National Adult Reading Test (Nelson 
and Willison 1991), and the Wechsler Test of Adult Read-
ing (Wechsler 2001). The latter two tests were taken at age 
70, during the �rst wave of the study.

The remaining seven predictors were included in the 
model as manifest (i.e. single) variables. Sex was indi-
cated at entry to the study. Health conditions were meas-
ured as a sum of the number of the following conditions 
the participants reported su�ering from: diabetes, hyper-
tension, stroke, and cardiovascular disease (since these 
were all binary variables, we chose to calculate a sum 
rather than a latent variable). Education was self-reported 

by the participants as the number of years of formal, full-
time education the participants completed. Smoking status 
was recorded as current, ex-, or never, reported at age 73. 
Alcohol consumption was recorded as grams per week, 
as reported on a validated Food Frequency Questionnaire 
at age 70 (this variable was log-transformed to normalize 
its distribution). Apolipoprotein (APOE) e4 genotype was 
derived from blood samples using TaqMan technology 
at the Wellcome Trust Clinical Research Facility Genet-
ics Core at the Western General Hospital, Edinburgh. The 
APOE variable used here classi�es participants into �no e4 
alleles� versus �one or two e4 alleles�. Finally, each partici-
pant�s regression-weighted polygenic risk score for schizo-
phrenia was derived from single-nucleotide polymorphism 
(SNP) genotyping, using summary data from the most 
recent genome-wide association study for schizophrenia 
(Schizophrenia Working Group of the Psychiatric Genom-
ics Consortium 2014; see previous work in this sample by 
McIntosh et�al. 2013, for more details about risk score cal-
culation). For the present study, we used the most liberal 
SNP inclusion threshold (all SNPs, p = 1.00). When using 
the polygenic score, we also included four multidimen-
sional scaling components to control for population strati-
�cation. Participants also completed the Mini-Mental State 
Examination (MMSE; Folstein et�al. 1975) at both waves. 
This was used as part of a secondary analysis, described 
below.

Statistical analyses

We estimated three structural equation models, each includ-
ing di�erent brain measurements as the dependent vari-
ables. These were change score models (McArdle 2009), 
which allow the assessment of levels (in this case, the 
brain�s baseline status at age 73) and changes across two 
measurement waves (brain changes between age 73 and age 
76).

Model 1 had as its dependent variables three brain volu-
metric changes: changes in the volumes of grey matter, 
normal-appearing white matter, and white matter hyper-
intensities. Model 2 used the FA values from the DT-MRI 
scans, producing a latent variable of general FA across 
the 12 tracts at each scanning wave, and a latent change 
score variable (�FA) indexing the FA change across the 
waves. Model 3 used the MD values from the same DT-
MRI scans, producing a latent variable of cross-wave MD 
change (�MD). Figure� 2 shows a simpli�ed diagram of 
the model. For general FA and MD, we imposed strong 
measurement invariance across the waves (that is, we con-
strained the loadings and intercepts of each tract to equal-
ity across wave, under the assumption that the same latent 
trait was being measured across waves; see Widaman 
et� al. 2010; Ritchie et� al. 2015a) Since there was a small 
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amount of within-wave age variability, models adjusted the 
brain variables for the participant�s age in days at the time 
of scanning. For each of the three models, we tested the 
association of brain baseline levels and changes with each 
individual predictor variable (some of which were latent 
variables, and some of which were manifest, as described 
above), by regressing the brain outcome on each predic-
tor separately. All of these analyses also adjusted for sex. 
Structural equation modeling was performed in Mplus v7.3 
(MuthØn and MuthØn 1998�2014), and used full-informa-
tion maximum likelihood estimation in order to use all of 
the available data.

