Reasoning about Probabilities in Unbounded First-Order Dynamical Domains

Citation for published version:

Digital Object Identifier (DOI):
10.24963/ijcai.2017/115

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published in:
Proceedings of the Twenty-Sixth International Joint Conference on Artificial Intelligence (IJCAI-2017)

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and/or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Reasoning about Probabilities in Unbounded First-Order Dynamical Domains

Vaishak Belle
University of Edinburgh
United Kingdom
vaishak@ed.ac.uk

Gerhard Lakemeyer†
RWTH Aachen University
Germany
gerhard@cs.rwth-aachen.de

Abstract
When it comes to robotic agents operating in an uncertain world, a major concern in knowledge representation is to better relate high-level logical accounts of belief and action to the low-level probabilistic sensorimotor data. Perhaps the most general formalism for dealing with degrees of belief and, in particular, how such beliefs should evolve in the presence of noisy sensing and acting is the account by Bacchus, Halpern, and Levesque. In this paper, we reconsider that model of belief, and propose a new logical variant that has much of the expressive power of the original, but goes beyond it in novel ways. In particular, by moving to a semantical account of a modal variant of the situation calculus based on possible worlds with unbounded domains and probabilistic distributions over them, we are able to capture the beliefs of a fully introspective knowledge base with uncertainty by way of an only-believing operator. The paper introduces the new logic and discusses key properties as well as examples that demonstrate how the beliefs of a knowledge base change as a result of noisy actions.

1 Introduction
When it comes to robotic agents operating in an uncertain world, a major concern in knowledge representation is to better relate high-level logical accounts of beliefs and action to the low-level probabilistic sensorimotor data. In these and other applications, it is often not sufficient to say that a formula ϕ is unknown: we may need to say which of ϕ or $\neg\phi$ is more likely, and by how much. Motivated by such concerns, the unification of logic and probability has received much attention in the recent years [Russell, 2015].

Perhaps the most general formalism for dealing with degrees of belief in formulas, and in particular, with how that should evolve in the presence of noisy sensing and acting is the first-order logical account by Bacchus, Halpern, and Levesque (BHL) [1999]. The main advantage of a logical account like BHL is that it allows a specification of belief that can be partial or incomplete, in keeping with whatever information is available about the domain, making it particularly attractive for general-purpose high-level programming [Lake- meyer and Levesque, 2007].

The BHL account is an extension to Reiter’s reworking of the situation calculus [Reiter, 2001]. (For space reasons, we will assume some familiarity with the language.) A modeler is taken to provide the initial beliefs of the agent using a special binary functional fluent p: $p(s', s)$ is understood as the weight accorded to s' when the agent is at s. A basic action theory is taken to include axioms about the preconditions of actions and its effects via successor state axioms as usual, the latter embodying Reiter’s monotonic solution to the frame problem. But additionally, a special predicate $oi(a, a')$ denoting observational indistinguishability is used to say that executing a may result in a' occurring instead (unbeknownst to the agent), and a special function $I(a, s)$ is used to define the likelihood of the action a at s. A (fixed) successor state axiom for p determines the weight accorded to successors, resulting from oi-related actions:

$$p(s', do(a, s)) = u \quad \exists a', s'' [oi(a, a') \land s'' = do(a', s'') \land poss(a', s'') \land$$
$$\lor \neg 3a', s'' [oi(a, a') \land s'' = do(a', s'') \land poss(a', s'') \land u = 0]$$

Belief in ϕ, then, is defined in terms of the sum of the weights of accessible situations where ϕ holds. (A simple initial constraint requiring that the belief in true be a number ensures that the summation is well-defined.)

Since the situation calculus is defined axiomatically, no special semantics is needed. However, as argued in [Lake- meyer and Levesque, 2004], when we wish to consider theoretical questions that are not direct entailments of basic action theories, involved arguments based on Tarskian structures or considerable proof-theoretic machinery is needed. In the non-probabilistic epistemic situation calculus alone, elementary questions about knowledge – from $Ka \supset (K\beta \lor K\gamma)$, does it follow that $Ka \supset K\beta$ or $Ka \supset K\gamma$, for example – require multi-page proofs. This situation is clearly much worse if we are arguing about degrees of beliefs. Moreover, when we think about modeling a partially specified domain, our intuitions is that a quantitative account subsumes a qualitative specification, and an account with actions subsumes a non-dynamic specification. No such relation has been established for BHL, and we believe deriving such a result would be very involved for the above reasons. Finally, despite being a model

†The authors are grateful to Hector J. Levesque for valuable input on a preliminary draft, and thank the anonymous reviewers for helpful suggestions.

‡Also affiliated with the University of Toronto, Canada.
of belief, BHL do not really consider any meta-belief properties: for example, what does introspection look like with degrees of belief?

Outside of these three concerns, from a knowledge representation point of view, a key question is this: how do we specify a knowledge base in a probabilistic setting? What we have in mind is a logical theory from which all of the beliefs and non-beliefs can be inferred.

In this paper, we reconsider the BHL model of belief, and propose a new logical variant that has much of the expressive power of the original. Our starting point is the logic OBL [Belle et al., 2016] for reasoning about degrees of belief and only knowing, the latter modality allowing a succinct characterization for the beliefs of a knowledge base. The thrust of the semantical apparatus for OBL is a modal realization of BHL’s conceptually simple definition for belief in a first-order setting. Basing our intuitions on the BHL formalism, we now investigate how OBL can be extended for acting and sensing over noise, yielding our proposal DS. The semantics we propose not only brings to attention key constructions missing in the BHL framework for enabling things like introspection, it is also shown to capture a family of only knowing logics in the BHL framework for enabling things like introspection, BHL do not really consider any meta-belief properties: for example, what does introspection look like with degrees of belief?

DS has two action modalities $[a]$ and \oplus, in that if a is a formula, then so are $[a]a$ (read: “a holds after a’”) and $\oplus a$ (read: “a holds after any sequence of actions.”) For $z = a_1 \cdots a_n$, we write $[z]a$ to mean $[a_1] \cdots [a_n]a$. We use true to denote truth, which is taken as abbreviation for a sentence such as $\forall x(x = x)$, and false for its negation.

