Google Trends terms reporting rhinitis and related topics differ in European countries

Citation for published version:

Digital Object Identifier (DOI):
10.1111/all.13137

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Allergy

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Google Trends terms reporting rhinitis and related topics differ in European countries


1. MACVIA-France, Contre les MA ladies Chroniques pour un Vieillissement Actif en France European Innovation Partnership on Active and Healthy Ageing Reference Site, Montpellier, France.

2. INSERM U 1168, VIMA : Ageing and chronic diseases Epidemiological and public health approaches, Villejuif, Université Versailles St-Quentin-en-Yvelines, UMR-S 1168, Montigny le Bretonneux, France

3. Faculty of Medicine, Transylvania University, Brasov, Romania.

4. ISGloBAL, Centre for Research in Environmental Epidemiology (CREAL), Barcelona; IMIM (Hospital del Mar Research Institute); CIBER Epidemiología y Salud Pública (CIBERESP), & Universitat Pompeu Fabra (UPF), Barcelona, Spain.

5. Comprehensive Allergy-Centre-Charité, Department of Dermatology and Allergy, Charité - Universitätsmedizin Berlin; Global Allergy and Asthma European Network (GA2LEN), Berlin, Germany.

6. Upper Airways Research Laboratory, ENT Dept, Ghent University Hospital, Ghent, Belgium.

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/all.13137

This article is protected by copyright. All rights reserved.
8. Division of Respiratory and Allergic Diseases, Hospital 'A Cardarelli', University of Naples Federico II, Naples, Italy.
9. Department of Respiratory Diseases, Montpellier University Hospital, France
11. Department of Dermatology and Allergy Centre, Odense University Hospital, Odense, Denmark.
12. Department of Otorhinolaryngology, Academic Medical Centre, Amsterdam, the Netherlands.
13. Center for Health Technology and Services Research- CINTESIS, Faculdade de Medicina, Universidade do Porto; and Allergy Unit, CUF Porto Instituto & Hospital, Porto, Portugal.
14. Skin and Allergy Hospital, Helsinki University Hospital, Helsinki, Finland.
15. Laboratory of Clinical Immunology, Department of Microbiology and Immunology, KU Leuven, Leuven, Belgium
16. Allergology department, Centre de l'Asthme et des Allergies Hôpital d'Enfants Armand-Trousseau (APHP); Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1136, Institut Pierre Louis d'Epidémiologie et de Santé Publique, Equipe EPAR, F-75013, Paris, France
17. Institute of Social Medicine, Epidemiology and Health Economics, Charité - Universitätsmedizin Berlin, Berlin, and Institute for Clinical Epidemiology and Biometry, University of Wuerzburg, Germany.
18. Center for Rhinology and Allergology, Wiesbaden, Germany.
19. Division of Internal Medicine, Asthma and Allergy, Barlicki University Hospital, Medical University of Lodz, Poland.
20. Oslo University Hospital, Department of Paediatrics, Oslo, and University of Oslo, Faculty of Medicine, Institute of Clinical Medicine, Oslo, Norway.
21. Institute of Medical Statistics, Informatics and Epidemiology, Medical Faculty, University of Cologne, Germany.
22. Medical Communications Consultant, MedScript Ltd, Dundalk, Co Louth, Ireland.
24. Center for Pediatrics and Child Health, Institute of Human Development, Royal Manchester Children's Hospital, University of Manchester, Manchester M13 9WL, UK Allergy Department, 2nd Pediatric Clinic, Athens General Children's Hospital "P&A Kyriakou," University of Athens, Athens 11527, Greece
25. Department of Prevention of Environmental Hazards and Allergology, Medical University of Warsaw, Poland.
26. Allergy Unit, Department of Dermatology, University Hospital of Zurich, Zürich, Switzerland.
27. RNSA (Réseau National de Surveillance Aérobiologique), Brussieu, France.
28. Department of ENT, Medical University of Graz, Austria

This article is protected by copyright. All rights reserved.
Google Trends searches trends of specific queries in Google and reflects the real-life epidemiology of allergic rhinitis. We compared Google Trends terms related to allergy and rhinitis in all European Union countries, Norway and Switzerland from January 1, 2011 to December 20, 2016. The aim was to assess whether the same terms could be used to report the seasonal variations of allergic diseases. Using the Google Trend 5-year graph, an annual and clear seasonality of queries was found in all countries apart from Cyprus, Estonia, Latvia, Lithuania and Malta. Different terms were found to demonstrate seasonality depending on the country - namely: “hay fever”; “allergy”; and “pollen” - showing cultural differences. A single set of terms cannot be used across all European countries, but allergy seasonality can be compared across Europe providing the above three terms are used. Using longitudinal data in different countries and multiple terms, we identified an awareness-related spike of searches (December 2016).

