10 Projects for a Compliant Architecture

Citation for published version:
Ross, L 2012, 10 Projects for a Compliant Architecture. in L Care, D Jary & R Parnell (eds), Healthy Design, Creative Safety: Approaches to health and safety teaching in undergraduate schools of architecture. RR925 edn, vol. HSE Books, Heath and Safety Executive, pp. 113-128, Healthy Design, Creative Safety, Sheffield, United Kingdom, 27/01/11.

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Healthy Design, Creative Safety

Publisher Rights Statement:

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Compliant Architecture
10 projects for a Compliant Architecture

Liam Ross

Selected Projects, MArch Senior Honours Option 2008/2009
University of Edinburgh, College of Humanities and Social Science
School of Arts, Culture and Environment, Department of Architecture
10 projects for a Compliant Architecture

Introduction

<table>
<thead>
<tr>
<th>Building Standard</th>
<th>Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIRE</td>
<td></td>
</tr>
<tr>
<td>2.6.3 Spread to Neighbouring Buildings</td>
<td>FRONTING THE CLOSENESS</td>
</tr>
<tr>
<td>2.8.1 Spread from Neighbouring Buildings</td>
<td>FIRESIDE MANNERS</td>
</tr>
<tr>
<td>ENVIRONMENT</td>
<td></td>
</tr>
<tr>
<td>3.6 Surface Water Drainage</td>
<td>ATMOSPHERIC MECHANISMS</td>
</tr>
<tr>
<td>3.11.6 Drying of Washing</td>
<td>AERATING THE REGULAR</td>
</tr>
<tr>
<td>3.16 Natural Lighting</td>
<td>EYELINES AND SKYLINES</td>
</tr>
<tr>
<td>SAFETY</td>
<td></td>
</tr>
<tr>
<td>4.1.7 Accessible Entrance</td>
<td>VISION CUTS</td>
</tr>
<tr>
<td>4.2.2 Access within Buildings</td>
<td>SHIFTY CHARACTER</td>
</tr>
<tr>
<td>4.3.2 Riser of Stairs</td>
<td>LUNGE PLAN</td>
</tr>
<tr>
<td>4.3.2 Going of Stairs</td>
<td>SYNCPATED SCALES</td>
</tr>
<tr>
<td>4.8.3 Cleaning of Windows</td>
<td>STAGED SALUTATIONS</td>
</tr>
</tbody>
</table>
Compliant Architecture is a design, research and teaching project based at the University of Edinburgh. It conducts text-based research into the emergence of building regulations, design-research that illustrates the limits they impose, and taught design modules that explore the architectural potential of those limits.

This document presents selected projects from a 10 week architectural design studio completed as part of the MA Architectural Design programme at the University of Edinburgh, 2008-09. Each projects begins with an analysis of a single clause of the Scottish Building Standards. Students provide a brief verbal and diagrammatic description of the regulation, coming to understand the hazard it represents, and seeks to limit; trips and slips on stairs and ramps, falls from height while cleaning windows, lack of access to daylight. The projects continue by identifying an architectural potential in the limitation of these risks; that a regulated stair acts as an index of the familiarity of its users, that a window choreographs and represents the everyday act of its cleaning, that a window negotiates and represents a relation between programme and context. Each project concludes through the design of a mixed-use building in the centre of Edinburgh, playing-out the implications of the limit in a range of circumstances.

Compliant \textit{adj.}\

1. Complying, disposed to comply; ‘civil, complaisant’; ready to yield to the wishes or desires of others.\
2. Yielding to physical pressure, pliant.\
B. One who complies; a complier.\
3. Yielding and adaptive to conditions.\

a OED, second edition, 1989
Regulating Education

ARB General Criteria 10 stipulates that Part 1 & 2 architecture students should be taught the necessary skills to meet buildings users’ requirements within the constraints imposed by regulation. Graduating students should be able to prepare designs that comply with UK legislation, including those requirements imposed by the Health and Safety Executive. However, despite this ARB’s requirement, most practicing architects name inadequate training in legislative requirements while at University. The reasons for this are perhaps easy to understand: legislative requirements tend be satisfied through the demonstration of compliance, and so appear opposed to creativity, their end being necessarily pre-determined. Teaching design on the basis of regulatory compliance, then, is perhaps likely to lead to standardised and formulaic design. As such the satisfaction of both the ARB and regulatory requirements are often annexed from the design studio, to be demonstrated through separate ‘compliance projects’.