2.2 Semantics

The semantics is given in terms of possible worlds. In a dynamic setting, such worlds are defined to interpret not only the current state of affairs, but also how that changes over actions. There are three key complications over non-probabilistic accounts with deterministic acting and sensing [Lakemeyer and Levesque, 2004]:

- we need to be able to specify probabilities over uncountably many possible worlds in a well-defined manner;
- to allow for qualitative uncertainty in an inherently quantitative account, beliefs may not be characterizable in terms of a single distribution;
- the effects of actions are nondeterministic, and the changes to the state of affairs thereof are (possibly) not observable by the agent.

To begin with, let \mathcal{Z} be all possible sequences of \mathcal{R}, including \emptyset, the empty sequence. Letting \mathcal{P} denote the set of ground atoms as before, let \mathcal{W} be the set of all mappings $\mathcal{P} \times \mathcal{Z} \mapsto \{0, 1\}$, which are the set of all possible worlds.

We will require that at every world $w \in \mathcal{W}$,

- l behaves like a function, that is, for all a, z, there is exactly one rational $n \geq 0$ such that $w[l(a, n), z] = 1$ and for all $n' \neq n$, $w[l(a, n'), z] = 0$;

1For simplicity, instead of having variables of the action sort distinct from those of the object sort, we lump both of these together and allow ourselves to use any term as an action or as an object, as in [Lakemeyer and Levesque, 2004]. While this does allow one to construct meaningless atoms, such as $\text{Breaken(pickup(rabbit))}$, this is purely for the ease of the technical treatment. A general account can be developed along the lines of [Lakemeyer and Levesque, 2011].
• \(oi\) is an equivalence relation (reflexive, symmetric, and transitive) for all \(z\).2

By a distribution \(d\) we mean a mapping from \(\mathcal{W}\) to \(\mathbb{R}^{\geq 0}\) (the set of non-negative reals) and an epistemic state \(e\) is any set of distributions.

To prepare for the semantics, we will need four notational devices. First, we extend the application of \(i\) to sequences:

Definition 1: We define \(i^*:\mathcal{W} \times \mathcal{Z} \rightarrow \mathbb{R}^{\geq 0}\) as follows:

- \(i^*(w, z) = 1\) for every \(w \in \mathcal{W}\);
- \(i^*(w, z \cdot r) = i^*(w, z) \times n\) where \(w[l(r, n), z] = 1\).

Second, after intending to execute a sequence of actions, the agent needs to also consider those sequences that are possibly the actual outcomes. For this, we define action sequence observational indistinguishability as follows:

Definition 2: Given any world \(w\), we define \(z \sim_w z'\):

- \(\langle \rangle \sim_w \langle \rangle\) if \(z' = \langle \rangle\);
- \(z \cdot r \sim_w z'\) if \(z' = z' \cdot r\), \(z \sim_w z'\) and \(w[oi(r, r'), z] = 1\).

Since \(oi\) is an equivalence relation, we immediately obtain:

Proposition 3: \(\sim_w\) is an equivalence relation.

Third, after actions, we will restrict ourselves to compatible worlds that agree on observational indistinguishability:3

Definition 4: We write \(w \sim_{oi} w'\) iff:

- for all \(a, a', z\), \(w[oi(a, a'), z] = w'[oi(a, a'), z]\).

Fourth, to extend the applicability of \(\text{poss}\) for action sequences, we proceed as follows:

Definition 5: Define \(\text{exec}(z)\) for any \(z \in \mathcal{Z}\) inductively:

- for \(z = \langle \rangle\), \(\text{exec}(z)\) denotes \text{true};
- for \(z = a \cdot z'\), \(\text{exec}(z)\) denotes \(\text{poss}(a) \land [a]\text{exec}(z')\).

We are finally ready for the semantics where, analogous to \(\mathit{OBL}\), to obtain a well-defined sum over uncountably many worlds, we will introduce some conditions for distributions used for evaluating epistemic operators:

Definition 6: We define \(\text{Norm}, \text{Eq}, \text{Bsn}\) for any \(d\) and any set \(\mathcal{V} = \{(w_1, z_1), (w_2, z_2), \ldots\}\) as follows:

1. for any \(\mathcal{U} \subseteq \mathcal{V}\), \(\text{Norm}(d, \mathcal{U}, \mathcal{V}, r)\) iff \(\exists b \neq 0\) such that \(\text{Eq}(d, \mathcal{U}, b \times r)\) and \(\text{Eq}(d, \mathcal{V}, b)\).
2. \(\text{Eq}(d, \mathcal{V}, r)\) iff \(\text{Bsn}(d, \mathcal{V}, r)\) and there is no \(r' < r\) such that \(\text{Bsn}(d, \mathcal{V}, r')\) holds.
3. \(\text{Bsn}(d, \mathcal{V}, r)\) iff \(\neg\exists k, (w_1, z_1), \ldots, (w_k, z_k) \in \mathcal{V}\) such that

\[
\sum_{i=1}^{k} d(w_i) \times i^*(w_i, z_i) > r.
\]

Intuitively, given \(\text{Norm}(d, \mathcal{U}, \mathcal{V}, r)\), \(r\) can be seen as the normalization of the weights of worlds in \(\mathcal{U}\) in relation to the set of worlds \(\mathcal{V}\) as accorded by \(d\). Here, \(\text{Eq}(d, \mathcal{V}, b)\) expresses that the weight accorded to the worlds in \(\mathcal{V}\) is \(b\), and finally \(\text{Bsn}(d, \mathcal{V}, b)\) ensures the weight of worlds in \(\mathcal{V}\) is bounded by \(b\). In essence, although \(\mathcal{W}\) is uncountable, the conditions \(\text{Bsn}\) and \(\text{Eq}\) admit a well-defined summation of the weights on worlds. See [Belle et al., 2016] for a formal justification of this claim.

