Spontaneous virulence loss in natural populations of Listeria monocytogenes

Citation for published version:

Digital Object Identifier (DOI):
10.1128/IAI.00541-17

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Infection and Immunity

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Spontaneous virulence loss in natural populations of *Listeria monocytogenes*

Hélène Bracq-Dieyea,b, Viviane Chenal-Francisquea,b*, Mylène M. Maurya,b, Lei Hanc, Guillaume Valesa,b, Alexandre Leclercqa,b, Alexandra Mourab,d, Mariela Scorttic,e, Olivier Dissonb,d, Edith Gouinf, José A. Vázquez-Bolandc,e#, Marc Lecuita,b,d,g#

a Institut Pasteur, National Reference Centre and WHO Collaborating Centre for *Listeria*, Paris, France

b Institut Pasteur, Biology of Infection Unit, Paris, France

c Microbial Pathogenesis Unit, Medical School (Biomedical Sciences), University of Edinburgh, Edinburgh, UK

d Inserm U1117, Paris, France

e Division of Infection & Immunity, The Roslin Institute, University of Edinburgh, Edinburgh, UK.

f Institut Pasteur, Bacteria-Cell Interactions Unit, Paris, France

g Paris Descartes University, Sorbonne Paris Cité, Institut Imagine, Necker-Enfants Malades University Hospital, Division of Infectious Diseases and Tropical Medicine, APHP, Paris, France

ML and JVB share senior authorship. Address correspondence to marc.lecuit@pasteur.fr and v.boland@ed.ac.uk

HBD, VCF, MMM and LH contributed equally to this work.
Present address: Viviane Chenal-Francisque, Biology of Intracellular Bacteria, Institut Pasteur, Paris, France

Running Title: Spontaneous loss of *Listeria monocytogenes* virulence

Keywords: *Listeria monocytogenes*, virulence, hemolysis

Word counts: Abstract = 227 words; importance = 128 words; text = 7,335 words.
Abstract

Listeria monocytogenes (Lm) pathogenesis depends on its ability to escape from the phagosome of the host cells via the action of the pore-forming toxin listeriolysin O (LLO).

Expression of the LLO-encoding gene (hly) requires the transcriptional activator PrfA, and both hly and prfA genes are essential for Lm virulence. Here we used the hemolytic activity of LLO as a phenotypic marker to screen for spontaneous virulence-attenuating mutations in Lm.

Sixty (0.1%) non-hemolytic isolates were identified among a collection of 57,820 confirmed Lm strains isolated from a variety of sources. In most cases (56/60), the non-hemolytic phenotype resulted from nonsense, missense or frameshift mutations in prfA. Five strains carried hly mutations leading to a single amino acid substitution (G299V) or a premature stop codon causing strong virulence attenuation in mice. In one strain, both hly and gshF (encoding a glutathione synthase required for full PrfA activity) were missing due to genomic rearrangements likely caused by a transposable element. The PrfA/LLO loss-of-function mutants belonged to phylogenetically diverse clades of Lm and most were identified among non-clinical strains (57/60). In line with the extremely low frequency of loss of virulence mutations, we show that prfA and hly are under purifying selection. Although occurring at a low frequency, PrfA−/LLO− mutational events in Lm lead to niche restriction and open an evolutionary path for obligate saprophytism in this facultative intracellular pathogen.

Importance

The hemolytic phenotype of Lm is a key identification criterion in food and clinical microbiology. Here we characterized 60 non-hemolytic Lm strains, identified by screening a vast collection of natural Lm isolates collected in the context of epidemiological surveillance of listeriosis. Phenotypic and genomic analyses demonstrated that the absence of hemolysis was due to loss-of-function mutations in prfA or hly, leading to strong virulence attenuation in
mice. We also identified the first natural \textit{Lm} strain which spontaneously lost the \textit{gshF} gene, required for the PrfA-dependent transcriptional activation of \textit{hly} and other virulence genes. Previous phylogenomic studies have indicated that some non-pathogenic \textit{Listeria} species derive from pathogenic ones, and the virulence-attenuating mutations characterized in this study illustrate the possible early events that could have determined their emergence and evolution.

