Introduction to the Issue on Spoofing and Countermeasures for Automatic Speaker Verification

Citation for published version:

Digital Object Identifier (DOI):
10.1109/JSTSP.2017.2698143

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
IEEE Journal of Selected Topics in Signal Processing

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Introduction to the Issue on Spoofing and Countermeasures for Automatic Speaker Verification

Automatic speaker verification (ASV) technology offers a low-cost and flexible solution to biometric authentication. While the reliability of ASV systems is now considered sufficient to support mass-market adoption, there are concerns that the technology is vulnerable to spoofing, also referred to as presentation attacks. Spoofing refers to an attack whereby a fraudster attempts to manipulate a biometric system by masquerading as another, enrolled person. Replayed, synthesized, and converted speech spoofing attacks can all be used to present high-quality, convincing speech signals which are representative of other, specific speakers and thus present a genuine threat to the reliability of ASV authentication systems.

Recent years have witnessed a movement in the community to develop spoofing countermeasures, or presentation attack detection (PAD) technologies which aim to protect ASV systems from spoofing. The first special session on the subject was held at Interspeech 2013 in Lyon, France. The event attracted a large group of researchers who participated in lively discussions and even a debate on the relevance of such research. Retrospectively, these doubts are easy to appreciate given the long-established research to tackle other equally challenging problems, such as channel and session variability.

With significant help from colleagues in the speech synthesis and voice conversion communities, the first Automatic Speaker Verification Spoofing and Countermeasures (ASVspoof) Challenge\(^1\) was organised soon afterwards. It was held as a special session at Interspeech 2015 and attracted 43 submissions from 16 participants. While the results were generally encouraging, they indicated that, when no information regarding the nature of the spoofing attack is available in the form of training data, then the reliable detection of spoofing attacks presents a significant challenge. In order to advance the development of reliable and generalised spoofing countermeasures, a second edition of ASVspoof was held in 2017. In contrast to the focus of the first edition, the 2017 challenge promoted the development of countermeasures to protect ASV systems from replay attacks. The shift in focus was motivated by the relative ease with which replay attacks can be mounted. Whereas the implementation of speech synthesis and voice conversion attacks requires specific expertise, replay attacks can be mounted by the layperson using widely available consumer audio recording and replay devices. Replay attacks are thus the most likely to be encountered in a practical scenario. ASVspoof 2017 attracted a total of 49 submissions.

The study of spoofing and, more importantly, the development of countermeasures is steadily gaining pace. In addition to the highly successful ASVspoof challenges, there are numerous evaluations relating to other biometrics, most notably fingerprint, iris and face recognition. The importance of protecting biometric authentication systems from spoofing has also been acknowledged in several large-scale collaborative research projects including TABULA RASA\(^2\), OCTAVE\(^3\), PROTECT\(^4\) and COST Action IC1206\(^5\), all funded by the European Union. Industry also has a vested interest in protecting the reliability of biometric systems for, when exposed, vulnerabilities stand to dent consumer confidence and form a barrier to commercialisation. This timely special issue thus strikes a chord with both growing academic interests and industrial needs.

From a total of 24 submitted manuscripts, and following rigorous peer review, the organisers selected 9 of the highest-quality contributions for publication. The topics covered in this issue include: the latest developments in secure and robust ASV systems; new collaborations and synergies between the speaker recognition, speech synthesis and voice conversion communities; recent efforts to develop larger, standard databases for the study of more diverse spoofing attacks; spoofing and countermeasure methodologies; solutions and assessment; fundamental research geared towards the development of generalized countermeasures.

The issue begins with an overview article by Wu et al.. It describes the vision and goals of the ASVspoof challenge, the publicly available ASVspoof 2015 database of bonafide and spoofed speech signals and an analysis of the challenge results. Also included is a review of post-challenge studies conducted using the same database. The results of these studies highlight the rapid progress in spoofing detection techniques in recent years.

One of the fundamental questions in anti-spoofing is the search for features that can discriminate between bonafide and spoofed speech. The second paper by Paul et al. reports a comparison of eight new spectral features based on inverted auditory scales and/or block transformation. The new features are shown to outperform conventional spectral features with reliable spoofing detection being obtained for nine out of ten forms of spoofing attack.

