A Critical Role for Astrocytes in Hypercapnic Vasodilation in Brain

Citation for published version:

Digital Object Identifier (DOI):
10.1523/JNEUROSCI.0005-16.2016

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Publisher's PDF, also known as Version of record

Published In:
Journal of Neuroscience

Publisher Rights Statement:
This is an open-access article distributed under the terms of the Creative Commons Attribution License Creative Commons Attribution 4.0 International, which permits unrestricted use, distribution and reproduction in any medium provided that the original work is properly attributed.

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
A Critical Role for Astrocytes in Hypercapnic Vasodilation in Brain

Clare Howarth,1,2,4* Brad A. Sutherland,1,4* Hyun B. Choi,1 Chris Martin,2,4 Barbara Lykke Lind,5 Lila Khennouf,2 Jeffrey M. LeDue,1 Janelle M.P. Pakan,1 Rebecca W.Y. Ko,1 Graham Ellis-Davies,6 Martin Lauritzen,2,4 Nicola R. Gibson,1 Alastair M. Buchan,1 and Brian A. MacVicar1

1Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada, 2Cancer Research United Kingdom and Medical Research Council Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, United Kingdom, 3Acute Stroke Programme, Radcliffe Department of Medicine, University of Oxford, Oxford, OX3 9DU, United Kingdom, 4Department of Psychology, University of Sheffield, Sheffield, S10 2TP, United Kingdom, 5Department of Neuroscience and Pharmacology and Center for Healthy Aging, University of Copenhagen, DK-2200 Copenhagen N, Denmark, 6Department of Neuroscience, Mount Sinai School of Medicine, New York, New York 10028, and 7Department of Clinical Neurophysiology, Rigshospitalet, DK-2600 Glostrup, Denmark

Cerebral blood flow (CBF) is controlled by arterial blood pressure, arterial CO2, arterial O2, and brain activity and is largely constant in the awake state. Although small changes in arterial CO2 are particularly potent to change CBF (1 mmHg variation in arterial CO2 changes CBF by 3%–4%), the coupling mechanism is incompletely understood. We tested the hypothesis that astrocytic prostaglandin E2 (PG-E2) plays a key role for cerebrovascular CO2 reactivity, and that preserved synthesis of glutathione is essential for the full development of this response. We combined two-photon imaging microscopy in brain slices with in vivo work in rats and C57BL/6J mice to examine the hemodynamic responses to CO2 and somatosensory stimulation before and after inhibition of astrocytic glutathione and PG-E2 synthesis. We demonstrate that hypercapnia (increased CO2) evokes an increase in astrocyte [Ca2+]i, and stimulates COX-1 activity. The enzyme downstream of COX-1 that synthesizes PG-E2 (microsomal prostaglandin E synthase-1) depends critically for its vasodilator activity on the level of glutathione in the brain. We show that, when glutathione levels are reduced, astrocyte calcium-evoked release of PG-E2 is decreased and vasodilation triggered by increased astrocyte [Ca2+]i is inhibited. Astrocyte synthetic pathways, dependent on glutathione, are involved in cerebrovascular reactivity to CO2. Reductions in glutathione levels in aging, stroke, or schizophrenia could lead to dysfunctional regulation of CBF and subsequent neuronal damage.

Key words: astrocyte; calcium; cerebral blood flow; glutathione; hypercapnia

Significance Statement
Neuronal activity leads to the generation of CO2, which has previously been shown to evoke cerebral blood flow (CBF) increases via the release of the vasodilator PG-E2. We demonstrate that hypercapnia (increased CO2) evokes increases in astrocyte calcium signaling, which in turn stimulates COX-1 activity and generates PG-E2 production. We demonstrate that astrocyte calcium-evoked production of the vasodilator PG-E2 is critically dependent on brain levels of the antioxidant glutathione. These data suggest a novel role for astrocytes in the regulation of CO2-evoked CBF responses. Furthermore, these results suggest that depleted glutathione levels, which occur in aging and stroke, will give rise to dysfunctional CBF regulation and may result in subsequent neuronal damage.

Introduction
Astrocyte [Ca2+]i transients have been shown to directly alter diameters of cerebral arterioles in experiments using either direct astrocyte stimulation or calcium uncaging in astrocytes of juvenile (Zonta et al., 2003; Mulligan and MacVicar, 2004; Gordon et

This work was supported by a Sir Henry Wellcome Post-Doctoral Fellowship to C.H., a Government of Canada Post-Doctoral Research Fellowship to C.H., a Michael Smith Foundation for Health Research Post-Doctoral Fellowship to C.H., a Natural Sciences and Engineering Research Council Post-Doctoral Fellowship to J.M.P.P., a Canadian Institutes of Health Research Doctoral Stu...
Glutathione-Dependent Cerebral Blood Flow Control

Howarth, Sutherland et al.

GSH-dependent mechanism of CBF regulation, which involves astrocytes and the GSH-sensitive release of PgE₂.