Truth in \(\mathcal{DS}\) is defined wrt triples \((e, w, z)\) as follows:

- \(e, w, z \models p\) iff \(p\) is an atom and \(w[p, z] = 1\);
- \(e, w, z \models n_1 = n_2\) iff \(n_1\) and \(n_2\) are identical;
- \(e, w, z \models \alpha \land \beta\) iff \(e, w, z \models \alpha\) and \(e, w, z \models \beta\);
- \(e, w, z \models \neg \alpha\) iff \(e, w, z \models \alpha\);
- \(e, w, z \models \forall x \alpha\) iff \(e, w, z \models \alpha_n\) for all \(n \in \mathbb{R}\);
- \(e, w, z \models [r] \alpha\) iff \(e, w, z \cdot r \models \alpha\);
- \(e, w, z \models \exists x \alpha\) iff \(e, w, z \cdot z' \models \alpha\) for all \(z' \in \mathcal{Z}\).

For the epistemic operators, let \(\mathcal{W}_{\mathcal{E}S}^{\mathcal{E}S}\) be \(\{z, w' \sim_{oi} w, \text{and } e, w', \langle \rangle \models [z']\alpha \land \text{exec}(z')\}\). (We drop the superscript when the context is clear.) That is, these are the pairs of worlds and executable action sequences that agree on \(oi\) with \(w\), and where \(\alpha\) holds. Then:

- \(e, w, z \models B(\alpha : r)\) iff \(\forall d \in \mathcal{E}, \text{Norm}(d, \mathcal{W}_a, \mathcal{W}_{\text{true}}, r)\);
- \(e, w, z \models O(\alpha_1 : r_1, \ldots, \alpha_k : r_k)\) iff for all \(d, e\) iff \(\text{Norm}(d, \mathcal{W}_a, \mathcal{W}_{\text{true}}, r_1), \ldots, \text{Norm}(d, \mathcal{W}_a, \mathcal{W}_{\text{true}}, r_k)\).

For any sentence \(\alpha\), we write \(e, w, z \models \alpha\) instead of \(e, w, \langle \rangle \models \alpha\).

When \(\Sigma\) is a set of sentences and \(\alpha\) is a sentence, we write \(\Sigma \models \alpha\) (read: “\(\Sigma\) logically entails \(\alpha\)”) to mean that for every \(e\) and \(w\), if \(e, w \models \alpha\) for every \(\alpha' \in \Sigma\), then \(e, w \models \alpha\). Finally, we write \(\models \alpha\) (read: “\(\alpha\) is valid”) to mean \(\models \alpha\).

3 Properties

We have the following objectives for this section. First, we would like to argue that the properties of belief proved for \(\mathit{OBL}\) also hold for \(\mathit{DS}\). Second, we would like to study in which sense \(\mathit{DS}\) is downward compatible with \(\mathit{OBL}\), \(\mathcal{ES}\) [Lakemeyer and Levesque, 2004] and \(\mathcal{OL}\) [Levesque and Lakemeyer, 2001]. Roughly speaking, \(\mathcal{DS}\) should be seen as a dynamic extension to \(\mathit{OBL}\), a probabilistic extension to \(\mathcal{ES}\), and a probabilistic dynamic extension to \(\mathcal{OL}\).

A brief review of the non-dynamic and non-probabilistic counterparts of \(\mathcal{DS}\) is found in the appendix. Readers may want to consult this supplementary material prior to perusing the compatibility results.

3.1 Belief and Only Knowing

We begin by listing some properties of \(B\), which one would expect from any reasonable probabilistic account of belief and which generalize similar properties found in \(\mathit{OBL}\).

Proposition 7:

1. If \(\models \Box (\alpha \equiv \beta)\) then \(\models \Box (B(\alpha : r) \equiv B(\beta : r))\);
2. \(\models \Box (B(\alpha \land \beta : r) \land B(\alpha \land \neg \beta : r')) \supseteq B(\alpha : r + r')\).
3. \(\models \Box (B(\alpha ; r) \land B(\beta ; r') \land B(\alpha \land \beta ; r')) \)
\(\supset B(\alpha \lor \beta ; r + r' - r')) \).

Note the \(\Box \) in front of formulas, which indicates that the properties hold after any sequence of actions.

Let us now consider the case of believing with certainty, that is, \(K \alpha \equiv B(\alpha : 1) \). The following properties show that \(K \) behaves essentially like the \(K \)-operator in \(ES \).

Theorem 8:

1. \(\models \Box (K \alpha \land K(\alpha \supset \beta) \supset K \beta) \);
2. \(\models \Box (\forall x ; K \alpha \supset K \forall x \alpha) \);
3. \(\models (\exists x ; K \alpha \supset K \exists x \alpha) \).

Proof: Here we only prove the first item. Let \(e, w, z \models K \alpha \land K(\alpha \supset \beta) \) and let \(d \models e \). Let \(w' \) be any world and \(z' \) a sequence of actions such that \(z' \sim_w z, w \equiv_{oi} w', e, w', () \models \text{exec}(z') \), and \(d(w') \times f(w', z') \neq 0 \). We will show that \((w', z') \in W_{\beta} \). Since \(\text{Norm}(d, W_{a}, w, W_{\text{TRUE}}, 1) \) and \(\text{Norm}(d, w', z', W_{\text{TRUE}}, 1), (w', z') \in W_{a} \) and \((w', z') \in W_{\text{TRUE}} \) (because otherwise \(K \beta \) would not be 1). Thus \(e, w', z' \models (\alpha \land \beta) \) and, therefore, \(e, w', z' \models \beta \). Hence, given the assumptions and the definition of \(W_{\beta}, (w', z') \in W_{\beta} \).

Since this holds for any world compatible with \(w \) and any executable action sequence, \(\text{Norm}(d, W_{a}, W_{\text{TRUE}}, 1) \), that is, \(e, w, z \models K \beta \).

We remark that the converse of the Barcan Formula (2.) holds as well. Note, however, that \(\Box (K \exists x \alpha \equiv \exists x K \alpha) \) is not valid in general, that is, knowing that a formula is true for some individual does not imply that there is a particular individual for which the formula is known to be true.

In the static case of \(OBL \) knowledge is fully introspective (under one proviso). We can show that these properties carry over to the dynamic case as well. The following lemma is needed for the proof.

