Phosphaborenes: accessible reagents for C-C/P-B isosteres

Citation for published version:
Cowley, MJ, Price, AN & Nichol, GS 2017, 'Phosphaborenes: accessible reagents for C-C/P-B isosteres'
Angewandte Chemie International Edition. DOI: 10.1002/anie.201705050

Digital Object Identifier (DOI):
10.1002/anie.201705050

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Angewandte Chemie International Edition

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Phosphaborenes: accessible reagents for C-C/P-B isosteres

Amy N. Price, Gary S. Nichol, Michael J. Cowley

Abstract: Formal exchange of C=C units with isoelectronic B=N or B=P units is can provide access to molecules with unique electronic or chemical properties. Here, we report the simple solution-phase generation of highly reactive phosphaborenes, RP=BR, and demonstrate their use for the introduction of P=B units into organic systems. A P-B containing cyclobutene isostere can be ring opened to access unique 1,4-bora-phospha-butadiene systems with conjugated main-group multiple bonds.

Phosphaborenes, RP=BR, are alkyne analogues which are also isoelectronic with iminoboranes, RN=BR. In contrast to iminoboranes,[1] phosphaborenes are unknown as stable compounds. Isolation of these species is hindered by their significant tendency to oligomerise - a consequence of their amphilic nature, with adjacent Lewis acidic and basic sites at the boron and phosphorus centers.[1] Even when bulky substituents are employed, dimers (diphosphadiboretanes) or higher oligomers are typically isolated.[1] An additional difficulty in generating isolable phosphaborenes is that the routes to formation of the P=B multiple bond typically rely on base-induced eliminations from phosphinoborane precursors. In the presence of bases, any phosphaborenes generated are likely to be rapidly coordinated at the boron center. This tendency has been used by Power and Rivard,[2] and ourselves[3] to isolate the base-stabilised derivatives A, B, and C.

The substitution of unsaturated organic functional groups with isoelectronic alternatives is emerging as a powerful method to control electronic properties of π-conjugated compounds and materials. The substitution of C=C units with B=N ‘isosteres’ is particularly well-established.[4] Compared to the boron-nitrogen situation, the development of boron-phosphorus containing unsaturated systems has lagged behind. Synthetic methods applied to the BN systems are typically not transferable to the chemistry of phosphorus-containing systems. Within this area, the highest effort has been concentrated on the synthesis of B=P containing aromatic species. 1,4-Phosphaborins D have been prepared by ring-closing methods,[5] and the recent synthesis of the first 1,2-phosphaborene E, reported by Martin, exploited the generation of transient phosphinidenes and their insertion into a borole precursor.[6]

Our interest in the chemistry of phosphaborenes led us to question if – once generated – they could act as reagents for the introduction of P=B units into organic frameworks. Here, we report the thermal generation and trapping of a phosphaborene in solution, and the first cycloaddition reactivity of phosphaborenes. The resulting unsaturated P/B containing compounds can be stabilized in solution by coordination at the boron center.

Figure 1. Examples of Lewis-base coordinated phosphaborenes (A-C) and previously synthesized P=B isosteres of aromatic systems D and E. Ar = C6H5, 2,6-(C6H5)2-4,4,6-Pr3; (A) or 2,4,6-triisopropylphenyl (B, C). R = 2,2,6,6-tetramethylpiperidino (A) or 1,2,3,4,5,6-trimethylcyclopentadienyl (B, C), L = N,N-dimethylaminopyridine (A, B) or 1,3,4,5-tetramethylimidazol-2-ylidene (C).

Scheme 1. Relative energies of diphosphadiboretane 1 and its thermally accessible monomer phosphaborene 2 (M062X/Def2SVPP). Mes* = 2,4,6-tritertbutylphenyl.