Materials and Methods

Slice preparation

Four hundred μm hippocampal-neocortical slices were prepared from male and female juvenile (postnatal age 16–21 d) Sprague Dawley rats. Treatment of animals was approved by the University of British Columbia Animal Care and Use Committee. As previously described (Gordon et al., 2008), rats were anesthetized with halothane, decapitated, and the brains removed into ice-cold slicing solution containing the following (in mM): 2.5 KCl, 26 NaHCO₃, 0.5 CaCl₂, 10 MgSO₄, 1.25 NaH₂PO₄, 10 glucose, 230 sucrose, saturated with 95% O₂/5% CO₂. The 400 μm transverse semi-sections were incubated at 32°C–34°C in aCSF containing the following (in mM): 126 NaCl, 2.5 KCl, 26 NaHCO₃, 2.0 CaCl₂, 2.0 MgCl₂, 1.25 NaH₂PO₄, 10 glucose, saturated with 95% O₂/5% CO₂ for 60 min. For experiments, slices were at 22°C–24°C, aCSF was saturated with 20% O₂/5% CO₂, balanced N₂, and perfused at −2 ml/min. Healthy slices can be maintained in 20% O₂, which provides a PO₂ at the low end of the physiological range (Gordon et al., 2008). Astrocytes were loaded with the caged IP₃ compound, NV-IP₃/AM (5 μg/ml), and/or the Ca²⁺ indicator rhod-2/AM (10 μm, Invitrogen) as previously described (Mulligan and MacVicar, 2004; Gordon et al., 2008). Slices were loaded with monochlorobimane (MCB, Fluka) in the dark at room temperature for 30 min as previously described (Robillard et al., 2011).

Two-photon imaging and uncaging in acute brain slices

A two-photon laser-scanning microscope (Zeiss LSM510-Axioskop-2 fitted with a 40 X-W/1.0 numerical aperture objective lens) coupled to a Chameleon ultra II Ti:sapphire laser (~140 fs pulses 80 MHz, Coherent) provided excitation of rhod-2 and was used to uncage IP₃. Images were acquired 50–100 μm below the slice surface. Rhod-2 fluorescence imaging and two-photon uncaging were performed using laser settings and emission filters as previously described (Gordon et al., 2008). MCB was excited at 780 nm and detected with a PMT at 512–562 nm as previously described (Robillard et al., 2011). Astrocytes (defined as vessels with diameter >10 μm, surrounded by a visible layer of smooth muscle cells) were imaged by acquiring the transmitted laser light and using IR-DIC optics.

Glutathione and PgE₂ measurements

Protocols in suppliers’ instructions were followed for the PgE₂, ELISA and glutathione assays. When measuring PgE₂ release from acute brain slices, TTX (1 μM, Alamar Labs) was added to dampen neuronal activation. PgE₂ release from acute brain slices was measured using a Specific Parameter PgE₂ ELISA kit (R&D Systems). Measurements of tissue glutathione levels were made using a specific total glutathione assay kit from either BioVision or Assay Designs.

Immunohistochemistry

Rats were anesthetized with halothane, given an intraperitoneal injection of urethane (0.5 ml of 30% urethane per 50 g body weight), and perfused with saline (0.9% NaCl in 0.1 m phosphate buffer) followed by 4% PFA (in 0.1 M PBS). The brain was extracted, postfixied (10% sucrose in 4% PFA) overnight, and cryoprotected (30% sucrose in PBS) overnight. Using a cryostat, 40 μm serial sections in the horizontal plane were collected throughout the brain. Free-floating sections were blocked with 10% normal goat serum (Jackson ImmunoResearch Laboratories) and 0.4% Triton X-100 in PBS for 1 h and incubated in PBS containing 0.1% Triton X-100 and primary antibodies against PgE₂ synthase (anti-mPgES-1) (Oladije et al., 2014; Tuurre et al., 2015) (Agrisera, catalog #AS03 031, 1:200) as well as an astrocyte phenotypic marker (anti-GFAP (Lathia et al., 2008) Sigma, catalog #G8939, clone G-8A-5, 1:500) overnight at 4°C. Tissue was rinsed and incubated in AlexaFluor-488 goat anti-mouse and AlexaFluor-546 goat anti-rabbit secondary antibodies (Invitrogen; diluted 1:500 in PBS, 2.5% normal goat serum and 0.4% Triton X-100) for 1.5 h at room temperature. The tissue was rinsed, mounted onto slides, and coverslipped using Fluorsave mounting medium.
(Calbiochem). Images were acquired with an Olympus Fluoview FV1000 confocal microscope.

Drugs
trans-ACPD (tACPD), clonidine, norepinephrine (NE; Sigma), and PGF₄α (Cayman Chemicals) were bath applied for 5–10 min. SC560 (Sigma) was preincubated for 30 min (Blanco et al., 2008) followed by bath application and bathionine sulfoximine (BSO; Sigma) was preincubated for 2.5 h (Sun et al., 2006) followed by bath application throughout the experiment. NY-IP3/AM was synthesized by G. Ellis-Davies.

Animals: in vivo blood flow measurements in rats
All procedures were approved by the University of Oxford Ethical Review Committee and complied with the requirements of the Animals (Scientific Procedures) Act, 1986, United Kingdom. Animals were housed in an animal housing facility in a 12 h alternating light/dark cycle with ad libitum access to food and water. Male Wistar rats were used (256–367 g).