Lemma 9: Let \(e, w, z \) be given and let \((w', z') \in W_{e,w,z}^{(e,w,z)} \).
Then for all \(a, W_{a}^{(e,w,z)} = W_{a}^{(e,w',z')} \).

The proof makes use of the fact that \(w \) and \(w' \) agree on the extension of \(oi \) for all action sequences and that \(\sim_w \) is an equivalence relation.

Theorem 10:

1. \(\models \Box (B(\alpha : r) \supset KB(\alpha : r)) \);
2. \(\models \Box (K \text{TRUE} \supset (\neg B(\alpha : r) \supset K \neg B(\alpha : r))) \).

Proof: Here we only prove the first item. Let \(e, w, z \models B(\alpha : r) \). We need to show \(e, w, z \models B(\beta(\alpha ; r) : 1) \), that is, for all \(d \models e \), \(\text{Norm}(d, W_{\beta(\alpha ; r)}, W_{\text{TRUE}}, 1) \) with \(W_{\beta(\alpha ; r)} = \{(w', z') \mid w \equiv_{oi} w', z \sim_w z, \text{ and } e, w', () \models [z']B(\alpha ; r) \land \text{exec}(z')\} \). It suffices to show \(W_{\beta(\alpha ; r)} = W_{\text{TRUE}} \), \(W_{\beta(\alpha ; r)} \subseteq W_{\text{TRUE}} \) holds trivially. Conversely, let \((w', z') \in W_{\text{TRUE}} \). Then \(w \equiv_{oi} w, z \sim_w z, \text{ and } e, w', () \models [z']\text{true} \land \text{exec}(z') \). It suffices to show that \(e, w', () \models [z']B(\alpha ; r) \), that is, for all \(d \models e \), \(\text{Norm}(d, W_{a}^{(e,w',z')}, W_{\text{TRUE}}, 1, r) \). By Lemma 9, \(W_{a}^{(e,w',z')} = W_{a}^{(e,w,z)} \) and \(W_{a}^{(e,w,z)} = W_{a}^{(e,w',z')} \). Since, by assumption, for all \(d \models e \), \(\text{Norm}(d, W_{a}^{(e,w,z)}, W_{\text{TRUE}}, r) \), we are done.

Given the definition of \(K \), we immediately obtain

Corollary 11:

1. \(\models \Box (K \alpha \supset KK \alpha) \)
2. \(\models \Box (K \text{TRUE} \supset (\neg K \alpha \supset K \neg K \alpha)) \)

Let us now briefly turn to the notion of only believing. While it is well defined for arbitrary epistemic states and after any number of actions have occurred, in this paper we will only consider the case of only believing in the initial situation, that is, before any actions have occurred.\(^4\)

By the definition of only believing we immediately obtain:
\[\models O(\alpha_i : r_1, \ldots, \alpha_k : r_k) \supset \bigwedge B(\alpha_i : r_i) \]
that is, whatever is only believed is also believed, as it should be. To see how non-beliefs follow from only believing, consider the case of distinct atomic propositions \(p \) and \(q \). Then:
\[\models O(p : r) \supset \neg B(q : r') \text{ for all } r'. \]

This is because for any \(r' \) the epistemic state satisfying \(O(p : r) \) contains distributions \(d \) where \(\text{Norm}(d, W_{q}^{(r')}, W_{\text{TRUE}}, r') \) for some \(r' \neq r' \).

These properties are all inherited from \(OBL \). In Section 4, we will consider the more interesting case of beliefs evolving from only believing an initial KB after actions have occurred.

3.2 OBL is part of DS

The main result we prove is:

Theorem 12: For \(\alpha \in OBL \cap DS \), \(\models_{DS} \alpha \iff \models_{DS} \alpha \).

Here, we understand \(\models_{X} \alpha \) to mean that \(\alpha \) is valid in the logic \(X \). Similar to the proof relating \(ES \) and \(OL \) [Lakeymer and Levesque, 2004], there are two key complications in mapping the static and dynamic logics. First, the domain of quantification \(N \) (nullary function symbols) in \(OBL \) is a proper subset of \(R \). This is addressed by means of a bijection between these domains in the proofs. Second, for every \(OBL \) world \(w \), which is a mapping from ground atoms \(P \) to \(\{0, 1\} \), there are infinitely many \(DS \) worlds that agree with \(w \) initially. This is addressed by mapping models between the logics so that the agree on the satisfaction of \(OBL \) formulas. However, unlike in \(ES \), a further complication in the probabilistic context is that we will need to think carefully about how to map distributions between the logics so that they remain well-defined.

The proof is long, so we go over the ideas and intermediate lemmas below. First, we will map a \(OBL \) model to a \(DS \) model.

Lemma 13: Suppose \(\alpha \) is as above, and \(\alpha \circ \text{a bijection from } N \text{ to } R \). Then for any \(OBL \) model \((e, w) \), there is a \(DS \) model, which we denote \((e', w') \), such that \(e, w \models \alpha \iff e', w' \models \alpha' \).

We construct \((e', w') \) as follows:

- Let \(w' \) be a \(DS \) world such that for all \(OBL \) atoms \(p \) and all \(z, w'[p:z] = 1 \) iff \(w[p] = 1 \). (Moreover, \(\text{poss, at} \) and \(\text{ff} \) need to be additionally fixed to chosen values, which can be arbitrary; e.g., for all \(a, a', u, z : w'[\text{poss}(a), z] = 1 \), \(w'[\text{poss}(a'), z] = 1 \) iff \(a = a' \), \(w'[\text{ff}(a, u), z] = 1 \) iff \(u = 1 \)).

\(^4\)To handle only knowing after actions, an account of *progression* is needed [Lin and Reiter, 1997; Lakeymer and Levesque, 2009], a topic we leave for the future.
For any \(d \in e \), let \(d^e \) be a DS distribution such that for all OBL worlds \(w \), \(d^e(w^e) = d(w) \), and for all \(w' \neq w \), \(d^e(w') = 0 \).

- Let \(e^z = \{ d^e \mid d \in e \} \).