Key words: Allergy, Asthma, Google Trends, Hay fever, Pollen, Rhinitis
Forecasting the onset and duration of the pollen season is of vital importance in the management of allergic rhinitis (1, 2). Pollen counts may assess pollen exposure (1-3), but do not necessarily correlate with individual patients. Allergen content in the air can be assessed (4), but this requires sophisticated methods. Meteorological data may be of interest, but more research is needed (5). Combining several sources using advanced data engineering may also be important, but this is not yet available for all pollen species (6).

Since forecasting is still a limited option real-time epidemiological surveillance is an alternative option. Google Trends (GT), a Web-based surveillance tool, uses Google to explore the searching trends of specific queries. It can assess the seasonality of allergic diseases (7-10) and reflects the real-world epidemiology of symptomatic allergic rhinitis (11). However, cultural differences exist between countries and the same search terms may not be used across all countries, making comparisons difficult. MASK (MACVIA-ARIA Sentinel NetworK) (12) proposed to develop a pan-European sentinel network to inform allergy sufferers of the onset of the pollen season (1) and GT may be one of the methods used.

The present study was conceived as a preliminary step to explore the use of GT in the epidemiological surveillance of AR and was aimed at assessing whether there are differences in the Google searches of AR and related topics. We analyzed multiple time series of GT search data on rhinitis, allergy and asthma in the 28 European Union (EU) countries, Norway and Switzerland from 2011 to 2016. The aims were: (i) to assess whether GT could report rhinitis and related topics accurately in all the countries; (ii) to assess the seasonality of queries; and (iii) to determine whether terms differed between countries.

Methods

The following terms were used: “rhinitis”, “allergic rhinitis”, “hay fever”, “asthma”, “pollen”, “allergy”, “conjunctivitis” (disease, topic and term). However, only the following five terms were analyzed: “allergy” as a disease, “hay fever” as a topic, “asthma” as a disease, “conjunctivitis” as a disease and “pollen” as a topic since “rhinitis” as a term or “allergic rhinitis” as a disease were labelled as “hay fever” as a topic. Only “diseases” and “topics” were automatically translated by GT whereas “terms” were not translated. In the present study, we did not control for the translations of terms in the different languages since we wanted a real life assessment of GT. “Rhinitis” as a term was not translated manually since certain countries are multilingual (e.g. Belgium and Switzerland).
Google Trends is based on Google Search and shows how often a particular search-term is entered relative to the total search-volume across various regions of the world, and in various languages. The horizontal axis of the main graph represents time (starting from 2004), and the vertical axis shows how often a term is searched relative to the total number of searches globally.

We examined GT queries from January 1, 2011 to December 20, 2016 (using the standard 5-year analytic window of GT) for all 28 EU countries, Norway and Switzerland. We established visually (JB) patterns of countries according to the seasonality of terms (Table 1). We then compared the country patterns (based on seasons) with the mean 5-year terms provided by GT.

We did not compare the results of the 5-year trend with those of one-year or less, since the goal of the paper was not to define whether GT can be used as sentinel, but to assess whether there are differences between terms in European countries.

Results

Using the GT 5-year graph, an annual and clear seasonality of queries was found in all countries apart from Cyprus, Estonia, Latvia, Lithuania, and Malta (Figure 2 online). In these countries, some trends in seasonality were observed but they were not as clear as in the other countries.

Five patterns of country patterns were identified (Table 1). In 16 countries, a spike of queries was observed in the last week of December 2016. Figure 1 shows one example of each cluster, whereas all countries are presented in Figure 1 online.

Country patterns were defined according to seasonality of terms. However, this classification fits with the mean levels of queries over five years. In Cluster A countries, “allergy” queries were reported at a lower level than “hay fever” and did not show any clear seasonal pattern. In Patterns B, C and D countries, “allergy” queries were higher than the other terms and showed a seasonal pattern. When all countries with a seasonal pattern were examined, the peak of queries was the same for “allergy” and “hay fever” (Cluster B) or “allergy” and “pollen” (Cluster C). Moreover, in Patterns A, B, C and D, the seasonal patterns were similar between countries for the five years (Figure 1 and Figure 1 online).

Asthma and conjunctivitis did not show any seasonal pattern using the 5-year approach (data not shown for conjunctivitis).