Introduction

\textit{Listeria monocytogenes (Lm)} is a foodborne pathogen that can cause a severe invasive disease in people and animals, called listeriosis. As a facultative intracellular bacterium, \textit{Lm} has evolved a range of virulence determinants allowing intracellular survival (1, 2). One key virulence factor is listeriolysin O (LLO), a pore-forming toxin responsible for the characteristic \(\beta\)-hemolytic phenotype of \textit{Lm} that allows the bacterium to escape from the phagosome of host cells and replicate intracellularly (3, 4). LLO is encoded by \textit{hly}, located in the \textit{Listeria} Pathogenicity Island 1 (LIPI-1) (5). Expression of the genes within this central pathogenicity locus, including \textit{hly}, is under the control of the transcriptional activator PrfA, the master regulator of \textit{Lm} virulence genes (6, 7).

The hemolytic activity conferred by LLO is considered a cardinal marker for \textit{Lm} detection and/or identification in clinical and food microbiology. \textit{Lm} is divided into four phylogenetic lineages (8-10), 13 serotypes (11) that can be approximated by PCR serogrouping (12), and more than 100 clonal complexes (CCs, as defined by multilocus sequence typing (MLST)) (13), which are unevenly virulent (14). Weakly or non-hemolytic \textit{Lm} strains have been reported (15-19), but the frequency and phylogenetic diversity of the strains displaying an altered hemolysis phenotype is unknown, as well as their underlying genetic and microbiological features.
This study aimed at (i) estimating the frequency of naturally-occurring non-hemolytic \textit{Lm} isolates and their distribution among \textit{Lm} lineages and MLST clonal complexes, (ii) understanding the molecular bases of the non-hemolytic phenotype and (iii) assessing its impact on virulence. By using phenotypic and genomic approaches, mutagenesis and \textit{in vivo} assays, we show that mutations leading to loss of hemolytic activity in \textit{Lm}, although rare, affect a wide range of clonal complexes of the major lineages I and II and lead to a decreased virulence.

\textbf{Results}

\textbf{Identification and characterization of non-hemolytic \textit{Lm} strains}

We examined the prevalence of non-hemolytic \textit{Lm} strains among the 57,820 \textit{Lm} isolates collected between 1987 and 2008 at the French National Reference Centre for \textit{Listeria} (NRCL) and the WHO Collaborating Centre for \textit{Listeria} (WHOCCCL). Sixty \textit{Lm} isolates (0.1\%) were identified as non-hemolytic on horse blood agar plates. These were isolated from food (n = 33), food production environments (n = 2), non-human unknown sources (n = 22) and human clinical cases (n = 3). Phenotypic characterization using the API \textit{Listeria} system confirmed all 60 non-hemolytic isolates as \textit{Lm}. These belonged to lineages I (n = 23, 38.3\%) and II (n = 37, 61.7\%) and were grouped within serogroups IIa (n = 36), IVb (n = 13), IIb (n = 10) and IIc (n = 1) (\textbf{Table S1}). MLST showed that the 60 non-hemolytic isolates belonged to 15 different clonal complexes, including the “hypovirulent” CC9 (n = 1), CC121 (n = 3), CC31 (n = 20) and ST13 (n = 3) (14, 20), but also the “hypervirulent” CC1 (n = 3), CC2 (n = 7), CC4 (n = 1) and CC6 (n = 1) (\textbf{Table S1} and \textbf{Fig. 1}). Core genome MLST (cgMLST) typing identified 39 different cgMLST types (CTs) (21). Nine CTs comprised more than one strain, suggesting a possible epidemiological link between them (21) (\textbf{Table S1}). In particular, among the twenty non-hemolytic CC31 strains, ten belonged to CT878 and two
belonged to CT2659, suggesting that the overrepresentation of CC31 could be in part due to multiple sampling of the same source in the context of an epidemiological investigation. These results show that non-hemolytic strains are phylogenetically very diverse and that the loss of hemolytic activity is caused by independent events across the *Lm* population.