Intracerebral injection
For surgical procedures, rats were anesthetized with 4% isoflurane and maintained at 1.5%–2% isoflurane in 30% O₂ and 70% N₂. Each rat was placed in a stereotaxic frame and the skull exposed. A burr hole was drilled at 1 mm caudal and 4.2 mm lateral to bregma, and the dura mater was finely dissected away to expose the cortex. Twenty μl of 80 mg/ml BSO (Pileblad and Magnusson, 1989) or 0.9% saline was infused by a microinfusion pump at a rate of 2 μl/min into the right whisker barrel cortex at a depth of 2.3 mm from the brain’s surface. This dose of BSO has previously been shown to adequately reduce GSH levels within 24 h of administration (Pileblad and Magnusson, 1989), and we showed that BSO administered in this way could decrease GSH levels in the ipsilateral cortex by 45%, 24 h after injection (see Fig. 5C), and in the ipsilateral striatum by 31% (GSH measured in saline-treated: 0.61 ± 0.03 mM, BSO-treated: 0.42 ± 0.08 mM, p = 0.045, n = 7 per group, mean ± SEM). After the infusion, bone wax was placed over the burr hole and the wound was closed with 3–0 sutures. Animals recovered for 24 h before assessment of GSH levels (n = 7 per group) or evoked blood flow responses (n = 6–10 per group).

Whisker pad stimulation and hypercaccpia: in vivo blood flow measurements
At 24 h after BSO/saline treatment, animals had their left femoral artery cannulated for blood gas measurement and were tracheotomized and ventilated with isoflurane. A laser speckle camera (Moor Instruments) was used to monitor relative CBF over a thin skull window over the right whisker barrel cortex while an LFP electrode for neuronal activity was inserted through a burr hole. Bipolar stimulating electrodes were placed in the left whisker pad. Animals had a steady-state blood gas before and after drug administration (Table 2). An electrical stimulus (10 Hz, 16 s duration, 1.6 mA, 0.3 ms pulsewidth, 60 s interstimulation interval) to evoke a blood flow response in the right whisker barrel cortex was performed for 10 trials per animal. Following this, animals were exposed to 10% CO₂ for 30 s at 3 min intervals repeated four times to induce a hypercapnic blood flow response. Animals were then administered 5 mg/kg SC560 or 10% DMSO (vehicle) intravenously. SC560 is a highly lipophilic COX-1 inhibitor and distributes widely into tissues (Teng et al., 2003), and this dose was chosen for maximal target efficiency (Zhang et al., 2003). After 20 min, the effect of COX-1 inhibition on the evoked CBF responses to whisker stimulation and hypercapnia was measured.

Animals: in vivo calcium imaging
For in vivo experiments, all procedures involving animals were approved by the Danish National Ethics Committee according to the guidelines set forth in the European Council’s Convention for the Protection of Vertebrate Animals used for Experimental and Other Scientific Purposes. The 8- to 10-week-old male C57BL/6J mice were used.

In vivo calcium imaging
For experiments involving mice, anesthesia was induced with bolus injections of the α₂-adrenergic receptor agonist xylazine (10 mg/kg i.p.) and the NMDA-receptor antagonist ketamine (60 mg/kg i.p.). Anesthesia was maintained during surgery with supplemental doses of ketamine (30 mg/kg/20 min i.p.). Upon completion of all surgical procedures, anesthesia was switched to continuous infusion with α-chloralose (50 mg/kg/h i.v.).

Calcium activity during hypercapnia was measured in vivo in eight C57BL/6J mice. A cranialotomy over the somatosensory cortex was covered with agar and parted with a glass coverslip. Oregon Green Bapta-1/AM (OGB; Invitrogen) was dissolved in DMSO and Pluronic F-127 (10%, BASF Global) and diluted in aCSF to yield a final dye concentration of 0.42 μM. OGB was co-infused with a highly lipophilic COX-1 inhibitor and distributes widely into tissues (Teng et al., 2003), and this dose was chosen for maximal target efficiency (Zhang et al., 2003). After 20 min, the effect of COX-1 inhibition on the evoked CBF responses to whisker stimulation and hypercapnia was measured.

Data collection, analysis, and statistics
In vitro data. An image (512 × 512 pixels) was collected in 7.86–12.68 s, using 8-line averaging. Measurements of lumen diameter and Ca²⁺ data.
changes were performed offline with Zeiss LSM (version 3.2) software and ImageJ (National Institutes of Health). As previously described (Gordon et al., 2008), fluorescence signals were defined as F/F_0 ($\%$) = \frac{(F_1 - F_0)/(F_0 - B_0)) \times 100$, where F_1 and F_0 are fluorescence at a given time and the mean fluorescence during the control period, respectively. B_1 and B_0 are the corresponding background fluorescence signals, taken from the neuropil. Pseudo-color images show absolute changes in fluorescence (16-color linear lut). Experimental values are mean ± SEM; n is the number of experiments conducted or, for calcium changes, number of astrocytes analyzed. Either a two-tailed Student’s t test or a one-way ANOVA with a Newman–Keuls post hoc test for comparison between multiple groups was used, and $p < 0.05$ was considered statistically significant. As these were novel experiments, the effect size was unknown before the experiment. Therefore, sample size estimates were based on our previous experience. Experiments were alternately performed under control or treatment conditions with slices chosen at random for each experiment. Data were excluded from analysis if any of the following occurred during imaging: unstable baseline vessel diameters or astrocyte calcium levels, or movement leading to significant focus changes during the experiment. To perform statistical analysis, data were assumed to be normally distributed.