Regulating Design

This attitude to the ARB requirements parallels (perhaps establishing, re-enforcing, or simply reflecting) professional attitudes to regulation generally. Building practice is subject to a widespread and sophisticated regulatory framework - from professional codes of conduct, building standards and technical guidelines, to contractual protocols, planning permissions, and consultation procedures – and qualified architects, like their educators, consider the burden of demonstrating compliance with extensive, ever-changing and constantly changing requirements a hindrance to the creative process, leading to standardised and formulistic buildings. That is, professional practice is characterised by the same polarisation between the creativity and subjective freedom associated with design, and the apparently objective requirements of regulation, tending to think of the requirements and rationale of planners and regulators as ‘external’ to architecture.

Re-distributing Risk and Responsibility

This is not simply a question of ‘attitudes’. The purpose of governmental regulation is precisely to define certain aspect of the design of the built environment as outwith the responsibility of architects. New regulatory requirements generate new disciplines, expertise and professions to take responsibility for them, and architects and educators are correct to recognise regulation as a disciplinary threat; that decisions about the design of the built environment are increasingly determined by agencies outside the profession necessarily limits the architects’ own agency. This is not necessarily a bad thing, however, the fragmentation within the design professions - between the subjective and objective potential of building - can lead to a reduction in the potential of architecture. On the one hand, regulations define an increasing proportion of the design of the built environment – from the detailed design of a specific project, to whole sectors of the industry – as non-architectural. These aspects of design are taken out of the hands of clients and their agents, and pre-determined by apparently objective standards. On the other hand, with the architect’s control of building often reduced to that of an interface manager satisfying the needs of others, they often seek to defend their subjective agency as designers. Indeed, the ‘design intent’ of much contemporary architecture appears reduced to that of a signature gesture that representing nothing but the symbolic authorial control of the architect.

Problematising Creative Freedom

What attitude should architects, and architectural educators, take to the regulation of building, then? This pamphlet forms part of a teaching and research project – Compliant Architecture - reflecting on this question. It documents 10 undergraduate student projects that - while demonstrating compliance with UK legislative requirements and ARB criteria – develop a specific attitude to regulation, which could be summarised as follows: The first premise of these projects is to invert the ubiquitous critique that regulations frustrate architects’ creative freedom. If freedom is that ‘area in which the subject... should be left to do or be what he is able to do or be, without interference by other persons’ regulations are in fact a means to establish and safeguard freedom; regulations define an area in which architects, clients, and building users are freed to practice, without posing a risk to each-other. However, this project suggests that the disciplinary challenge posed by regulation is, perversely, the freedom that regulation offers. By taking responsibility for the risk that building poses to ourselves and others, regulations free architects from that opportunity, and it is only through our exposure to risk that we – whether we are architects or building users - develop and communicate subjectivity.

The Materiality of Risk

The second premise of the project, then, is that the risk of building is not a purely negative phenomena; the excitement of a tall space is commensurate with the possibility of a fall; a sense of enclosure is commensurate to a risk of entrapment; the opportunity provided by an opening is commensurate to the possibility that something, or someone, will pass through it. Risk is simply an aspect of the materiality of building, and not something it could ever be freed from. This project approaches regulation, then, not as a means of negating risk, but rather as a means of coming to know it. The student projects presented here employ regulatory limits as means of naming, drawings out, indexing and exposing the risks that buildings inherently pose.