To investigate the impact of the loss of hemolytic activity in *Lm* fitness, we analyzed the growth of all non-hemolytic strains in BHI at 22°C and 37°C, using EGDe as control (Fig. S1). At 22°C, in a large majority of cases, the growth of non-hemolytic strains was within the same range as EGDe, as revealed by the areas under their growth curves (AUCs). On the contrary, at 37°C, temperature in which *prfA* is known to be maximally expressed (22), most of the non-hemolytic strains showed lower growth (lower AUCs) than EGDe. Some of the non-hemolytic strains showed particularly decreased fitness in one or both temperature: CLIP 2000/86467 (*PrfA*_{T170*/}, at 22°C), CLIP 1998/75799 (*PrfA*<sub>I51*/LLO*_{N261*/}, at 37°C) and, at both temperatures, strains CLIP 1998/76801 (*Δhly-ΔgshF*), CLIP 1996/70991 (*PrfA*_{Q21*/}), CLIP 1994/58618 (*PrfA*_{A129P}) and CLIP 1996/71614 (*PrfA*_{Y207*/}) (Fig. S1).

Molecular basis of non-hemolytic phenotype – PrfA variants and activity

The central regulator of *Listeria* virulence, PrfA, is required for the expression of a set of key virulence determinants, known as the PrfA regulon, including the *hly* gene (6, 7, 23). Consequently, mutations altering the function of either PrfA or LLO could lead to a non-hemolytic phenotype. Sequence analyzes identified frameshifts and missense and nonsense mutations in *prfA* in 56 non-hemolytic strains, leading to amino-acid substitutions or protein truncations in PrfA (Fig. 1; Table S1). Phenotypic analysis in PrfA-activating and non-activating conditions using the PrfA-dependent virulence factors PlcB (phospholipase C) and Hpt as reporters (see Materials and Methods) (24) confirmed the complete loss of function of the central virulence gene regulator in all of these strains (Fig. 1; Fig. S2).
Forty-three out of the 56 PrfA strains, distributed in lineages I and II, expressed a truncated PrfA at 14 distinct positions distributed along the entire PrfA protein (Table S1). All analyzed strains of CC59 and CC31 exhibited a truncation at positions 59 and 185, respectively, suggesting a common ancestor for each of these groups of strains. Seven PrfA strains presented a single amino-acid substitution in PrfA as compared to the reference strain EGDe (accession number: NC_003210). Among them, one occurred in the β-roll region of PrfA (G72D, strain CLIP 1997/75561, CC9). Mutations located in this region are known to affect PrfA activation or the ability of PrfA to form a stable complex with the RNA polymerase and initiate transcription of the target virulence genes (25-27). One PrfA mutation occurred in the DNA-binding helix-turn-helix (HTH) domain of PrfA (G175C, strain CLIP 2006/01642, CC6) and two others in its C-terminal part (K220T, strains CLIP 1994/60344, CLIP 2000/80770 and CLIP 2001/87255, all ST13; and L221F, strain CLIP 1994/56373, CC1). These regions are known to be important for the binding of PrfA to PrfA-binding sites of target DNAs (25, 26). In addition, the A129P substitution, located between the β-roll and the hinge αD regions, occurred in a CC224 strain (CLIP 1994/58618). Finally, six of the PrfA strains, all belonging to CC155, showed a reversion of the prfA stop codon due to the insertion of 5 nucleotides at position 712 in the prfA sequence, leading to a longer PrfA protein (238 amino acids in EGDe vs 293 amino acids in the CC155 strains of this study).

One of the four non-hemolytic mutants (CC1 strain CLIP 1998/76801) exhibited a wild-type (WT) PrfA sequence as compared to EGDe, but showed a PrfA phenotype. This observation suggested that a mechanism interfering upstream of PrfA function was affected. Glutathione, synthetized by Lm through the glutathione synthase encoded by gshF (lmo2770), is critical for PrfA activation (28). Interestingly, although it is part of the Lm core genome (14, 21), gshF was absent in the genome of the CLIP 1998/76801 strain (Fig. 1) (see below), which could explain the absence of PrfA activity in this strain.
Analysis of spontaneous LLO mutants

Analysis of hly sequences in the 60 non-hemolytic strains identified multiple mutations leading to amino acid substitutions in LLO (Table S1). Several substitutions (N31H, S35L, V438I and K523S) were identified in at least 48 hemolytic Lm strains of our database (~4,100 genomes), suggesting that they do not cause LLO loss of function. However, a S250N substitution was only found in three non-hemolytic strains of this study (CLIP 2008/01432, 2008/01433 and 2008/01435, all CC77) and could therefore result in LLO loss of function. Since these strains also expressed a truncated and non-active PrfA, which is sufficient to explain the non-hemolytic phenotype of these strains, we did not pursue this further.