In vivo data. All laser Doppler and LFP data were collected in Spike 2 software, whereas laser speckle data were collected using Moor FLPI software. Quantification of CBF changes and electrophysiology were performed in MATLAB (The MathWorks, version 7.12). To obtain the region of interest (ROI) for calculation of CBF changes using laser speckle imaging, a principal components analysis was used to identify the focal point of the change in response to stimulus. The same region of interest was used within each animal’s data. Experimental values are the mean ± SEM, and n is the number of animals. To perform statistical analysis, data were assumed to be normally distributed. An F test was used to compare variances of groups being statistically compared. For CBF data, a one-tailed t test with Welch’s correction (as groups had significantly different variances) was used to compare means between groups. A two-tailed t test was used to compare means of groups for both GSH analysis (see Fig. 5C) and electrophysiology data in response to whisker pad stimulation (Welch-corrected for SC560 experiment, see Fig. 6C). For electrophysiology data collected during hypercapnia challenge experiments, a two-way ANOVA with Bonferroni correction for multiple comparisons was used to compare means between groups. $p < 0.05$ was considered statistically significant. For experiments involving rats, due to effect sizes being unknown before experiment, sample size estimates were based on previously published sample sizes (e.g., Niwa et al., 2001). Assignment of animals was alternated between treatment and control groups, and neither experiments nor analysis were blinded. Three animals were excluded from all data analysis (1 for SC560 and 2 for BSO levels or the recording ended). Experimental values are expressed as mean ± SEM. A paired t test was used for the calcium imaging data, each animal served as its own control. $p < 0.05$ was accepted as statistically significant. For experiments involving mice, as there have been no previous studies reporting astroglial calcium changes during hypercapnia, it was impossible to estimate an expected value for change in fluorescence or its SD. Hence, no sample size calculation could be performed. However, we expected similar calcium changes to those we observe for low-frequency whisker stimulation, and so sample sizes were based on our previous experiments (6–8 mice). Calcium signals obtained during hypercapnia exceeded an SNR of 4:1, and hypercapnia-induced calcium responses were recorded in every animal tested. As all mice were subjected to hypercapnia, there was no randomization method used. Control measurements of calcium activity (i.e., activity without application of hypercapnia) were taken at random time points during the experiment. Analysis of calcium changes was not blinded, assessment of these changes was based on a MATLAB program, which analyzes the image sequences in an unbiased manner, rather than by visual inspection.

Results

Increased CO_2 evokes $[\text{Ca}^{2+}]_i$ responses in astrocytes in vivo

Elevation of tissue CO_2 concentration, which can be caused by neuronal metabolism, is known to dilate cerebral blood vessels in a process dependent on PgE_2 (Wagerle and Mishra, 1988; Wagerle and Degiulio, 1994) formation via COX-1 activity (Niwa et al., 2001). However, the cells that both are responsible for sensing CO_2 and that also express the enzymes for synthesizing PgE_2 (COX-1 and PgE_2) have not been resolved. Astrocytes can produce PgE_2, but it is unknown whether astrocytes generate $[\text{Ca}^{2+}]_i$ signals in response to CO_2. Therefore, we tested whether an increase in inspired CO_2 (hypercapnia) in vivo evokes astrocyte $[\text{Ca}^{2+}]_i$ when it also triggers CBF increases.