The proof for Lemma 13 is then by an easy induction on \(\alpha \).

In Lemma 13, since each OBL world maps to infinitely many DS worlds, mapping distributions is somewhat straightforward because all worlds outside of \(\{ w^e \mid w \text{ is a OBL world} \} \) are set to 0. In the converse direction, it is not obvious how to map distributions in DS to OBL distributions, because weights on infinitely many DS worlds may need to be assigned to a single OBL world. So, we consider a special class of models where this mapping is obvious.

Definition 14: Suppose \(w \) is a DS world. We call it a static world if for all \(z \neq \langle \rangle \), for every DS atom \(p \), \(w[p, z] = w[p] \). Let \(W' \subseteq W \) be the set of static DS worlds. We call a distribution \(d \) static iff for every \(w \neq W' \), \(d(w) = 0 \). We call \(e \) static if it is a set of static distributions. A model \((e, w, z) \) is called static if both \(e \) and \(w \) are static.

The key consideration here is that there is no loss in terms of entailment for OBL sentences. Let \(\models_{\text{static DS}} \) denote the restriction of the satisfaction relation to static models.

Theorem 15: For any \(\alpha \in OBL \cap DS \), \(\models_{\text{DS}} \alpha \iff \models_{\text{static DS}} \alpha \).

Lemma 16: Suppose \(\alpha \) is as above and \(o \) is any bijection from \(\mathcal{R} \) to \(\mathcal{N} \). Suppose \((e, w) \) is any static model, there is an OBL model, denoted \((e^o, w^o) \), such that \(e, w \models \alpha \iff e^o, w^o \models \alpha \).

Here, let \(w^o \) be a OBL world such that for every DS atom \(p \), \(w[p, \langle \rangle] = 1 \) iff \(w^o[p^o] = 1 \). Then,

- For any \(d \in e \), let \(d^o \) be a OBL distribution such that for all static DS worlds \(w \), \(d^o(w^o) = d(w) \).

- Let \(e^o = \{ d^o \mid d \in e \} \).

By an induction on \(\alpha \), Lemma 16 can be shown. Finally, the proof for Theorem 12 is argued using Lemmas 13 and 16.

3.3 ES is part of DS

ES worlds are precisely DS worlds, and an epistemic state in ES is defined as any set of worlds.

Truth is defined inductively as usual wrt a model \((e, w, z) \), where, for example:

- \(e, w, z \models K\alpha \) iff for all \(w' \sim z \), \(w' \in e, e, w', z \models \alpha \);

where \(w' \sim z \) is defined inductively on \(z \) to posit that, after an action, a world is compatible with the real world provided the action is executable, and they agree on the sensing outcomes of the action, axiomatizing using a special fluent SF.

When relating ES to DS, observe that actions are implicitly assumed to be deterministic in ES, which is simple enough to axiomatize using \(\Box a, a' (a(a, a') \equiv a = a') \) and \(\Box a, u (\Omega(a, u) \equiv u = 1) \) that we lump together as \(\Omega \). The point of serious divergence, then, is that knowledge in ES is defined in terms of the sensing results at the real world. Clearly, there is no analogue to this feature in the semantics of DS. So, we restrict ourselves to trivial sensing results

\[\Gamma = [\forall a (SF(a) \equiv \text{true})] \]. Then, we can show:

Theorem 17: For any \(\alpha \in ES \cap DS \), \(\models_{ES} \alpha \iff \models_{DS} \Box K_{\text{true}} \supset \alpha \).

The proof rests on two lemmas, the first of which maps an ES model \((e, w, z) \) to a DS model \((e^*, w, z) \) where

\[e^* = \{ d \mid \text{Norm}(d, U, V, 1) \} \]

where \(U = \{ (w, \langle \rangle) \mid w \in e \} \) and \(V = \{ (w, \langle \rangle) \mid w \in W \} \), and the second of which maps a DS model \((e, w, z) \) to an ES model \((e^*, w, z) \) where \(e^* = \{ w' \mid \exists d \in e, d(w') > 0 \} \).

3.4 OL is part of DS

It was shown in [Belle et al., 2016] that OL is part of OBL:

Theorem 18: For any \(\alpha \in OL \cap OBL \), \(\models_{OL} \alpha \iff \models_{OBL} K_{\text{true}} \supset \alpha \).

By means of Theorem 12, we obtain:

Corollary 19: For any \(\alpha \in OL \cap DS \), \(\models_{OL} \alpha \iff \models_{DS} K_{\text{true}} \supset \alpha \).

4 Basic Action Theories

Let us now consider the equivalent of basic action theories of the situation calculus. Since there is no explicit notion of situations in DS and the uniqueness of names is built into the semantics, our basic action theories do not require foundational axioms. Our basic action theories will include the usual ingredients on the executability of actions and their effects as in ES, but will additionally include axioms about observational indistinguishability and action likelihoods.

![Figure 1: robot moving towards a wall](image-url)

The first-order nature of the logic allows us to capture domains quite beyond standard probabilistic formalisms – see [Bacchus et al., 1999; Belle and Levesque, 2015], for example – but to illustrate the features of the language, we will focus on two variants using a simple 1-dimensional robot. Imagine a robot to the right of a wall as in Figure 1. Let \(h \) be the fluent representing the distance to the wall. A noisy effector move(x, y) brings the robot closer to the wall, with the understanding that \(x \) is how much the robot intends to move, but \(y \) is what actually happens. (A negative argument is understood as moving away from the wall.) A noisy sensor sonar(z) provides a reading \(z \) that is taken as an estimate for \(h \). The idea is that repeated sensing increases the robot’s confidence about \(h \).