[1] A. N. Price, Dr G. S. Nichol Dr M. J. Cowley
EaStCHEM, School of Chemistry, University of Edinburgh
Edinburgh, EH9 3FJ (UK)
E-mail: michael.cowley@ed.ac.uk

Supporting information for this article is given via a link at the end of the document.
NMR spectra (3a: δ 42.4; 3b: δ 44.1) are typical of those observed for base-coordinated phosphaborenones.[3,4]

Single-crystal X-ray crystallographic studies of 3a and 3b confirmed coordination of DMAP or ImMe₄ at boron and revealed short P=B bond distances (3a 1.8211(16) Å; 3b 1.8309(16) Å) and small C–P–B bond angles, entirely consistent with previously reported base-stabilised phosphaborenones. The diatropic N–B and C–B bonds between the DMAP and ImMe₄ (3a 1.5685(19); 3b 1.609(2) Å) are longer than in B and C, reflecting the reduced Lewis acidity of the amino-substituted boron center.

We explain the formation of 3a and 3b by proposing dissociation (at high temperatures) of diphasphaboretane 1 into 2 equivalents of the phosphaborene 2, before base trapping of 2 by DMAP or ImMe₄. Similarly, cyclic phosphinidene selenide dimers, [RPSe]₂, have recently been reported to dissociate to monomers in solution before undergoing trapping reactions.[11] An alternative possibility for the formation of 3a and 3b is base-coordination-induced cleavage of the diphasphaboretane ring. However, when we combined 1 and DMAP or ImMe₄ with 1 at room temperature, 3a or 3b were observed to form only slowly over the course of several weeks. No intermediates were observed by NMR spectroscopy.

To provide further evidence for the proposed dimer/monomer equilibrium of 1 in solution, we sought to remove the coordinated base from 3a and 3b to examine the fate of the resulting phosphaborene monomer 2. Thus, treatment of the DMAP adduct 3a with the strong Lewis acid B(C₆F₅)₃ at room temperature results in an immediate color change from deep red to pale yellow. Monitoring the reaction by NMR spectroscopy revealed the formation of diphasphaboretane 1 ([³¹P δ -92.3]), together with the expected adduct DMAP·B(C₆F₅)₃.

In contrast, the NHC adduct 3b has a very different fate when treated with B(C₆F₅)₃. Instead of scavenging ImMe₄ from 3b, which is precluded by the stronger coordination of the NHC to the phosphaborene unit, B(C₆F₅)₃ instead undergoes a nucleophilic aromatic substitution at the para-position of a C₆F₅ ring, forming the zwiterion 4. In this regard, the reactivity of NHC-stabilized phosphaborene 3b is directly analogous to that observed for bulky, electron rich phosphines,[12] providing a first (qualitative) measure of the nucleophilicity of base-stabilized boraphosphenes.
Compound 4 is characterised by two signals in the 11B NMR spectrum; a broad resonance at δ 36.0 is observed for the three-coordinate NHC-bound boron, and a higher field signal at δ ~1.0 is assigned to the four-coordinate center. In the 31P NMR spectrum, a signal is observed at δ ~49.3, significantly upfield from that for 3b (δ 151.5) and indicative of a reduced P–B bond order in comparison to the starting material. This conclusion is borne out by a single-crystal X-ray crystallographic study of 5 (see Fig S1), which reveals a P–B bond distance of 1.923(3) Å, significantly lengthened in comparison to that in 3b (1.8309(16) Å). In contrast to phosphonborates formed from bulky phosphines and B(C$_6$F$_5$)$_3$, the phosphorus center in the zwitterion 5 remains three-coordinate and formally neutral. The 11B chemical shift observed for the three-coordinate boron center of 4 is typical for borenium cations. However a significant contraction of the B–N bond distance of 4 (1.415(3) Å) when compared to 3b (1.493(2) Å) is indicative of increased B–N bond order and justifies the formal location of the positive charge at the nitrogen center of 4.