Two-photon laser scanning microscopy (2PLSM) in vivo was used to examine the simultaneous responses of both neurons and astrocytes to hypercapnia in the intact brain as a first step to investigate which cell type might be the primary sensor of CO_2 (Fig. 1). Remarkably, we found consistent and significant increases in $[\text{Ca}^{2+}]_i$, in the soma and endfeet of astrocytes in cortical layers II/III of mouse (Fig. 1) during the period of hypercapnia. The dramatic increases that we observed in astrocytes were of significantly higher amplitude (Fig. 1A–C; $p < 0.01$) than increases in $[\text{Ca}^{2+}]_i$ observed in neuronal soma during the period of hypercapnia. The number of astrocytes with $[\text{Ca}^{2+}]_i$ responses was also much greater in hypercapnia compared with the number showing spontaneous calcium activity (control time period: Fig. 1D; $p < 0.01$). Although neurons could display increased $[\text{Ca}^{2+}]_i$ during hypercapnia, with onset times within seconds (Fig. 1B, C, E), there was no significant difference in the number of neurons with $[\text{Ca}^{2+}]_i$ responses during hypercapnia compared with the number showing spontaneous calcium activity (control time period: Fig. 1D). Measurements taken in the neuropil where there were no defined cell bodies, and it is difficult to separate signals in fine astrocyte processes from neuronal processes did not show correlated changes in $[\text{Ca}^{2+}]_i$ signals during hypercapnia (Fig. 1D). The astrocyte $[\text{Ca}^{2+}]_i$ responses (Fig. 1B, E, F) appear to occur within a similar timescale as the increased CBF evoked by hypercapnia (as measured by laser speckle contrast imaging and laser Doppler flowmetry in rat; see Fig. 5A, D, respectively). During hypercapnia, an increased number of astrocyte soma (Fig. 1D) displayed increased $[\text{Ca}^{2+}]_i$, with onsets within seconds (Fig. 1B, E) and variable durations of tens of seconds (Fig. 1B, F). While there were no differences between the three groups (astrocyte soma, neuronal soma, and neuropil) with regards to the delay of the hypercapnia-induced Ca^{2+} responses (average Ca^{2+} response delay [Fig. 1E]: neuron soma = 12.14 ± 1.19 s ($n = 33$), neuropil = 12.83 ± 4.18 s ($n = 3$), and astrocyte soma = 14.57 ± 1.55 s ($n = 47$)), the average Ca^{2+} response
Figure 1. Astrocyte [Ca2+] transients are evoked by CO\textsubscript{2} in vivo. A, Example still images of mouse cortical layer II/III from 2PLSM. OGB is used as a calcium indicator (Ai–Aiii) and sulforhodamine 101 (SR101, Aiv, average image for whole recording) is used to stain astrocytes. Color scale refers to images Ai–Aiii. White arrows indicate astrocytes that show a Ca2+ response to CO\textsubscript{2} of at least twice its baseline Ca2+ fluctuation. In this case, CO\textsubscript{2} stimulus begins at \(t = 0 \) s and is applied for 36 s. Aiii, Recovery of immediate CO\textsubscript{2} induced Ca2+ transient. Scale bars, 40 \(\mu m \). Bi, Biii, Further example images of mouse cortical layer II/III from 2PLSM showing example ROI placement. Merge images showing OGB and SR101 (Bi, Biii). Red ROI1 indicates astrocyte endfoot. Red ROI2 indicates astrocyte soma (layer II: \(n = 181 \), 8 mice). Green ROI indicates neuron soma (layer II: \(n = 153 \), 8 mice). Blue ROI indicates neuropil (layer II: \(n = 104 \), 8 mice). Scale bar, 20 \(\mu m \). Example time series (Bii, Biv) of [Ca2+] response in astrocyte and neuron soma ROIs (as indicated in Bi, Biii). Blue box represents time during which expired CO\textsubscript{2} level is increased. C, Mean Ca2+ response in ROIs. Colors represent description in B. D, Percentage of ROIs for each cell type that showed a Ca2+ response with and without a hypercapnia stimulus. For no hypercapnia (control), \(n = 170 \) astrocyte somas, \(n = 148 \) neuronal soma, and \(n = 96 \) neuropil ROIs, \(n = 8 \) mice. Colors represent description in B. E, Delay from hypercapnia start time to start of Ca2+ response in ROI. F, Duration of Ca2+ response in each ROI in response to CO\textsubscript{2} stimulus. E, F, Box plots represent the mean (small square). Edges of the box represent 25% and 75% of data. End lines indicate maximum and minimum values. Data are mean ± SEM. ** \(p < 0.01 \). *** \(p < 0.001 \).
duration (Fig. 1F) was found to be significantly longer in astrocytes than in neurons: neuron soma = 119.41 ± 8.82 s (n = 33), astrocyte soma = 155.47 ± 8.32 s (n = 47) (p < 0.05, ANOVA).

Astrocytic [Ca2+]i signals evoke subsequent GSH-dependent PgE2 release

Having demonstrated in vivo that hypercapnia evokes an increase in astrocyte [Ca2+]i, we then used a combination of 2PLSM and PgE2 measurements using ELISA in acute brain slices to determine the mechanistic links between astrocyte [Ca2+]i responses and CBF regulation. Using a biochemical model, we investigated the role of GSH in the generation of PgE2.

Unlike in the in vivo situation, it is difficult to reliably evoke astrocyte [Ca2+]i signals and vasodilations by applying CO2 to acute brain slices. Thus, we needed an alternative method of elevating astrocyte [Ca2+]i in acute brain slices. Using a biochemical model, we investigated the role of GSH in the generation of PgE2.