Throughout, we have the following in common:

[1] We suspect it is possible to extend the result to non-trivial SF values, but only by means of an explicit axiomatization of the sensing outcomes as seen in the real world, similar to [Sardina et al., 2004], a discussion of which we leave for an extended version of the paper.
• We assume the sensor action is always executable, and the move action is executable provided the argument does not cause the robot to hit the wall.\(^6\)

\[
\Box \text{poss}(a) \equiv \exists x, y, u(a = \text{move}(x, y) \land h(u) \land y \leq u) \lor \\
\exists(a = \text{sonar}(z) \land \text{true}).
\]

• Similar to BHL, noisy actions are retrofitted in successor state axioms by postulating that the effects of an action are against the actual argument:

\[
\Box[a]h(u) \equiv \exists x, y, \xi(a = \text{move}(x, y) \land h(u + y)) \lor \\
\forall x, y \ (a \neq \text{move}(x, y) \land h(u)).
\]

• Clearly, all instances of move with an intended argument of \(x\) are observationally indistinguishable from each other. A sonar action is only observationally indistinguishable to itself, as the agent sees the actual argument corresponding to the reading on the sensor:

\[
\Box o\text{i}(a, a') \equiv \exists x, y, z(a = \text{move}(x, y) \land a' = \text{move}(x, z)) \\
\lor (a = \text{sonar}(z) \land a' = a).
\]

• We assume the noise model of a sensor to depend on the true value of \(h\), and that for the effector to depend on how much the actual argument diverges from the intended argument:

\[
\Box l(a, u) \equiv \exists x, y, \xi(a = \text{sonar}(z) \land u = \Theta(h, z, 8), 1)) \lor \\
(a = \text{move}(x, y) \land u = \Theta(x, y, 6), 2)) \lor \\
(a \neq \text{sonar}(z) \land a \neq \text{move}(x, y) \land u = 0)
\]

where,

\[
\Theta(u, v, c, d) = \begin{cases}
 c & \text{if } u = v \\
 d & \text{if } |u - v| = 1 \\
 0 & \text{otherwise}
\end{cases}
\]

So, observing a value \(z\) on the sonar means that it is very likely the true value, and at most it is off by a unit.\(^7\) Analogously, for the move action.

We lump these axioms together as \(\Sigma\).

Example 20: We begin by assuming a standard discrete uniform distribution on \(h\), say, on the range \(\{2, 3, 4\}\). In particular, we will consider the entailments of the following theory:

\[
O(h(2): 1/3; h(3): 1/3; h(4): 1/3; \Sigma: 1).
\]

The following are entailments of (1):

1. \(B(h(5): 0)\) By means of defining a probability distribution over 3 possible values for \(h\), other values are impossible.
2. \([\text{sonar}(2)]B(h(4): 0) \land [\text{sonar}(2)]B(h(2): 8/9)\)

Obtaining a reading of 2 on the sensor means that being 4 units away is no longer possible, whereas the agent’s confidence in being 2 units away from the wall increases.
3. \([\text{sonar}(2)][\text{move}(1, 1)]B(h(2): 8/45)\)

Consider that, in case of an exact move, the probability of being 2 units away would have been 0. See Figure 2 for the degrees of belief in other values of \(h\).

\(^6\)Free variables are assumed to be implicitly quantified from the outside.

\(^7\)It is also possible to handle discrete approximations of Gaussians, for example.

![Table](image)

<table>
<thead>
<tr>
<th>(h) values</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>initially</td>
<td>1/3</td>
<td>1/3</td>
<td>1/3</td>
<td>0</td>
</tr>
<tr>
<td>after \text{sonar}(2)</td>
<td>8/9</td>
<td>1/9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>after \text{move}(1, 1)</td>
<td>8/45</td>
<td>5/9</td>
<td>11/45</td>
<td>1/45</td>
</tr>
</tbody>
</table>

Example 21: We now assume the same dynamic axioms as above (given by \(\Sigma\)), but imagine the agent to only have qualitative uncertainty about \(h\)’s value. Consider:\(^8\)

\[
O(3u \ (h(u) \land u > 1) \land \Sigma: 1)
\]

So, the agent considers infinitely many \(h\) values possible.

The following are entailments of (2):

1. \(B(h(1): 0) \land \neg B(h(4): 0)\)

Values for \(h > 1\) cannot be ruled out. Here, only knowing allows us to infer non-beliefs.

2. \([\text{sonar}(2)]B(h(4): 0)\)

The nature of the likelihood axioms for the sensor is such that obtaining a reading of 2 eliminates infinitely many possibilities.

The following is not entailed by (2):

3. \([\text{sonar}(2)]3u, v \ B(h(2): u) \land B(h(3): v) \land u > v\)

A sensor reading of 2 means that the robot is either 2 or 3 units away from the wall, as the prior on being 1 unit away is 0. Despite the reading favoring the case for the robot being two units away from the wall, qualitative uncertainty about \(h\)’s value means there are distributions where \(h(2)\) has a low or even 0 prior probability, and therefore, it does not follow that the degree of belief in \(h(2)\) necessarily trumps that in \(h(3)\).

5 Related Work

Reasoning about probabilities is widely studied in the logical literature – see, for example, [Gaifman, 1964; Nilsson, 1986; Halpern, 2003]; we briefly survey the major camps below. At the outset, we remark that a key feature of our work is only knowing,\(^9\) which has not been considered for probabilistic specifications, except for \(OBL\) that we build on.

The inspiration for our work, and perhaps the one closest in spirit, is the work of BHL on degrees of belief in the situation calculus. It is an axiomatic proposal with a conceptually attractive definition of belief in a first-order setting. The thrust of our work is in providing a semantic basis for that proposal, and as we noted, without constructions like \(\approx_w\) and \(\approx_m\), meta-beliefs do not work right away in the BHL framework. BHL also do not consider only knowing.

In less restrictive settings than full first-order \(OBL\), Gabaldon and Lakemeyer [2007] consider a logic of only knowing and probability by meta-linguistically enforcing finitely

\(^6\)For expressions such as \(u > 1\), it is implicitly assumed that we are quantifying over the rationals, which can be accomplished by adding sorts to the language. This is left out of the semantics for simplicity.

\(^8\)Only knowing is related to notions such as minimal knowledge [Halpern and Moses, 1984] and total knowledge [Pratt-Hartmann, 2000]. See [Levesque and Lakemeyer, 2001] for discussions.
many equivalence classes for possible worlds. Consequently, quantification also ranges over a finite set. In a game theory context, Halpern and Pass [2009] have considered a (propositional) version of only knowing with probability distributions.