Next, we produced simultaneous, multivariate regres-
sion models that included a combination of the most 
appropriate predictor variables for each brain outcome. 
Methods of producing such models include forwards 
and backwards stepwise regression, but these can lead to 
over�tting, and thus a lower likelihood of �ndings that 
are replicable in independent datasets. For this reason, we 
used a penalized regression method, the elastic net (Zou 
and Hastie 2005), which combines the advantages of 
least absolute shrinkage and selection operator (LASSO) 
regression (production of a parsimonious model by 
removing irrelevant variables) and ridge regression (good 
performance in the presence of collinear predictors, as 
was the case in our dataset; Morozova et�al. 2015). These 
analyses were performed using the �glmnet� package for 
R (Friedman et� al. 2010), with 10-fold cross-validation. 
We bootstrapped each model 1000 times, including in the 
�nal model only those variables that had a non-zero coef-
�cient in 50% or more of the iterations. Thus, we selected 
variables that were stably chosen by the estimator as rel-
evant predictors of each neuroanatomical outcome. We 

took these selected predictors and simultaneously entered 
them into the latent di�erence score models to produce 
the results described below.

Results

Full descriptive statistics and valid sample sizes for all 
measures, along with the loadings of each variable on its 
factor (where applicable) are presented in Tables� 1 (for 
predictors) and 2 (for brain parameters). Correlations 
among the predictor variables are shown in Table�3.

All brain measures showed statistically signi�cant 
mean change across the 3� years of the study (all p val-
ues <0.001). The models implied that grey matter volume 
change was �0.07 SDs/year (�0.64% change/year). Nor-
mal-appearing white matter volume change was �0.10 
SDs/year (�1.01%/year). White matter hyperintensity 
volume change was +0.11 SDs/year (+11.04%/year). 
General FA change was �0.09 SDs/year. General MD 
change was +0.34 SDs/year. Each of the brain changes is 
illustrated in Fig.�3; although mean change was observed, 
there was substantial between-person variation in the 
magnitude of these changes.

The base models for general FA and MD had adequate 
�t to the data (general FA: �2(251) = 639.44, p < 0.001, root 
mean square error of approximation (RMSEA) = 0.047, 
Comparative Fit Index (CFI) = 0.914, Tucker-Lewis Index 
(TLI) = 0.906; general MD: �2(207) = 618.86, p < 0.001, 
RMSEA = 0.059, CFI = 0.917, TLI = 0.907). Note that the 
base model for the three brain volumetric variables was 
saturated and thus had perfect �t to the data by de�nition.

Fig. 2   Simpli�ed diagram of 
the structural equation model 
for the general fractional 
anisotropy (FA) variable. FA 
in white matter tracts 1�12 was 
measured at baseline (age 73) 
and follow-up (age 76), and a 
General FA factor extracted at 
each wave. From these a latent 
change score variable (� Gen-
eral FA) was calculated. Then, 
each of the predictor variables 
was assessed for its relation 
with baseline level (path A) and 
change (path B). The equiva-
lent model for general mean 
di�usivity used only 11 tracts. 
The equivalent models for grey 
matter volume, white mat-
ter volume, and white matter 
hyperintensity volume did not 
use latent factors at each wave
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Individual predictors of�brain structure baseline level 
and�change

We regressed each brain baseline level and change variable 
on each of the predictors separately (also controlling for sex 
in each case; the e�ect of sex alone was also examined). 
The results of these analyses are shown in Fig.�4 (all values 
are provided in Supplementary Tables S1 for baseline�level 
and Supplementary Table� S2 for change). All results are 
reported with the brain outcomes scaled such that higher 
scores indicate healthier baseline levels (more grey and 
white matter, higher general FA, lower hyperintensity vol-
ume and lower general MD) and healthier changes (less 
decline in grey matter, white matter, and general FA; shal-
lower increases in hyperintensity volume and general MD). 
That is, positive associations suggest healthier ageing and 
negative correlations suggest less healthy ageing.

Many associations were found between the predictors 
and brain baseline level in all �ve measures. The only vari-
ables that showed no signi�cant relation with any baseline 

brain variable were alcohol consumption, APOE e4 status, 
and polygenic schizophrenia risk. We note that many of 
the predictor associations with brain baseline levels have 
been reported individually in previous publications on the 
Lothian Birth Cohort 1936 (Booth et�al. 2015; Gow et�al. 
2012; Ritchie et� al. 2015a, b); these results are provided 
here so as to evaluate multiple predictors together, and as a 
comparison to the new results for brain changes.