Figure 2. Astrocyte [Ca2+]i signals evoke COX-1- and GSH-dependent vasodilations in vitro. A, 2PLSM imaging: example Ca2+ and arteriole diameter changes in response to tACPD with and without BSO. Images represent overlay of pseudo-colored Ca2+ changes and transmitted light images. Dotted line indicates initial vessel diameter. Scale bar, 10 μm. B, Mean time course of increase in astrocyte [Ca2+]i in response to tACPD. Colored box represents time of tACPD application. Control, n = 56 from 26 rats; BSO, n = 39 from 18 rats. C, Mean tACPD-evoked increase in astrocyte [Ca2+]i, tACPD, n = 56 from 26 rats; tACPD + SC560, n = 12 from 7 rats; tACPD + BSO, n = 39 from 18 rats. D, Mean tACPD-evoked PgE2 release, measured by ELISA. Within a group, each experiment (n) uses tissue from a different rat (i.e., control, n = 8 from 8 rats). E, Mean tissue GSH concentration; data from 4 rats for each group. F, Mean time course of tACPD-evoked change in astrocyte [Ca2+]i. Colored box represents time of tACPD application. Control, n = 31 slices from 26 rats; BSO, n = 21 slices from 18 rats. G, Mean changes in lumen diameter evoked by tACPD and clonidine. tACPD, n = 31 slices from 26 rats; SC560 + tACPD, n = 7 slices from 7 rats; BSO + tACPD, n = 21 slices from 18 rats; clonidine, n = 8 slices from 8 rats; BSO + clonidine, n = 8 slices from 7 rats. H, Mean changes in lumen diameter evoked by PgE2 and NE. PgE2, n = 5 slices from 4 rats; BSO + PgE2, n = 3 slices from 3 rats; NE, n = 14 slices from 11 rats; BSO + NE, n = 8 slices from 7 rats. Data are mean ± SEM. **p < 0.01. ***p < 0.001. n, number of experiments conducted or, for calcium measurements, number of astrocyte ROIs analyzed.
using 2PLSM (Fig. 2A–C), that provided us with the ability to measure subsequent synthesis of PgE₂. Applying tACPD resulted in the formation and efflux of PgE₂, as measured by ELISA (Fig. 2D). The first step in the conversion of AA to PgE₂ in astrocytes is via COX-1 (Fig. 7) (Takano et al., 2006; Gordon et al., 2008; Font-Nieves et al., 2012). Neurons, in contrast, express COX-2 but not COX-1 (Nogawa et al., 1997). In support of a central role for COX-1, we found that, although the tACPD-evoked increase in astrocyte [Ca²⁺]ᵢ, was unaltered (Fig. 2C) in the presence of the COX-1 inhibitor SC560 (Smith et al., 1998; 100 nm: Blanco et al., 2008), the resulting formation and efflux of PgE₂, as measured by ELISA, was abolished (p < 0.001; Fig. 2D). Thus, astrocyte COX-1 activity is required for the subsequent PgE₂ release in acute brain slices, which is triggered by astrocyte [Ca²⁺]ᵢ signals.

Downstream of COX-1 the synthesis of PgE₂ involves the astrocyte-expressed, GSH-dependent, enzyme mPgES-1 (Tachikawa et al., 2012). Therefore, a role for astrocytes in the regulation of arteriole diameter would be supported if [Ca²⁺]ᵢ-evoked vasodilations were attenuated when GSH levels were depressed. We examined whether there is a reduction in subsequent vasodilations in hippocampal slices after treatment with BSO. When GSH levels were decreased, tACPD-evoked astrocyte [Ca²⁺]ᵢ signals were unaltered (Fig. 2A–C). However, the vasodilations triggered by these [Ca²⁺]ᵢ signals were abolished (Fig. 2A,F,G; p < 0.01). Vasoconstrictions evoked by NE (100 μM) or the α₂ agonist clonidine (10 μM), which act directly on arteriole smooth muscle cells (Busija and Leffler, 1987), were unchanged in the presence of BSO (Fig. 2A,G,H), indicating that arterioles were not damaged by the BSO treatment. Furthermore, BSO treatment did not alter the vasodilations evoked by either 1 μM PgE₂ (Fig. 2H) or high [K⁺] (10 mM), which causes vasodilation by hyperpolarizing arteriole smooth muscle cells (Filosa et al., 2006) (K⁺: 8.6 ± 2.3%, n = 5 slices from 5 rats; BSO + K⁺: 6.5 ± 0.8%, n = 6 slices from 3 rats, p = 0.37).

Astrocyte [Ca²⁺]ᵢ increases can be triggered by two-photon uncaging of IP₃ within the cell body of an astrocyte. Using this

Figure 3. Astrocytes express mPgES-1 and contain high levels of GSH. A, Immunohistochemistry showing astrocytic expression of GSH-dependent mPgES-1 in the CA3 of the hippocampus. Astrocyte marker, GFAP (red), mPgES-1 (green), and merge (yellow). Scale bar, 20 μm. B, MCB-loaded hippocampal-neocortical slices. Astrocytes (identified by SR101, red, white arrowheads) contain higher levels of GSH (as indicated by MCB staining, green) than neurons (white arrows). Merge (yellow). Scale bar, 20 μm.
technique, we directly examined the effect of decreasing GSH levels on astrocyte \([\text{Ca}^{2+}]_{\text{i}}\)-evoked arteriole dilations. Astrocytes in hippocampal slices from juvenile rats were bulk-loaded with the caged IP3 compound, NV-IP3/AM. Two-photon photolysis was used to uncage IP3 within an astrocyte soma specifically, generating \([\text{Ca}^{2+}]_{\text{i}}\) signals that account for CBF regulation under differing conditions and in response to different stimuli.

In vivo hypercapnia-evoked CBF responses are GSH dependent

Having determined in acute brain slices the vasodilatory molecules underlying astrocyte \([\text{Ca}^{2+}]_{\text{i}}\)-evoked vasodilations, we examined whether these same enzymes and molecules were involved in the CBF response, which occurs downstream of \(\text{CO}_2\)-evoked astrocyte \([\text{Ca}^{2+}]_{\text{i}}\), responses *in vivo*. Hypercapnia *in vivo* evoked a CBF increase in the barrel cortex of adult rat (Fig. 5A,B,D,E), whereas neural activity was unchanged (Fig. 5F). The calculated area under the curve (AUC) of the CBF response was significantly attenuated by SC560 \((p = 0.032);\) Fig. 5A,B), confirming that COX-1 plays a critical role in hypercapnia-evoked CBF increases *in vivo* (Niwa et al., 2001).