The third paper by Patel et al. reports an experimental validation of auditory-based cepstral coefficients obtained from cochlear filter-bank analysis together with instantaneous frequency and conventional mel-frequency cepstral coefficients. The use of perceptual information in the form of envelope and phase features is found to be of benefit to spoofing detection. The paper also shows that voice conversion training data is

\(^1\)\text{www.asvspoof.org}
\(^2\)\text{www.tabularasa-euproject.org}
\(^3\)\text{www.octave-project.eu}
\(^4\)\text{projectprotect.eu}
\(^5\)\text{costic1206.uvigo.es}
crucial to reliable performance.

Sriskandaraja et al. report the application to spoofing detection of a recently proposed approach to hierarchical spectral decomposition referred to as the scattering spectrum. When combined with cepstral analysis, the resulting scattering cepstral coefficients are shown to outperform a baseline based on constant-Q cepstral coefficients.

Patel et al. propose a new approach to spoofing detection based on estimates of nonlinear source and filter interaction. Their work shows improved spoofing detection performance stemming from the score-level fusion of residual energy with a Mel representation of residual signals and traditional features. Consistent improvements are also observed in the case of additive noise and channel mismatch.

Wang et al. report an approach to spoofing detection using a new phase representation referred to as ‘modified relative phase’. The method exploits the knowledge that many speech synthesis and voice conversion algorithms use minimum phase vocoders. While spoofing detection is shown to improve substantially in the case of minimum phase vocoded speech, the authors acknowledge the potential for phase-aware vocoders to circumvent the proposed countermeasure.

This potential is demonstrated by Demiroglu et al. who show that such phase-based anti-spoofing techniques can be circumvented by synthesized or converted speech produced by complex cepstrum vocoders.

The use and combination of convolutional and recurrent neural networks trained on general spectrogram features for spoofing detection is reported by Zhang et al.. The proposed approach does not exploit any prior knowledge of spoofing attacks and, as a result, it achieves better generalisation than other systems that use hand-crafted features derived from prior knowledge.

The final paper by Korshunov and Marcel presents a cross-database study of spoofing countermeasures. Results confirm that the performance of current spoofing countermeasures is dependent on the database on which they are trained. Encouragingly, their work also shows that the fusion of different spoofing countermeasures improves reliability substantially.

The guest editorial team would like to thank all of the authors who submitted manuscripts for consideration and also the large number of reviewers whose feedback has helped to ensure a special issue of the highest quality. The guest editors hope that this special issue becomes a stepping stone for future developments and advancements which are needed in order to protect the long-term use of ASV as a reliable approach to biometric person authentication. Advances in speech synthesis, voice conversion and deep learning methods such as end-to-end learning and generative adversarial networks will continue to test the reliability of ASV systems. For this reason, anti-spoofing research will surely remain an important area of research for the foreseeable future.

Junichi Yamagishi, Lead Guest editor
National Institute of Informatics
Tokyo, Japan

University of Edinburgh,
Edinburgh, UK

Tomi H. Kinnunen, Guest editor
University of Eastern Finland
Joensuu, Finland

Nicholas Evans, Guest editor
EURECOM
Sophia Antipolis, France

Phillip De Leon, Guest editor
New Mexico State University,
New Mexico, NM 88003, USA

Isabel Trancoso, Guest editor
INESC-ID, Instituto Superior Tecnico
Lisbon, Portugal

Junichi Yamagishi (SM’13) is an associate professor of National Institute of Informatics in Japan. He is also a senior research fellow in the Centre for Speech Technology Research (CSTR) at the University of Edinburgh, UK. He was awarded a Ph.D. by Tokyo Institute of Technology in 2006 for a thesis that pioneered speaker-adaptive speech synthesis and was awarded the Tejima Prize as the best Ph.D. thesis of Tokyo Institute of Technology in 2007. Since 2006, he has authored and co-authored over 100 refereed papers in international journals and conferences. He was awarded the Itakura Prize from the Acoustic Society of Japan, the Kiyasu Special Industrial Achievement Award from the Information Processing Society of Japan, and the Young Scientists Prize from the Minister of Education, Science and Technology, the JSPS prize in 2010, 2013, 2014, and 2016, respectively.

