Edinburgh Research Explorer

Conjecture Synthesis for Inductive Theories

Citation for published version:
Johansson, M, Dixon, L & Bundy, A 2011, 'Conjecture Synthesis for Inductive Theories' Journal of
Automated Reasoning, vol. 47, no. 3, pp. 251-289. DOI: 10.1007/s10817-010-9193-y

Digital Object Identifier (DOI):
10.1007/s10817-010-9193-y

Link:
Link to publication record in Edinburgh Research Explorer

Document Version_:
Peer reviewed version

Published In:
Journal of Automated Reasoning

General rights

Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s)
and / or other copyright owners and it is a condition of accessing these publications that users recognise and
abide by the legal requirements associated with these rights.

Take down policy

The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer
content complies with UK legislation. If you believe that the public display of this file breaches copyright please
contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and
investigate your claim.

Download date: 16. Jan. 2019

https://doi.org/10.1007/s10817-010-9193-y
https://www.research.ed.ac.uk/portal/en/publications/conjecture-synthesis-for-inductive-theories(74ab9c54-2340-49ce-947c-5938111b9883).html

Journal of Automated Reasoning manuscript No.
(will be inserted by the editor)

Conjecture Synthesis for Inductive Theories

Moa Johansson Lucas Dixon Alan Bundy

Draft: February 21, 2010

Abstract We have developed a program for inductive theory formation, called IsaCoSy,
which synthesises conjectures “bottom-up' from the available constants and free vari-
ables. The synthesis process is made tractable by only generating irreducible terms,
which are then ltered through counter-example checking and passed to the automatic
inductive prover IsaPlanner. The main technical contribution is the presentation of a
constraint mechanism for synthesis. As theorems are discovered, this generates addi-
tional constraints on the synthesis process.

We evaluate IsaCoSy as a tool for automatically generating the background theories
one would expect in a mature proof assistant, such as the Isabelle system. The results
show that IsaCoSy produces most, and sometimes all, of the theorems in the Isabelle
libraries. The number of additional un-interesting theorems are small enough to be
easily pruned by hand.

Keywords Theory Formation Induction Synthesis Theorem Proving Lemma
Discovery

1 Introduction

Discovering unknown theorems and lemmas is a major challenge for automated induc-
tive theorem proving. It has generally been assumed that such discovery requires user
intervention. Consequently, most theorem provers rely on the user to supply any addi-
tional lemmas that might be needed for a proof. Interactive theorem provers, such as
Isabelle [21,20], have a large theory library of formalised mathematics. Such libraries
require signi cant expertise and time to develop. Automating the formation of theory
libraries, even just the construction and proof of background lemmas, is an important

Moa Johansson

Universia degli Studi di Verona, Dipartimento di Informatica, Strada le Grazie 15, 371 34,
Verona, Italy. Tel: +39 45 802 7908

Lucas Dixon and Alan Bundy

University of Edinburgh, School of Informatics, Informatics Forum, 10 Crichton Street, Edin-
burgh, EH8 9AB, UK.

Tel: +44 131 651 3077. Fax: +44 131 651 1426

E-mail: moakristin.johansson@univr.it, fl.dixon, a.bundy g@ed.ac.uk

challenge. It could help both the development of new theories as well as speed up the
formalisation of existing ones.

Given an inductive theory, formed by the de nition of recursive datatypes and
functions, we show how to automatically synthesise a useful set of theorems. These
theorems typically capture the basic properties of the theory and are intended to be
useful in further proofs, either by a human or by an automated theorem prover. The set
of synthesised theorems can also provide a “sanity check’, ensuring that the theory has
been appropriately de ned (or axiomatised) by ensuring that no unintended theorems
are included.