We examined the impact of decreased tissue GSH levels on \(\text{CO}_2\)-evoked CBF increases *in vivo*. To lower GSH levels *in vivo*, BSO was injected into rat barrel cortex. After 24 h, tissue GSH levels in the ipsilateral cortex were reduced by 45% (Fig. 5C; \(p = 0.018\)). Treatment with BSO reduced the hypercapnia-evoked CBF response (Fig. 5D,E; AUC reduced by 65%, \(p = 0.048\)). Neural activity was no different in BSO-treated rats compared with saline-treated rats (Fig. 5G). Combining all the data described so far suggests that hypercapnia-evoked astrocyte \([\text{Ca}^{2+}]_{\text{i}}\)-related, CBF increases require \(\text{PgE}_2\) release and, thus, are compromised when brain GSH levels are reduced.

This finding was specific to hypercapnia-evoked CBF increases. We examined the impact of decreased tissue GSH levels *in vivo* on functional hyperemia in the somatosensory cortex. Whisker pad stimulation (10 Hz) evoked a blood flow increase in the barrel cortex (Fig. 6A). In agreement with previous findings (Niwa et al., 2000), inhibiting COX-1 with SC560 had no effect on either the CBF response to whisker pad stimulation (Fig. 6A,B; \(p = 0.10\)) or evoked neural activity (LFP) (Fig. 6C; \(p = 0.91\)). Furthermore, the AUC of the stimulation-evoked CBF response was not significantly different in BSO-treated animals (Fig. 6D; \(p = 0.14\)) compared with salinetreated animals, demonstrating that the CBF response is not GSH-sensitive. The magnitude of the neural response to whisker pad stimulation was unaffected by BSO (Fig. 6E; \(p = 0.68\)). These results indicate that, under these experimental conditions, COX-1 and GSH play little, if any, role in the CBF response to somatosensory stimulation. These findings confirm that several different pathways exist that account for CBF regulation under differing conditions and in response to different stimuli.

Figure 5. \(\text{CO}_2\)-evoked CBF responses *in vivo* are GSH dependent. A, Mean traces of local CBF response to hypercapnia, measured by laser speckle contrast imaging, in vehicle (DMSO)- (blue) and SC560- (red) injected animals, \(n = 7\) rats for each group. Colored box represents time of \(\text{CO}_2\) application. Data shown as fractional change with baseline of 0 (baseline taken during 60 s prechallenge) and a pretreatment peak of 1 (black dotted line on graph). B, Mean AUC of CBF response to hypercapnia in the presence of vehicle (DMSO) or SC560 (normalized to pretreatment maxima for each animal), \(n = 7\) rats for each group. C, Tissue GSH levels 24 h after injection of BSO or saline into the barrel cortex (\(n = 7\) rats). D, Mean trace of local CBF response to hypercapnia, measured by laser Doppler flowmetry, in saline- (blue) and BSO- (red) injected rats, \(n = 6\) rats in each group. E, Mean values of AUC of CBF response to hypercapnia. \(n = 6\) rats in each group. F, G, Neural activity. Power in frequency bands. F, During baseline (Base) and in response to hypercapnia (HCN) for saline- (blue) and BSO- (red) treated animals. \(n = 3\) rats. G, Hypercapnia (HCN)/baseline (Base). Treatment with BSO does not change the effect of hypercapnia on neural activity. \(n = 3\) rats. Data are mean ± SEM. *\(p < 0.05\).
Discussion

We demonstrate a novel mechanism of CBF regulation involving astrocytes, which is GSH dependent. Previously, Niwa et al. (2001) demonstrated that hypercapnia-evoked CBF increases are principally COX-1 dependent. In this study, we examined the mechanism of such CBF regulation, both upstream and downstream of hypercapnia-evoked increases in COX-1 activity (Fig. 7). We demonstrate in vivo that, upstream of evoked COX-1 activity, CO2 increases \([\text{Ca}^{2+}]_i\), in astrocytes. These data demonstrate a new signal (hypercapnia) that activates astrocyte calcium and specifically identifies the involvement of astrocytes in the regulation of CBF in response to changes in arterial CO2.

In vitro, using brain slices from juvenile animals in which it is possible to examine calcium signals by bulk loading a calcium indicator dye, we confirm that increased astrocyte \([\text{Ca}^{2+}]_i\), results in the subsequent release of PgE2 and vasodilation which are COX-1 activity-dependent (Fig. 7). Our assumption that the evoked response in juvenile rat slices is the same as in adult rat with respect to COX-1 dependence is supported by the fact that the same COX-1 dependence has been shown in adult mice (Takano et al., 2006). We demonstrate that these findings hold in vivo, confirming previous findings in adult mice (Niwa et al., 2001). Astrocytic endfeet, which are apposed to cerebral vascular smooth muscle, express all the machinery necessary for PgE2 synthesis (COX-1) (Takano et al., 2006; Gordon et al., 2008), mPgES-1 (Fig. 3A) (Tachikawa et al., 2012), and GSH: (Fig. 3B) (Sun et al., 2006; Bragin et al., 2010; Robillard et al., 2011), providing further evidence for the involvement of astrocytes in the regulation of CBF responses to hypercapnia. mPgES, an enzyme selectively expressed in astrocytes compared with neurons (Tachikawa et al., 2012), is the enzyme responsible for producing PgE2 downstream of COX-1 activity. Intriguingly, the formation of PgE2 is regulated by the availability of GSH in astrocytes, as PgES requires GSH as a cofactor (Jacobsson et al., 1999; Murakami et al., 2000). In vitro, we demonstrate that astrocyte \([\text{Ca}^{2+}]_i\),-evoked vasodilations are attenuated when GSH levels are depleted, whereas in vivo, we demonstrate that CO2-evoked CBF increases occur via a GSH-dependent mechanism. As astrocytes contain high levels of GSH (Fig. 5B) (Sun et al., 2006; Bragin et al., 2010; Robillard et al., 2011), the dependence of the CO2-evoked CBF response on GSH is further evidence of astrocytic involvement. Together, our findings suggest a novel mechanism of astrocyte-evoked CBF regulation, which is GSH dependent. We propose that increased CO2 levels evoke \([\text{Ca}^{2+}]_i\), responses in astrocytes, subsequently activating a signaling pathway, involving COX-1 and the GSH-dependent PgES, which results in the release of the vasodilator PgE2. Thus, an increase in CO2 results in an astrocyte-driven, GSH-dependent vasodilation (Fig. 7).