He was one of organizers for special sessions on “Spoofing and Countermeasures for Automatic Speaker Verification” at Interspeech 2013, “ASVspoof evaluation” at Interspeech 2015 and “Voice conversion challenge 2016” at Interspeech 2016. He has been a member of the Speech & Language Technical Committee (SLTC) and an Associate Editor of the IEEE/ACM Transactions on Audio, Speech and Language Processing. He is a Lead Guest Editor for the IEEE Journal of Selected Topics in Signal Processing (JSTSP) special issue on Spoofing and Countermeasures for Automatic Speaker Verification.
Tomi H. Kinnunen is an Associate Professor at the University of Eastern Finland (UEF). He received the Ph.D. degree in computer science from UEF (formerly Univ. of Joensuu) in 2005. From 2005 to 2007, he was an associate scientist at the Institute for Infocomm Research (I2R) in Singapore. Since 2007, he has been with UEF. In 2010–2012, his research was funded by a post-doctoral grant from Academy of Finland focusing on speaker recognition. He was the PI in a 4-year Academy of Finland project focusing on speaker recognition and a co-PI of another Academy of Finland project focusing on audio-visual spoofing. He chaired Odyssey 2014: The Speaker and Language Recognition workshop. He served as an associate editor in Journal of Digital Signal Processing from 2013 to 2015. He currently serves as an associate editor in IEEE/ACM Trans. on Audio, Speech and Language Processing and Speech Communication. His team is a partner in large H2020-funded OCTAVE project focusing on voice biometrics for physical and logical access control. In 2015–2016 he visited 6 months at National Institute of Informatics (NII), Japan, under a mobility grant from Academy of Finland, with focus on voice conversion, speaker verification and spoofing. He holds the honorary title of Docent at Aalto University, Finland, with specialization area in speaker and language recognition. He has authored and co-authored more than 100 peer-reviewed scientific publications in these topics.

Nicholas Evans is an Associate Professor at EURECOM where he heads research in Speech and Audio Processing. In addition to other interests in speaker diarization, speech signal processing and multimodal biometrics, he is studying the threat of spoofing to automatic speaker verification systems and working to develop new spoofing countermeasures. Previously, his work in anti-spoofing was funded by the EU FP7 ICT TABULA RASA project, continuing today through the EU H2020 OCTAVE project. He co-organised the special session on Spoofing and Countermeasures for Automatic Speaker Verification held at Interspeech in 2013 and the ASVs spoof evaluations at Interspeech 2015 and Interspeech 2017. He was Lead Guest Editor for the IEEE Transactions on Information Forensics and Security special issue in Biometrics Spoofing and Countermeasures, Lead Guest Editor for the IEEE SPM special issue on Biometric Security and Privacy Protection and Guest Editor for the IEEE JSTSP special issue on Spoofing and Countermeasures for Automatic Speaker Verification. He currently serves as an Associate Editor of the EURASIP Journal on Audio, Speech and Music Processing and served previously as a member of the IEEE Speech and Language Technical Committee.

Phillip De Leon received the Ph.D. degree in Electrical Engineering from the University of Colorado at Boulder in 1995. He currently holds the Paul W. and Valerie Klapsch Distinguished Professorship in Electrical and Computer Engineering at New Mexico State University and is the Associate Dean of Research in the College of Engineering. He directs the Advanced Speech and Audio Processing Laboratory and has co-authored over 70 refereed papers in international journals and conferences. Since 2008, he has conducted research in automatic speaker verification, associated vulnerabilities, and countermeasures and published some of the earlier papers in detection and countermeasures for HMM-based TTS. He has been a visiting professor at University College Cork in Ireland, Vienna University of Technology (TU-Wien) in Austria, and EURECOM and Telecom ParisTech at Paris Institute of Technology (France). His research interests also include machine learning, speech enhancement, and time-frequency analysis.

Isabel Trancoso is a full professor at IST (Univ. Lisbon), and a researcher at INESC-ID. She received the Licenciado, Mestre, Doutor and Agregado degrees in Electrical and Computer Engineering from IST in 1979, 1984, 1987 and 2002, respectively. She was the President of the Electrical and Computer Engineering Department of IST. She was a member of the ISCA Board, the IEEE Speech Technical Committee, and the Permanent Council for the Organization of ICSLP. She was elected Editor in Chief of the IEEE Transactions on Speech and Audio Processing. Member-at-Large of the IEEE Signal Processing Society Board of Governors, and President of ISCA. She chaired the INTERSPEECH 2005 conference. She chaired the IEEE James Flanagan Award Committee, and the ISCA Distinguished Lecturer Selection Committee. She was a member of the IEEE Fellows Committee, the IEEE Publication Services and Products Board Strategic Planning Committee, and Vice-President of the ELRA Board. She currently integrates the ISCA Advisory Council, and chairs the Fellow Reference Committee of the Signal Processing Society of IEEE. She received the 2009 IEEE Signal Processing Society Meritorious Service Award. She was elevated to IEEE Fellow in 2011, and to ISCA Fellow in 2014.