Dramatising and Exposing Risk

Finally, this project contends that the limitation and exposure of risk is not a purely objective concern, but is rather part of architecture’s subjective project; it suggests that architecture communicates through the attitude it takes to risk. The 10 projects represented here turn their attention to aspects of building that are risky, and that are closely regulated: spread of flame, surface water drainage, day-lighting and ventilation, corridor widths and visibility, stair and ramp geometries, and the sizes and configurations of openings. They do not seek to negate these risk, but rather appropriate regulatory limits as a means to finely calibrating our exposure to them; carefully considering – for instance - our familiarity with the geometry of a staircase, the chance of bumping into someone in the corridor, the distance water is allowed to ingress into building, which parts of a plan are naturally lit, or the distance we have to stretch in cleaning our windows. That is, while the projects comply with specific clauses of UK legislation, they do not consider this to be an end in itself. Rather, they enjoy regulatory limits as a means of designing with and dramatising the inherent risk of building.

c Ibid, pp. 9-12

Every building must be designed and constructed in such a way that in the event of an outbreak of fire within the building, the spread of fire to neighbouring buildings is inhibited. Where the external wall of a building is more than 1m from the boundary the amount of glazing (m²) may be equivalent to six times the distances (m) to the boundary.

2.6.3
FIRE | Spread to Neighbouring Buildings

FRONTING THE CLOSENESS
Sara Oxley

Regulation 2.6.3 imposes the requirement to step back from the boundary when opening up. This requirement offers a language of publicity and privacy suitable to the extraordinary closeness of Edinburgh’s medieval Close. A gallery steps back to form a forecourt and open facade. Private apartments step forward to maximise footprint. The emphatically layered construction provides long oblique views and avoids overlooking, while enjoying a frontality implicit to the regulation.
Every building must be designed and constructed in such a way that in the event of an outbreak of fire in a neighbouring building, the spread of fire to the building is inhibited. The roof of a building, including any roof lights, should have a low vulnerability if not more than 6m from the boundary.

2.8.1 FIRE | Spread From Neighbouring Buildings

FIRESIDE MANNERS
Staszek Stuart-Thompson

3 dwellings and a bakery are organised around four chimneys, set 6m from the boundary. The chimneys locate the vertical circulation, heating and cooking facilities for each building. The perimeter of the site is formed by a protective wall, controlling limited glimpses between inside and out. To the interior an intimate courtyard opens up, framed by lightweight and vulnerable walls. At night, the flickering of domestic lights in the courtyard forms a campfire for the street.
Every building and hard surface within the cartilage of a building must be designed and constructed with a surface drainage system that will ensure the disposal of surface water without threatening the building and the health and safety of the people in and around the building. Buildings should be designed to prevent water from entering doors and windows, to protect persons from falling water when around the dwelling, and to protect people from rainwater splashing on the ground. Paved surfaces should be laid so as to ensure rainwater runoff is not close to the building.

3.6 ENVIRONMENT | Surface Water Drainage

ATMOSPHERIC MECHANISMS
Gillian Storrar

The mute façade of a New Town apartment building is carefully detailed to invite falling water into window boxes, loggia and a courtyard florist. The complex mechanism of a rain shower - its fine curtains, individual droplets, convex lozenges, thin sheets, and plaited cords - animates the tight vertical space, which supplies the appropriate calibrations, folis and sensitive surfaces.
Every building must be designed and constructed in such a way that an accessible space is provided to allow for the safe, convenient and sustainable drying of washing. Since weather is unreliable in Scotland, a designated space for the drying of washing should be provided in every dwelling, and on ground immediately adjacent to the house. The area should allow for at least 1.7m of clothesline per apartment.