Reasoning about knowledge and probability has appeared in a number of works prior to BHL, of course, in computer science [Nilsson, 1986; Fagin and Halpern, 1994], game theory [Monderer and Samet, 1989; Heifetz and Mongin, 2001], among others [Halpern, 2003]. Properties discussed in this paper, such as introspection and additivity, are also well studied [Aumann, 1999]. Notably, the work of Fagin and Halpern [1994] can be seen to be at the heart of BHL (and our work). The Fagin-Halpern scheme is a general one formulated for Kripke frames [Fagin et al., 1995], but it is propositional. We also consider the simple case where a set of global distributions apply to \(W \) as seen at every world; in theirs, the probability spaces can differ arbitrarily across the worlds. The Fagin-Halpern scheme shares some similarity with probabilistic logics for programs [Kozen, 1981] and variants thereof [Halpern and Tuttle, 1993; Van Benthem et al., 2009].

There are many previous first-order accounts of probabilities, such as [Bacchus, 1990] and [Halpern, 1990]; see [Ognjanovic and Raškovic, 2000] for a comprehensive list. Limited versions of probabilistic logics have also become popular in the machine learning literature [Poole, 2003; Domingos and Webb, 2012; Getoor and Taskar, 2007], with things like a finite domain assumption built-in. In these latter formalisms, the logical syntax is mostly used to succinctly represent large probabilistic graphical models with many interacting random variables over classes and hierarchies, and as such, the knowledge base is assumed to be equivalent to a single joint distribution over these variables. First-order accounts such as [Halpern, 1990] allow logical connectives over beliefs, as a result of which, like in BHL and DS, beliefs may not correspond to any single distribution. However, our emphasis on a first-order theory of actions and only knowing distinguishes us from much of this work.

6 Conclusions

We proposed a first-order modal logic of subjective probabilities, noisy acting and sensing, and explored its formal properties. The language allows us to express BHL-style basic action theories, albeit in a crisp semantical framework, with introspection and only knowing. Bridging logical representations and probabilistic data is becoming a central problem in cognitive robotics and much of artificial intelligence; so, having a general specification language for analyzing systems and high-level programs is vital.

For the future, we think the following directions seem promising. From a reasoning viewpoint, it would be interesting to consider how to implement a possibly restricted (perhaps, even propositional) version of DS as a reasoning service. For starters, this would undoubtedly need an automated way to reason about actions, so that queries after actions can be reduced to purely static ones. Our sense is that earlier results for the BHL scheme [Belle and Levesque, 2013b; 2014] can be reformulated for DS with some effort.

From the representational viewpoint, the most immediate extension would be to allow both discrete and continuous probabilities, similar to [Belle and Levesque, 2013a]. This would allow the logic to capture the sorts of realistic sensor models seen in practice [Thrun et al., 2005]. But even when limited to discrete probabilistic variables, there is an important limitation with the current syntax. Our belief operators were inherited from OBL, which take the form \(B(\alpha, r) \), where \(r \) is a rational. But suppose we are interested in characterizing discrete probabilistic variables taking values from infinite sets. A simple case is a geometric distribution: imagine that the probabilistic variable \(h \) from our examples can take values from \(\mathbb{N} \), and the probability of taking the value \(u \in \mathbb{N} \) is \((1 - \theta)^u \times \theta \) for a given \(\theta \in [0, 1] \). For example, if \(\theta = .5 \), then the value 0 is accorded a probability of .5, the value 1 a probability of .25, and so on. Although we could use an infinite theory such as \(\{ B(h(0): .5), B(h(1): .25), \ldots \} \), it would be nice to be able to represent the distribution as a formula, perhaps in the context of \(O \). At first glance, this would require the second argument of \(B \) to possibly taking on variables of the rational sort rather than just rational constants, but how to design such a language and specify a semantics for it is an open question.

Appendix

We briefly review the non-dynamic and non-probabilistic counterparts of DS: the logics OL [Levesque and Lake- meyer, 2001], OBL [Belle et al., 2016], and ES [Lakemeyer and Levesque, 2004].

The Logic OL

The non-modal fragment of OL consists of standard first-order logic with = (that is, connectives \(\land, \lor, \neg \) and a countably infinite set of standard names \(\mathcal{N} \), which, as usual, includes the set of rationals as a subset. (Unlike DS, where we needed to consider \(k \)-ary rigid function symbols for building action terms, OL can be limited to nullary rigid terms, making the account simpler.) As before, we let \(\mathcal{P} \) be the set of ground atoms. Finally, as one would surmise, OL has two epistemic operators: \(K \) and \(O \).

The semantics of OL, given using possible worlds, is defined over the set of mappings from the ground atoms in \(\mathcal{P} \) to \(\{0, 1\} \). By an epistemic state \(e \), we mean any set of worlds. By a model, we mean a pair \((e, w)\).

Given \(\alpha \in OL \) and a model \((e, w)\), the definition of truth is defined inductively. We omit the logical connectives, and discuss the case for atoms and modalities:

\[e, w \models p \text{ iff } w[p] = 1; \]
\[e, w \models K\alpha \text{ iff for all } w' \in e, e, w' \models \alpha; \]
\[e, w \models O\alpha \text{ iff for all } w', w' \in e \text{ iff } e, w' \models \alpha. \]

\[^{10}\text{Readers familiar with the generic approach of accessibility relations between worlds in Kripke frames [Hughes and Cresswell, 1972] will realize that our notion of an epistemic state offers a simplified account, essentially corresponding to weak S5.} \]
That is, knowing \(\alpha \) amounts to \(\alpha \) being true in all worlds in \(e \), and only-knowing \(\alpha \) amounts to \(e \) being precisely those worlds where \(\alpha \) holds. A definition for entailment is given as we would for \(DS \).