![Scheme 4. Reactivity of 1 towards phenylacetylene. Mes* = 2,4,6-tiritertbutylphenyl.](image)

With evidence that the phosphaborene 2 could be generated in solution, we sought to explore our goal of trapping it with unsaturated organic species. Phosphinoboranes, which are closely related to 2, can behave as intramolecular frustrated Lewis pairs. Since intermolecular boron/phosphorus frustrated Lewis pairs are well known to activate alkynes, we decided to test the reactivity of 2 with an alkyne. Thus, monitoring the reaction between 2 and phenylacetylene (at 80 °C) by 31P and 11B NMR spectroscopy revealed the consumption of 1 and the formation of new signals at δ ~47.3 and δ 42.7 respectively. Crystallization of the reaction product enabled a structural determination, which revealed it to be the 1,2-phosphaborate 5. NMR spectroscopy of the reaction mixture reveals that 5 is formed with complete regioselectivity: the phosphorus center and the alkyne C=CH proton ($\delta_{\text{H},\text{P}} = 24.5$ Hz) are each found in only one environment.

Compound 5 is the first example of a 1,2-phosphaborate. Such a species has previously been inferred, but not observed, as an unstable intermediate in the formation of a cyclic phosphinoborane from a zincacyle acetylene reaction with PhBCls. The 1,2-phosphaborate ring of 5 avoids planarity – and the antiaromatic 4π electron system that would result – by pyramidalization at the phosphorus center (sum of angles = 307°). Doubtless also contributing to the pyramidalization of the phosphorus center is the presence of a B=N π-bond, indicated by the short B–N bond distance (1.3929(19) Å). The P–B bond of 5 is unusually long, at 1.9870(16) Å. Indeed, the P–B bond distance approaches that observed for the

![Figure 3. Molecular structure of 5 in the solid state. Ellipsoids at 50 % probability.](image)

membraned, cyclic, vinclinal P/B frustrated Lewis pairs (e.g. (C$_6$F$_5$)$_3$BC(C$_F_3$)=C(C$_6$H$_4$-4-Me)PPh$_3$ – P = 2.018(2) Å). The long P–B distance, pyramidal phosphorus center, and typical C=C distance confirm that 5 is best described as a cyclobutene analogue.

Heavier group 14 alkyne analogues readily undergo formal 2+2 cycloaddition chemistry with alkynes, but the lighter analogues of 2, iminoboranes, are substantially less reactive. The iminoborane BuN=B=Bu reacts with acetylenes, but only in the presence of a coordinatively unsaturated Rh fragment, forming a Rh-coordinated η^1-1,2-azaborite ligand. In the presence of excess alkyne, the benzene analogues 1,4-azaborines or 1,2-azaborinines are obtained in rhodium-catalysed processes. The lack of reactivity of phenylacetylene with iBuN=BiBu in the absence of a metal catalyst is unsurprising: such a [2+2] cycloaddition would be thermally forbidden.

In the heavy alkyne case, cycloaddition proceeds via an initial 2+1 cycloaddition at one end of the formal triple bond, exploiting the Lewis-acidic character located there. The potentially Lewis acidic boron center in 2 raises the possibility of a similar initial 2+1 cycloaddition mechanism. However, a close examination of the frontier molecular orbitals of 2 demonstrates the presence of a B=N π-bond (see figure S2), orthogonal to the B=P π-system, which would render such a mechanism unlikely. In fact, the orthogonal B=P and B=N π-systems represent the frontier molecular orbitals of 2, rendering it isoelectronic to ketenes, which readily undergo antarafacial cycloaddition reactions with alkynes. We speculate that an analogous mechanism is operating in this case.

We sought to exploit the high ring-strain and weak P–B bond of 5 and induce ring-opening or ring-expansion reactivity. Phosphaborate 5 is so far unreactive towards alkynes, however it reacts readily with Lewis acids or bases. Thus, when 5 was treated with IMe$_3$, an immediate color change to purple was observed. The observation of new resonances in the 31P (δ 116.4) and 11B (δ 26.0) NMR spectra indicated the formation of a new
compound, 6. The downfield signal in the 31P NMR spectrum, which couples to a signal at low field in the 13C NMR spectrum (δ 187.4, d, 1J$_{P,C}$ = 56.4 Hz), is characteristic for a phosphalkene. The structure of 7 was established by X-ray crystallography and revealed that 7 is a butadiene analogue possessing both P=C and B=C multiple bonds (respective bond distances: 1.7445(19) and 1.493(3) Å) in a trans arrangement. The B=N π-bond present in 5 is disrupted in 6 by the coordination of the NHC ligand to the boron center (C1–B1 = 1.605(3) Å). The relatively short C17–C18 single bond (1.415(5) Å) is suggestive of conjugation between the P=C and B=C units. The UV/Vis spectrum of 6 yields further information in this regard, revealing a longest-wavelength absorption at 508 nm (c = 18200 L mol$^{-1}$ cm$^{-1}$).