Our approach is implemented in a program for inductive theory formation, called
IsaCoSy (Isabelle Co njecture Sy nthesis), built on top of the proof-planner IsaPlanner
[9,10,8] and the proof assistant Isabelle. IsaCoSy builds terms, starting from small ones
and then building incrementally larger ones, using the set of available constants and
function symbols in a given theory. The key idea for making this tractable is to turn
rewriting upside down: only irreducible terms, those not matched by the left hand side
of any rewrite rule, are synthesised. In terms of the implementation, this restriction
turns into constraints on the term-synthesis process, thus avoiding a naive and ine -
cient generate-and-test style procedure. The main technical contribution of this paper
is a representation for the constraints and corresponding algorithms for synthesis of ir-
reducible terms. After conjectures are synthesised, counter-example checking is used to
prune out the obviously false ones. The remaining conjectures are given to IsaPlanner,
which attempts to prove them automatically by induction using the rippling heuris-
tic [4]. Any proved theorems are then used to generate more constraints for synthesis of
further terms. An important feature of IsaCoSy is that it is designed to be generic, and
may thus be applied to theories about any recursively de ned datatypes in Isabelle.

We analyse the e ciency improvement provided by the constraints mechanism, as
compared with a naive algorithm that perform exhaustive term synthesis. We show
that our constraints machinery enables synthesis to achieve an exponential reduction
in the space of conjectures. This allows the synthesis of important theorems, such as
distributivity laws, that were previously too large to be found by naive synthesis. We
also evaluate IsaCoSy's ability to generate “useful' theorems by comparing the theo-
rems synthesised by IsaCoSy with those manually formalised by the theory developers
of Isabelle. We use precision and recall analysis for this comparison. Precision anal-
ysis computes the portion of extra theorems not in the library while recall analysis
computes the portion of theorems shared with the library. The domains considered are
the equational theorems in a formalisation of natural numbers, a theory of lists, and a
theory of binary trees. On an ordinary desktop PC, the synthesis process takes several
hours but nds most, and sometimes all, of the theorems in the Isabelle library. Some
of the theorems not found are special cases of synthesised theorems, but are useful
for con guring proof tools. A relatively small number of additional theorems are also
proved. While these are not in the Isabelle library, we note that some of them are also
useful for proof automation. We note the main sources of ine ciency in our approach,
and highlight how these might be tackled.

Overview

In x2, we introduce the IsaPlanner proof-planner and the Isabelle proof assistant on
which IsaCoSy has been developed. Inx3 we present some motivating examples intro-

ducing the basic ideas of our constraints for term synthesis. We then, in x4, describe our
language for expressing constraints, and in x5, a constraint generator which produces
constraints from available theorems. We give examples of typical theorems from which
initial constraints are generated in x6. Additional heuristics, for synthesis are described
in X7. The synthesis engine itself, including procedures for updating and propagating
constraints, is presented in x8.

In x9, we present a small case-study to illustrate how IsaCoSy uses its constraints
and heuristics. x10 describes the evaluation and experimental methodology. We show in
x10.1, that IsaCoSy manages to exponentially improve on the synthesis-space compared
to a naive synthesis. In x10.2, we perform a precision and recall analysis with Isabelle's
libraries. Further experiments exploring the e ects of allowing constraints to be gen-
erated from unfalsi ed but unproved conjectures and on restricting polymorphism are
discussed inx10.3 and x10.4 respectively. The limitations of IsaCoSy and further work
are discussed inx11. We compare IsaCoSy to other theory-formation systems in x12,
and nally summarise and draw conclusions in x13.