The \(K \) modality in \(OL \) exhibits the usual properties of introspection, as well as the universal and existential versions of the Barcan formula; for example:

- \(\models K \alpha \supset KK \alpha \);
- \(\models \exists x K \alpha \supset K \exists x \alpha \) but \(\nvdash K \exists x \alpha \supset \exists x K \alpha . \)

The new modality here in comparison to classical epistemic logic is \(O \), and in that regard, only knowing implies knowing, but also not believing what does not logically follow from the knowledge base:

- \(\models O \alpha \supset K \alpha \)
- \(\models O \varphi \supset K \varphi \) if \(\models \varphi \supset \psi \)
- \(\models O p \supset \neg K q \) for distinct atoms \(p \) and \(q \).

Clearly, the last property is not true in classical epistemic logic, because knowing \(p \) does not preclude knowing \(p \wedge q \).

The Logic \(OBL \)

From a syntax point of view, \(OBL \) is essentially identical to \(OL \) except for including modalities \(B(\alpha : r) \) and \(O(\alpha_1, r_1, \ldots, \alpha_k, r_k) \), with \(K \alpha \) and \(O \alpha \) serving as abbreviations as in \(DS \).

Given the set of ground atoms \(P \) and the set of worlds \(W \), which are mappings from \(P \) to \([0,1] \), a distribution \(d \) is understood as a function from \(W \) to the set of non-negative reals \(\mathbb{R}^+ \). An epistemic state \(e \) is defined as a set of distributions. By a model, we mean a pair \((e, w)\).

For the epistemic operators to be well-defined, we define conditions \(Bn, Eq \) and \(Norm \) as in \(DS \), but these conditions now take the signature \((d', V, r)\) where \(V \subseteq W \). (That is, we are not considering world and action pairs, since there are no actions in the language.) For example: \(Bn(d, V, r) \) iff there is no \(k, w_1, \ldots, w_k \in V \) such that

\[
\sum_{i=1}^{k} d(w_i) > r.
\]

With that, the semantic rules can be defined using (once again, omitting the connectives):

- \(e, w \models p \) if \(w[p] = 1 \);
- \(e, w \models B(\alpha : r) \) iff for all \(d \in e \), \(\text{Norm}(d, \{ w' \mid e, w' \models \alpha \}, r) \);
- \(e, w \models O(\alpha_1, r_1, \ldots, \alpha_k, r_k) \) iff for all \(d, d' \in e \), \(\text{Norm}(d, \{ w' \mid e, w' \models \alpha_1 \}, r_1) \), \ldots, \(\text{Norm}(d, \{ w' \mid e, w' \models \alpha_k \}, r_k) \).

Incidentally, \(\neg K \text{true} \) is satisfiable, which means that while positive introspection holds unconditionally, negative introspection needs to be predicated on believing \(\text{true}^{11} \).

\[11\] Since \(B(\text{true}: 1) \) is not valid, the authors in [Belle et al., 2016] consider the notion of measurable epistemic states, which are precisely those that satisfy \(B(\text{true}: 1) \). All of this carries over to \(DS \), but for space reasons we will not pursue the topic here.

- \(\models B(\alpha : r) \supset KB(\alpha : r) \) for arbitrary \(r \);
- \(\text{so, } \models K \alpha \supset KK \alpha \) is then a special case;
- \(K \text{true} \models \neg B(\alpha : r) \supset K \neg B(\alpha : r) \) for arbitrary \(r \).

Moreover, \(B \) admits additivity and equivalence properties; for example:

- \(\models B(\alpha \wedge \beta : r) \supset B(\alpha : r + r') \);
- \(\text{if } \models \alpha \equiv \beta \), then \(\models B(\alpha : r) \equiv B(\beta : r) \).

Finally, regarding \(O \), the properties already discussed in the context of \(OL \) also hold in \(OBL \).

The Logic \(ES \)

The logic \(ES \) semantically reconstructs the situation calculus in a logic of only knowing. To allow for action terms, as we have in \(DS \), one assumes \(k \)-ary rigid function terms. The set of atoms \(P \) are then obtained by applying all ground terms \(\mathcal{R} \) to the predicates in the language.

Worlds in \(ES \) are no longer static entities that understand the (current) state of affairs. That is, a world maps \(P \) and \(\mathcal{Z} \) to \([0,1] \), where the set of action sequences \(\mathcal{Z} \) is defined as we have for \(DS \). By a model, we mean a triple \((e, w, z)\) where \(z \in \mathcal{Z} \).

To account for how knowledge changes after (noise-free) sensing, one defines \(w' \sim z \) \(w \), which is to be read as saying “\(w' \) and \(w \) agree on the sensing of \(z \)”, as follows:

- \(z = () \), \(w' \sim z \) \(w \) for every \(w' \);
- \(w' \sim z \) \(w \) iff \(w' \sim z \) \(w \); \(w[\text{poss}(a), z] = 1 \) and \(w'[\text{SF}(a), z] = w[\text{SF}(a), z] \).

The truth rules are (omitting connectives, as usual):

- \(e, w, z \models p \) if \(p \) is an atom and \(w[p, z] = 1 \);
- \(e, w, z \models K \alpha \) iff for all \(\forall w' \sim z \) \(w \), if \(w' \in e, e, w', z \models \alpha \);
- \(e, w, z \models O \alpha \) iff for all \(\forall w' \sim z \) \(w \), if \(e, w', z \models \alpha \).

Properties of knowledge and only-knowing take on the same form as in \(OL \), with the addition that introspection holds for all action sequences; for example:

- \(\models \Box(K \alpha \supset KK \alpha) \);
- \(\models \Box(O \alpha \supset K \alpha) \).

Action theories for \(ES \) are similar to \(DS \), except that acting and sensing is assumed to be noise-free. Among other things, there are no likelihood and observational indistinguishability axioms, and noise-free sensing is axiomatized by means of a distinguished predicate \(S F \). In the context of moving towards a wall, for example, we might have:

\[\Box \text{SF}(a) \equiv \exists u(a = \text{isClose} \land (h(u) \land u \leq 5) \lor a \neq \text{isClose}) \]

which says that \(S F \) is true on executing \(\text{isClose} \) only when the robot is within 5 units of the wall, and is false otherwise. Semantically, then, given worlds \(w' \) and \(w \), we would have \(w' \sim \text{isClose} \) \(w \) only when the robot is within 5 units from the wall in both worlds.
References