3.11.6 ENVIRONMENT | Drying of Washing

AERATING THE REGULAR
Daniel Goodacre

It is beautiful to watch the precision of regulation 3.11.6 (Why 1.7m? A full suit of clothes, a double bed spread?) come into contact with the chanciness of wind. This proposal for 11 apartments in an Edinburgh Close uses 84 instances of fluttering string as a guide to set several regular construction lines a-flutter; space standards, corridor routes, bed paths, structural lines, panel centres, stair goings, roof pitches and drying lines.

Detailed section of apartments and common stairs showing internal and external drying space; survey of regulation 3.11.6 thrown out of window

Floor plans; exploded axonometric showing corridor routes, shear walls, cladding, common stairs, drying lines and roof construction
Every building must be designed and constructed in such a way that natural lighting is provided to ensure that the health of the occupants is not threatened. The ‘no-sky line’ defines the line in a room beyond which the sky is not visible. Supplementary planning guidance recommends that the amount of habitable space beyond the ‘no-sky line’ is limited.

3.16 ENVIRONMENT | Natural Lighting

Alistair Blake

EYELINES AND SKYLINES

Recording the no-sky line on plan – projected through the aperture of a window - inscribes the surrounding context into building. In this proposal for artists’ studios and apartments the arrangement of programme across floor slabs is inflected by the relation between an existing context and the shifting eyeline of the inhabitant. A layered façade modulates this relation, while plan and section subtly shift as they rise to the horizon.
Every building must be designed and constructed in such a way that all occupants and visitors are provided with a safe, convenient and unassisted means of access to the building. To assist in preventing collisions, a clear vision panel to a door should give a zone of visibility from a height of not more than 500mm to at least 1.5m above finished floor level. This may be interrupted by a solid element between 800mm and 1.15m above floor level.

4.1.7
SAFETY | Accessible Entrance

Edinburgh’s Old Town closes are inaccessible to wheelchair users. In this project for a University Student Residence, universal access requirements – ramp pitches, balustrade heights and vision slots – are used to take a cut through the rich historical sediment of the site. The resulting architectural promenade takes flight from the Royal Mile, offering new visual sections through the Old Town.
Compliant Architecture

18

Every building must be designed and constructed in such a way that safe and convenient means of access is provided within the common areas and to each dwelling. The common areas of a domestic building remain in effect a public or shared area. Corridors should be wide enough to allow two-way traffic and manoeuvring at junctions or when passing through doorways. Where corridors are less than 1.8m in width, manoeuvring or passing places of not less than 1.8m in length and width and free of obstructions should be provided.

4.2.2
SAFETY | Access within Buildings

A SHIFTY CHARACTER
Joel Woodier

Regulation 4.2.2 opens the design of corridors to a degree of chance; the required increase in width can be achieved in a number of ways, responding to circumstantial factors. The shared common spaces of a Student Residence open the inhabitant’s life to a degree of chance, whose glance will be caught when leaving the bathroom in a towel? A common stair is here animated by a series of small shared programmes that inscribe this social tension by enjoying and occupying the shifty limits of prescription.
Every building must be designed and constructed in such a way that every level can be reached safely by stairs or ramps. The geometry of a stair can have a significant effect on the ability of people to use a stair safely and conveniently. The pitch of a private stair may be steeper than that of a public stair in recognition that users, as occupants, will be more familiar with the stair through frequent use. The maximum rise for a public stair is 170mm. The maximum rise for a private stair is 220mm.

4.3.2 SAFETY | Going, Rise and Pitch of Stairs

Building occupants will trip up and skip down their stairs with a confidence born of familiarity. In this proposal for three psychiatrists’ offices and residences, the regulating device of the stairs is inflected through a survey of jovial leaps; the resulting short flights set up a language of Work and Live. While the reception and office facilities occupy the principal levels - and are accessible by lift - the domestic programme occupies a Raum-Plan established by a series of half landings.
Every building must be designed and constructed in such a way that every level can be reached safely by stairs or ramps. The geometry of a stair can have a significant effect on the ability of people to use a stair safely and conveniently. The minimum going for a private stair is 225mm. The most comfortable combination of rise and going varies between individuals but in general, a going in excess of a minimum value will increase both safety and amenity.