For change, there were far fewer associations. Only sex 
was associated with change in grey matter volume, with 
males declining faster. There were no signi�cant relations 
with change in general FA. Some predictors had value, as 
shown in Fig.� 4: physical �tness was signi�cantly associ-
ated with healthier ageing in white matter volume and 
general MD, the APOE e4 allele was linked to less healthy 
changes in white matter and white matter hyperintensity 
volume, among some other, borderline associations. Impor-
tantly however, these results are uncorrected for multiple 
comparisons. Introducing a per-outcome false discovery 
rate correction (Benjamini and Hochberg 1995) reduced 

Table 1   Descriptive statistics and factor loadings for predictor variables

*Variables collected at age 70; all other variables collected at age 73, unless otherwise noted

Variable category Measured variable n Mean (SD) or n for categorical measures Factor loading

Physical �tness (latent) Grip strength 823 28.54 (9.39) 0.393
Forced expiratory volume 856 2.30 (0.68) 0.458
6�m walk time 860 4.35 (1.32) 0.482

Allostatic load (latent) Fibrinogen 819 3.25 (0.61) 0.482
C-reactive protein 830 4.94 (7.84) 0.506
Interleukin-6 815 2.05 (1.73) 0.585
Triglycerides 832 1.65 (0.82) 0.314
Glycated haemoglobin 826 5.75 (0.66) 0.376
Low-density lipoprotein 829 2.93 (1.04) 0.251
High-density lipoprotein 832 1.46 (0.44) 0.341
Body mass index 866 27.92 (4.45) 0.402

Socioeconomic status (latent) Father�s occupational class (1�5)* 960 2.91 (0.94) 0.372
Own occupational class (1�5)* 1091 3.54 (1.20) 0.505
Scottish Index of Multiple Deprivation 

(1�8)*
1083 6.25 (2.09) 0.540

Prior intelligence (latent) Moray House Test (age 11) 1028 100 (15.00) 0.731
NART (max. 50) 864 34.38 (8.18) 0.958
WTAR (max. 50) 864 41.01 (6.97) 0.944

Manifest (single) predictors Health conditions (0�4) 854 0.95 (0.91) �
Education (years)* 1091 10.74 (1.13) �
Smoking 866 415 never; 378 ex; 73 current �
Alcohol (g per week)* 928 11.98 (16.79) �
APOE e4 1028 306 with 1 or 2 e4 alleles; 722 with no e4 

alleles
�

Polygenic risk for SCZ 953 0.49 (0.02) �
Dementia screening MMSE age 73 (max. 30) 865 28.75 (1.42) �

MMSE age 76 (max. 30) 697 28.65 (1.70) �
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Table 2   Descriptive statistics 
and factor loadings for brain 
measurements

Factor loadings were invariant across waves. The splenium had a low loading for MD and so was not 
included in the general factor
FA fractional anisotropy; MD mean di�usivity; L/R left/right hemisphere

Measured variable Wave 2 (age 73) Wave 3 (age 76)

n M (SD) Factor loading n M (SD)