There was a spike of queries in Austria, Belgium, Bulgaria, Croatia, Czech Republic, Estonia, Finland, Hungary, Ireland, Italy, Malta, Norway, Portugal, Romania, Spain and Switzerland at the end of December 2016 (Figure 1, Figure 1 online, and Table 1 online). These queries appeared within a week in all of the countries and were unrelated to the seasons in previous years. The shape of the spike was steeper than during allergen seasons. Moreover, two new patterns were found (F: peak of “allergy” and “asthma” and G: peak of “asthma”). The change in country patterns occurred in 10 (66.7%) of the countries.
Discussion

GT reflects the proportion of specific queries in relation to all queries. Although terms were translated into the different languages using the automatic Google translator, the reporting of GT differs widely between countries. There are country-specific trends towards a different awareness of allergy terms. Different terms account for seasonality (“allergic rhinitis” or “hay fever” as a topic, “allergy” as a disease, “pollen” as a topic). A single set of terms cannot be used across all countries, but allergy seasonality can be compared across Europe providing the three terms are used. Moreover, longitudinal data in different countries and multiple terms enabled a spike of terms to be identified, apparently unrelated to allergen exposure. The study in Europe is generalizable to other countries and the same clustering approach may be used.

GT does not provide a uniform, unbiased geographical sample. The data pool is skewed towards high-income countries with a higher access to computers and internet. These problems are unlikely to be of importance in the European countries we studied. Moreover, GT does not allow a direct access to absolute numbers.

Significant spikes in the Google search were found with increased awareness of a disease. Examples include the death of a celebrity (13) and the heart transplantation in the month when Vice President Cheney underwent the respective procedure (14). It is likely that the December 2016 spikes were associated with the awareness of thunderstorm asthma (15). Two severe episodes occurred in Australia and Kuwait in the past month and were largely publicised in the media. However, using multiple terms, a 5-year follow up and multiple countries, we were able to identify the awareness-related spikes.

The clustering approach based on seasonality was apparently sound since the mean levels of terms over the five years differed between patterns according to the seasonal patterns. Moreover, the patterns group countries as expected: Ireland and the UK in Cluster A (with Netherlands), German speaking countries in Cluster B and three Nordic countries in Cluster C. These patterns may be related to the understanding of the terms in different languages or to cultural differences. However, combing the three terms, we could assess seasonal changes in most countries. It is interesting to note that the seasons occur at a similar time (with some small differences due to climate) across Europe in particular for the birch, grass and ragweed pollen seasons. The clustering approach has improved our knowledge on the apparent awareness spikes of December 2016.

In this study, we did not assess anti-histamine queries or the different pollen species (e.g. birch, grass, *Parietaria* or ragweed) since the aim was to assess terminology. Moreover, we did not study yearly queries which may indicate some seasonality for asthma and a more precise seasonality in the five countries of Cluster E.

This study has several potential impacts (Table 2).

The results of the current study will be used in the development of the MASK sentinel network (1). MASK (MACVIA (*Contre les Maladies Chroniques pour un Vieillissement Actif*)-ARIA Sentinel Network) uses mobile technology to develop care pathways for the management of rhinitis and asthma by a multi-disciplinary group or by patients themselves (16). An App (Android and iOS) is available in 20 countries and 15 languages. It uses a visual analogue scale to assess symptom control...
and work productivity as well as a clinical decision support system. The scaling up strategy uses the recommendations of the European Innovation Partnership on Active and Healthy Ageing (17).

More data are required to investigate the importance of GT in a sentinel network, but it is clear that a combination of three terms over a period of observation are needed across Europe to establish baseline and to assess spikes.

References


This article is protected by copyright. All rights reserved.


Table 1: Patterns of countries

<table>
<thead>
<tr>
<th>Cluster</th>
<th>Characteristics</th>
<th>Countries</th>
<th>Average means over 5 years</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Allergy</td>
</tr>
<tr>
<td>A</td>
<td>Peak of “hay fever” higher than “allergy”</td>
<td>Ireland</td>
<td>45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Netherlands</td>
<td>21</td>
</tr>
<tr>
<td></td>
<td></td>
<td>UK</td>
<td>36</td>
</tr>
<tr>
<td>B</td>
<td>Peak of “hay fever” lower than “allergy” and higher than “asthma”</td>
<td>Austria</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Belgium</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Denmark</td>
<td>39</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Germany</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Luxembourg</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Switzerland</td>
<td>51</td>
</tr>
<tr>
<td>C</td>
<td>Peak of “pollen” only and higher than “asthma”</td>
<td>Finland</td>
<td>53</td>
</tr>
<tr>
<td></td>
<td></td>
<td>France</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Norway</td>
<td>51</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sweden</td>
<td>43</td>
</tr>
</tbody>
</table>

This article is protected by copyright. All rights reserved.
This article is protected by copyright. All rights reserved.
Figure 1: Examples of patterns

Cluster A: Ireland

Cluster B: Belgium

Cluster C: Finland

Cluster D: Croatia

This article is protected by copyright. All rights reserved.
Cluster E: Malta