The source code and instructions for IsaCoSy are available on-line at:

http://dream.inf.ed.ac.uk/projects/isaplanner/

2 Background
2.1 An Overview of Theory Formation Systems

There are two main approaches to theory formation, generative and deductive. Theory
formation following the generative approach generally produces conjectures according
to some set of heuristics, and then checks which of these are theorems by counter-
examples and/or proof. Our work falls into this category, together with the early the-
ory formation system AM [15], which managed to conjecture Goldbach's conjecture.
However, AM did not have the capability to prove any conjectures and its heuristics
were domain speci c. HR is a more recent generative theory-formation system [6]. It
uses the resolution prover Otter to prove its conjectures and the MACE model genera-
tor to search for counter-examples. HR has been applied to domains including number
theory, graph theory, and group theory. Although the number of interesting conjectures
made was rather low, HR did manage to invent some novel integer sequences. Theory
exploration based on knowledge schemes essentially higher-order terms - has been
proposed for the Theorema system [2]. The knowledge schemes capture prior mathe-
matical knowledge, and are then instantiated with symbols in the current theory in an
attempt to produce new concepts or function de nitions. A preliminary case-study of
the natural number has been undertaken, but the process is not yet automated [12].

Systems using a deductive approach attempt to produce new theorems as logical
consequences of known facts. This approach has the advantage of not having to use
counter-example checking to Iter out non-theorems, but instead it has to apply other
forms of ltering to avoid trivial or uninteresting logical consequences. The MATHSAID
system [17,18] uses this approach, as does the AGInT system for rst-order classical
logic [22]. AGINnT has been applied to axioms about set theory and about logical puzzles
from the TPTP library [23], where it nds some theorems.

The IsaCoSy system, described in this paper, is the rst system built for a generic
higher-order proof assistant. It also implements a novel approach to theory formation

based on the simple idea of generating irreducible terms. We compare it in more detail
to related work in x12.

2.2 IsaPlanner and Isabelle

IsaCoSy passes conjectures to the proof-planner IsaPlanner, which attempts to prove
them automatically. Proof-planning is a technique used to guide search in automated
theorem proving by exploiting the fact that there are families of proofs with a similar
structure [3,5]. One such family is proofs by induction. IsaPlanner employs the rippling
heuristic to guide rewriting of the step-case in inductive proofs [4,8].

Isabelle is a generic, interactive theorem prover which supports a wide range of
object logics, such as higher-order logic (HOL), Zermelo-Fraenkel set theory and many
others [20]. A large library of theorems for various object logics is available on-line at
http://isabelle.in.tum.de . Each object logic is formalised in Isabelle's meta-logic,
which is an intuitionistic higher-order logic with implication, universal quanti ers and
equality [21]. Isabelle follows the LCF approach to theorem proving, where new theo-
rems can only be obtained from previously proved statements through manipulation by
a small set of trusted inference rules [11]. More complex tactics are built by combining
these rules in di erent ways, ensuring that the resulting proofs rely only on the xed
set of trusted inference rules.

IsaPlanner is built on top of Isabelle and can also support di erent object logics
and follows the LCF approach. It supports automated inductive proofs using an imple-
mentation of the rippling heuristic to guide search. It also has a language for combining
simple reasoning techniques into new, more complex ones. The atomic techniques are
declarative wrappers for Isabelle's tactics, so that proof-planning and tactic execution
can be interleaved, ensuring each step is sound.

2.3 Notation

Functions and Lists: The "@'-symbol denotes the list append function and “#' de-
notes cons, and both of these are written in Xx. These and all other functions used
in our examples are de ned in Appendix A.

Term size: We de ne the size of a term to be the number of symbols (constants or
variables) it contains. For example, the term * a = 0' is of size 3 (one variable and
the two constants "0' and "=').

Free Variables: Free variables represent arbitrary values. Free variables that are al-
lowed to be instantiated by unication are referred to as meta-variables. Meta-
variables are written pre xed by "?', e.g. ? f .

Holes: During synthesis, holes are positions in a term-tree that have not yet been
fully instantiated by synthesis. Holes are implemented as Isabelle/IsaPlanner meta-
variables. Holes will have various constraints associated with them, such as a spec-
i ed size and restrictions on which constants and variables are allowed to occur
inside them.

Naming: Both holes and constraints are identied by unique names. We will use
names of the form 7h; for holes and C; for constraints.