Grey matter volume (cm3) 657 472.43 (44.68) � 461 465.67 (43.61)
White matter volume (cm3) 657 476.89 (50.55) � 461 464.25 (53.09)
White matter hyperintensity volume (cm3) 656 12.23 (12.18) � 464 15.85 (14.57)
Corpus callosum genu FA 646 0.41 (0.05) 0.602 438 0.38 (0.04)
Corpus callosum splenium FA 663 0.49 (0.07) 0.338 437 0.51 (0.07)
L arcuate fasciculus FA 639 0.45 (0.04) 0.648 455 0.43 (0.04)
R arcuate fasciculus FA 580 0.43 (0.04) 0.613 414 0.41 (0.04)
L anterior thalamic radiation FA 556 0.32 (0.03) 0.642 429 0.33 (0.03)
R anterior thalamic radiation FA 643 0.33 (0.03) 0.657 453 0.34 (0.03)
L rostral cingulum FA 641 0.44 (0.05) 0.596 448 0.44 (0.05)
R rostral cingulum FA 650 0.39 (0.04) 0.551 448 0.41 (0.05)
L uncinate fasciculus FA 567 0.33 (0.03) 0.680 407 0.34 (0.03)
R uncinate fasciculus FA 628 0.33 (0.03) 0.670 443 0.33 (0.03)
L inferior longitudinal fasciculus FA 663 0.40 (0.05) 0.510 455 0.39 (0.06)
R inferior longitudinal fasciculus FA 664 0.38 (0.05) 0.480 462 0.38 (0.05)
Corpus callosum genu MD 646 770.05 (66.05) 0.659 438 850.28 (82.99)
Corpus callosum splenium MD 663 978.47 (173.32) - 437 852.01 (153.16)
L arcuate fasciculus MD 639 659.50 (47.60) 0.686 455 699.45 (58.14)
R arcuate fasciculus MD 580 646.35 (52.29) 0.715 414 681.46 (58.21)
L anterior thalamic radiation MD 556 758.24 (66.00) 0.653 429 795.90 (66.85)
R anterior thalamic radiation MD 643 754.29 (62.44) 0.738 453 791.45 (86.75)
L rostral cingulum MD 641 648.13 (45.64) 0.557 448 673.84 (46.71)
R rostral cingulum MD 650 651.92 (45.08) 0.618 448 663.39 (42.12)
L uncinate fasciculus MD 567 770.37 (53.82) 0.643 407 794.30 (57.22)
R uncinate fasciculus MD 628 756.31 (52.30) 0.703 443 796.54 (58.11)
L inferior longitudinal fasciculus MD 663 771.85 (100.10) 0.426 455 826.54 (143.47)
R inferior longitudinal fasciculus MD 664 772.20 (101.48) 0.414 462 801.15 (122.90)

Table 3   Associations (standardized betas) among latent and manifest predictor variables, estimated within a structural equation model

*p < 0.05, ** = p < 0.01; *** = p < 0.001. � = latent variable predictor

Variable 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.

1. Sex (male) �
2. Physical �tness� 0.01 �
3. Allostatic load� �0.02 �0.68*** �
4. Health conditions 0.11** �0.36*** 0.37*** �
5. Socioeconomic status� 0.05 0.38*** �0.35*** �0.11* �
6. Prior intelligence� �0.09** 0.26*** �0.20*** �0.09** 0.69*** �
7. Education 0.01 0.16** �0.17*** �0.08* 0.71*** 0.55*** �
8. Smoking �0.08* �0.27*** 0.25*** 0.05 �0.21*** �0.07* �0.11** �
9. Alcohol consumption 0.35*** 0.12* �0.18*** �0.05 0.35*** 0.19*** 0.19*** 0.03 �
10. APOE e4 0.04 0.08 �0.07 �0.03 0.04 0.03 0.002 �0.06 0.03 �
11. Polygenic risk for schizophrenia 0.04 �0.03 �0.02 �0.04 �0.003 �0.07 �0.02 0.06 0.06 �0.01
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all change associations to non-signi�cance except the asso-
ciation of sex with grey matter change, and the association 
of physical �tness with change in general MD (see dagger 
signs in Fig.�4).