4.3.2 SAFETY | Going, Rise and Pitch of Stairs

SYNCOPE SCALES
Tom Gibson

A proposal for a new public stair enjoys the prescriptive potential of the stair tread, creating a syncopated, rhythmic effect for two stair-climbers. A proposal for three apartments employs the same effects to create a rich rhythmic effect for two stair-climbers. A brick is still a brick - but it also provides the scale for a subtle choreography of hands and feet.

New Hawes Stair: phase effects generated by scoping stairs to syncopated steps

Section showing folded steel stair set-out to brick party wall.

Plans of ground, first and second floors, showing public and private stairs and articulated kitchen.

Model and sketch showing brick piers
Every building must be designed and constructed in such a way that both faces of a window are capable of being cleaned such that there will not be a threat to the cleaner from a fall resulting in severe injury. Any window of roof light more than 4m above adjacent ground should be designed so that any external and internal surfaces can be cleaned from within the building or from a load-bearing surface, such as a balcony or catwalk.

4.8.3 SAFETY | Cleaning of Windows

STAGED SALUTATIONS

Lucy Brooke

The British Standards limit the size of windows in buildings to limit the repeated risk of injury should an occupant overbalance while stretching. The Sun Salutation in Yoga promotes repeated gradual stretching which limits the risk of exercise and improves balance. Through small and carefully designed domestic fragments, this design promotes a subtle stretching of the regulations to create more celebratory, salutatory windows, while enjoying the fetishistic and therapeutic aspects of cleaning house.
The selected projects were produced during an 11 week design unit for 4th year undergraduate students as part of the MAres Honours programme, Department of Architecture, University of Edinburgh. Students were asked to study a single clause of regulation, identify the architectural issues raised by that regulation, produce drawings that explore the abstract potential of regulation, and to use these drawings to regulate the design of buildings. The course was offered in 2008 and 2009, making proposals for a mixed use development on a site in Edinburgh’s Old Town and New Town respectively.

Unit Staff

Course Organiser
Liam Ross
University of Edinburgh

Tutors
- Rachael Hallet
 University of Edinburgh
- Dimitris Theodossopoulos
 University of Edinburgh
- Stephanie Davidson
 RWTH Aachen
- Stuart Dickson
 Graeme Massie Architects
- Robert Godsmans
 Edinburgh City Council
- Georg Rafailidis
 RWTH Aachen
- Ines Wenzel
 London Metropolitan University
- Dorian Wiszniewski
 University of Edinburgh

Guest Critics
- Stephanie Davidson
- Stuart Dickson
- Robert Godsman
- Georg Rafailidis
- Ines Wenzel
- Dorian Wiszniewski
- RWTH Aachen
- Graeme Massie Architects
- Edinburgh City Council
- London Metropolitan University
- RWTH Aachen

Students

2008
- Mie Akune
- Sam Burrows
- Euan Clarke
- Martin Flett
- Katherine Goddart
- Daniel Goodacre
- Ingrid Harevoll
- Aaron Jones
- Alex Joseph
- Kristinna Mair
- Mike Mulins
- Alex MacGruer
- Katrina McSween
- Sara Okeey
- Chris Reeburn
- Sarah Warnock

2009
- Daisy Barber
- Steven Bauman
- Alistair Blake
- Lucy Brodie
- Harry Frederick
- Sophie George
- Thomas Gibson
- Shanavar Hamid
- Vicky Harrison
- Tom Hayes
- Kousik Kar
- Catriona MacDonald
- Duncan Munro
- Nicholas Sharpe
- Gillian Storrar
- Slawek Stuart-Thompson
- Georgina Ward
- Joel Woodier

© The University of Edinburgh 2009
No part of this publication may be reproduced without prior permission from the author.

liam.ross@ed.ac.uk
www.architecture.ed.ac.uk