This GSH-dependent mechanism of CBF regulation exists alongside other COX-1 and GSH-insensitive mechanisms. For example, we found no effect of blocking COX-1 activity or of lowering GSH levels on CBF responses following 10 Hz whisker pad stimulation. Although it is possible that an astrocyte calcium response (and, thus, a GSH-sensitive mechanism of CBF regulation) may be evoked by an intense sensory stimulus (Schulz et al., 2012; Sekiguchi et al., 2016), our results are in agreement with previous work suggesting that COX-1 is involved in CBF responses to hypercapnia (Niwa et al., 2001) but not sensory stimulation (Niwa et al., 2000). Although we saw no evidence that this pathway was important for functional (neuronal activity-evoked) increases in CBF under our experimental conditions, astrocytes appear to be an important intermediary for physiological (hypercapnia-evoked) increases in CBF. Our findings suggest that CBF regulation may involve astrocytes, and their \([\text{Ca}^{2+}]_i\), signals, under certain conditions and not under others.

Previous studies have provided evidence for several mechanisms linking astrocyte \([\text{Ca}^{2+}]_i\), increases and changes in CO2 concentration. For example, within the respiratory center, increased astrocyte \([\text{Ca}^{2+}]_i\), and astrocytic release of ATP can be triggered by CO2-evoked decreases in pH (Gourine et al., 2010). This \([\text{Ca}^{2+}]_i\), increase may be the result of increased Na+/HCO3- cotransport and reversal of Na+/Ca2+ transport (Turovsky et al., 2016). It is unknown whether this mechanism also occurs within the cortex. Alternatively, increased CO2 can evoke hemichannel-mediated release of ATP (Huckstepp et al., 2010), which may act...
on astrocytic purinergic receptors to elicit an increase in \([\text{Ca}^{2+}]_i\) (Pelligrino et al., 2011). Depending on the mechanism linking increases in \(\text{CO}_2\) to astrocyte \([\text{Ca}^{2+}]_i\) responses, therefore, astrocytes could act as either a \(\text{pH}\) or \(\text{CO}_2\) sensor. Although it is beyond the scope of this paper to determine the link between an increase in \(\text{CO}_2\) and the increase in astrocyte \([\text{Ca}^{2+}]_i\), we have demonstrated that the depletion of GSH levels leads to a reduction in the ability of astrocytes to release \(\text{PGE}_2\), following such a rise in \([\text{Ca}^{2+}]_i\), and so reduces their ability to evoke vasodilation in response to hypercapnia. This occurs because astrocytes express GSH-dependent mPGE1.

Our finding that CBF responses to increased \(\text{CO}_2\) are GSH-sensitive suggests that global CBF regulation, which is sensitive to the partial pressure of arterial \(\text{CO}_2\) (Ainslie and Duffin, 2009), will be affected in conditions where GSH levels are depleted. Alterations in the redox status of brain tissue that are poised to detect the metabolic activity of neurons and to modulate astrocyte-specific genetic strategy (such as cell-specific knock-out) (Casper et al., 2007) to confirm that hypercapnia-evoked vasodilations, occurring downstream of astrocyte \([\text{Ca}^{2+}]_i\), responses, are dependent on astrocyte glutathione levels and COX-1 activity.

In conclusion, we demonstrate a novel mechanism by which astrocytes respond to hypercapnia and, via \([\text{Ca}^{2+}]_i\), signals, increase CBF in response to \(\text{CO}_2\). Astrocytes are therefore poised to detect the metabolic activity of neurons and to modify vascular tone appropriately to deliver glucose and \(\text{O}_2\). This important pathway may be impaired in conditions in which oxidative stress reduces GSH levels in astrocytes, leading to impaired CBF responses and altered vascular readouts of neural activity.

References

Jakobsson et al., 1999; Murakami et al., 2000; Tanioka et al., 2000). \(\text{PGE}_2\) is released from astrocyte endfeet, which are apposed to the smooth muscle layer surrounding arterioles, resulting in activation of \(K^+\) channels, a decrease in \([\text{Ca}^{2+}]_i\) entry into the smooth muscle cell and vasodilation.