We next explored the degree of correspondence between 
predictors of level and predictors of change. We did this in 
two ways. First, for those predictors that were signi�cant 
(uncorrected) for either level or change, we tested whether 
the e�ect sizes for level and for change were signi�cantly 
di�erent from one another. As shown by the �a� superscript 
in Fig.�4, we found that many of the associations that were 
signi�cant for level were signi�cantly di�erent from the 
corresponding association for change (for example, the 
associations of SES, prior intelligence, and education with 
the volumetric measures). Some of the signi�cant asso-
ciations with change (namely the APOE e4 allele and the 
schizophrenia polygenic pro�le score) were signi�cantly 
larger than those for level. Second, we tested the correla-
tion of the vector of e�ect sizes for baseline level with the 
vector of e�ect sizes for change. Across all e�ect sizes for 
all brain variables, there was only a modest, non-signi�cant 
correlation between the e�ect sizes (r(53) = 0.27, p = 0.05), 
suggesting relatively poor correspondence between the 
e�ect sizes. Overall, this indicated that obtaining a signi�-
cant e�ect for a correlate of levels of late life brain struc-
ture cannot be regarded as prima facie evidence that the 
variable is a similarly-e�ective predictor of ageing-related 
structural change.

Models with�multiple predictors of�baseline brain 
structure and�change

The elastic net regression procedure selected variables 
to include in the simultaneous-predictor models, keep-
ing each model as parsimonious as possible (Table� 4). 
As shown previously (Morozova et� al. 2015), penalized 
regression procedures often select variables that are not 
incrementally signi�cant in a regression model, but that 
nonetheless reduce the mean squared error if they are 
included. This was the case for our models: the selec-
tion procedure selected several variables that were not 
signi�cant in the model (the unbolded coe�cients in 
Table�4). With only a few di�erences, the change results 
from the individual analyses remained intact in these 
simultaneous models: physical �tness and APOE e4 
status remained the most substantial predictors of brain 

Fig. 3   Change in each brain measure between age 73 and age 76 
years, showing an individual point for each participant at the �rst 
scanning wave (left, red cluster) and the second (right, purple clus-
ter). Participants who returned for the second scan have their points 
connected with a grey line. For comparison, all measurements are 
shown on a standardized scale

�
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change, although some factors that were not previously 
statistically signi�cant, such as alcohol consumption 
(in this case associated with white matter hyperinten-
sity progression) became signi�cant in the simultaneous 
model.

Models excluding�individuals with�possible dementia

Finally, we re-ran our individual-predictor-variable 
analyses removing sixteen individuals with mini-mental 
state examination (Folstein et�al. 1975) scores below 24 
(a commonly-used cut-o� that might indicate mild cog-
nitive impairment or dementia) at either testing wave. 
Whereas the vast majority of the results were very simi-
lar to those from the main analysis, there were no longer 
any signi�cant baseline level associations for smoking, 
or any signi�cant change associations for possession of 
the APOE e4 allele.

Discussion

This investigation of neurostructural changes between 
age 73 and age 76 makes two key contributions. First, it 
identi�es some potentially important predictors of brain 
change. For example, physical �tness and APOE e4 were 
the most consistent predictors of di�erential rates of brain 
ageing, and are therefore promising foci for further inves-
tigation into predictions of brain change. On the whole, 
e�ect sizes for predictors of longitudinal brain change 
were small (all standardized � values < 0.4 for brain 
changes), and few were statistically signi�cant. Predic-
tors di�ered across the di�erent neural outcomes under 
study, suggesting that ageing-related brain change is a 
multifaceted, multidetermined process (see e.g. Kievit 
et� al. 2014). Second, the results highlight the important 
point that variables that are signi�cantly associated cross-
sectionally with baseline levels of neural structure do not 
necessarily make signi�cant predictions about longitudi-
nal neural changes. We found that many of the correlates 

Fig. 4   Associations of each predictor with baseline levels of (left) 
and changes in (right) each brain measure (all associations adjusted 
for age and sex). Brain variables scaled such that positive associations 
(green) indicate healthier brain baseline levels and brain ageing, and 
negative associations (red) indicate unhealthier brain baseline lev-

els and brain ageing. Hyperintensity = white matter hyperintensity; 
FA fractional anisotropy; MD mean di�usivity. *p < 0.05, **p < 0.01, 
***p < 0.001; �signi�cant after false discovery rate (FDR) correction; 
ae�ect size for baseline was signi�cantly di�erent from e�ect size for 
change
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