Similarly, the 1,2-phosphaborete 5 reacts with AlCl$_3$ to provide a ring-opened product. The yellow AlCl$_3$-coordinated product 7 is obtained by treatment of 5 with AlCl$_3$ in benzene. A 31P NMR spectrum reveals a resonance at δ 71.8, though no signal could be located in the 13B NMR spectrum. X-ray structure analysis of 7 confirmed the presence of adjacent P=C and B=C units in a trans orientation. The P=C and B=C bond distances of 7 are considerably shorter than those in 6 (7 P=C = 1.7445(19), B=C = 1.493(3) Å; 8 P=C = 1.704(3) Å, B=C = 1.433(5) Å). The central C1–C2 bond distance is experimentally indistinguishable from that of 6, at 1.415(5) Å. As is expected for amino-substituted methylene boranes,[22] a B–N π-bond enforces a linear geometry at the boron center (C=B=N angle 178.8(4)°; B=N bond distance 1.338(5) Å). The UV/Vis spectrum of 7 differs substantially from that of 6 with a substantially blue-shifted longest-wavelength absorption at 365 nm (c = 13800 L mol$^{-1}$ cm$^{-1}$).

To probe the degree (or otherwise) of conjugation between P=C and B=C bonds in 6 and 7, and understand the difference in their electronic spectra, we undertook a time-dependent DFT study of the two compounds. TD-DFT calculations at the at the M062X level reproduced the trends in the experimental UV-Vis spectra, albeit blue-shifted by 20-60 nm. The longest wavelength absorption of the AlCl$_3$ adduct 7 (λ_{max} = 343 nm (calculated) vs 365 nm (experimental)) results from a transition from the highest occupied molecular orbital (HOMO) – which has B=C and P=C character – to the lowest unoccupied molecular orbital (LUMO) (see figure S3). The longest-wavelength absorption for the NHC adduct 6 (λ_{max} = 449 nm (calculated) vs 508 nm (experimental)) is significantly red-shifted in comparison to 7. Inspection of the molecular orbitals of 6 and 7 reveals that the HOMO and LUMO of 7 are stabilized relative to those of 6 (e.g. HOMO of 6: –4.965 eV; 7: –6.771 eV), a consequence of the electron-withdrawing effect of AlCl$_3$ coordination at the phosphorus center.

In summary, we have demonstrated the use of diphosphabidiboretane 1 as an effective phosphaborene source in solution. Trapping of the phosphaborene monomer 2 with Lewis
Acknowledgements

We thank the European Commission (FP7-People-2013-CIG-631483) and the University of Edinburgh for funding.

Keywords: boron • phosphorus • multiple bonds • conjugation • carbenes

bases provides a new route to base-stabilized phosphaborenines. Generation of 2 in the presence of alkenes allows the synthesis of previously inaccessible P/B containing organic compounds such as the cyclobutene isostere 5, which can be readily transformed into new compounds containing main-group multiple bonds. The use of phosphaborenines such as 2 as readily-available ‘synthons’ for the introduction of P/B units into organic compounds shows significant promise for the preparation of new P/B containing organic molecules and materials.

[21] A full experimental and computational study of this reaction mechanism is planned as the basis of a future investigation.

[23] CChCs 1550172 (3a), 1550169 (3b), 1550171 (4), 1550174 (5), 1550173 (6), and 1550170 (7) contain the supplementary crystallographic data for this paper.
Transient phosphaborenes – RP=BR – can be generated in solution and used to introduce PB units into organic compounds as C=C isosteres. A PB containing cyclobutene analogue can be ring opened to give conjugated systems with main-group multiple bonds.

Amy N. Price, Gary S. Nichol, Michael J. Cowley*

Phosphaborenes: accessible reagents for C-C/P-B isosteres