Two out of the three non-hemolytic strains showing a WT PrfA sequence and a PrfA+ phenotype (CC121 strains CLIP 2007/01406 and CLIP 2007/01014) exhibited a single amino acid substitution in LLO (hly\textsubscript{G299V} or LLO\textsubscript{G299V}), which was not present in any of the other strains. The third strain (CC2, CLIP 1989/13656) harbored a premature stop codon at position 484 in LLO (hly\textsubscript{C484*} or LLO\textsubscript{C484*}). The absence of any other specific feature in these three strains that could be linked to the loss of hemolytic activity suggested that the G299V mutation and the truncation at position 484 in LLO could be the cause of the loss of hemolytic activity in these strains. In addition, two CC7 strains expressing a truncated PrfA (CLIP 1998/75799 and CLIP 1989/14490) also showed a premature stop codon in LLO at position 261 (hly\textsubscript{N261*}) due to the insertion of one nucleotide.

In the CLIP 1998/76801 strain mentioned above, hly could not be detected by PCR and the hly region could not be assembled from Illumina reads. In order to resolve this region, we sequenced this strain using the single molecule, real-time (SMRT) sequencing technology (Pacific Biosciences, California, USA). The CLIP 1998/76801 complete genome (CC1,
2.84 Mb) was compared to the closely related F2365 complete genome (CC1, NCBI accession number NC_002973) as reference. This showed that the LIPI-1 region had undergone an inversion of more than 40 kb (Fig. 2A). This large rearrangement splitted LIPI-1 into two parts with concomitant loss of hly and partial truncation of the 5’ region of the adjacent mpl gene. Six ORFs were inserted upstream of mpl in CLIP 1998/76801 as compared to F2365, comprising genes encoding a transposition protein (tnsB) and a DNA invertase (hin), which are likely the cause of the rearrangement, as well as cadmium resistance genes (cadA and cadC) (Fig. 2A).

We confirmed that gshF is absent in CLIP 1998/76801, together with 12 other upstream and downstream genes related to sugar metabolism (Fig. 2B). These genes were replaced by 11 ORFs encoding a transposition protein (tnsB), a DNA invertase (hin) and cadmium resistance genes (cadA and cadC) similar to those inserted in the LIPI-1 region. In total, eight similar copies of this transposable element were found in the CLIP 1998/76801 genome, as well as many other large rearrangements and deletions (Fig. 2C). Similar transposable elements were detected in one L. ivanovii strain in NCBI database (accession number KR780025.1; 99% nucleotide identity, full length) and in 128 Lm strains (> 99.87% nucleotide similarity, full length) out of the 4,091 genome sequences available at the NRCL at the time of the study. These strains comprised 14.1% of all the CC1 strains (90/638, representing two distinct monophyletic groups within the phylogeny of CC1, data not shown) and all the CC59 strains (n = 38). No significant link of this element with food or clinical origins was found within CC1.

Assessment of hly and prfA transcription

In order to test the effect of the identified mutations on hly and prfA transcription, qRT-PCRs were performed for a representative set of non-hemolytic strains (one strain per type of loss-
of hemolysis mutation, Table S1). All non-hemolytic strains showed prfA transcription levels equivalent to or higher than EGDe, except for strains CLIP 1998/75799 (PrfA_{I51}*-LLO_{N261}*) mutations and CLIP 1998/77604 (PrfA_{T76}* mutation), which showed no amplification, likely due to poor primer annealing (8 mismatches with the prfA-R primer) (Fig. S3). As expected, strains with altered PrfA (aa substitution or truncation) showed no or extremely reduced hly transcription levels. These results show that for these strains the loss of hemolytic activity is due to prfA post-transcriptional events leading to the absence of PrfA activity. In the strain CLIP 2007/01406 (LLO_{G299V}), hly was transcribed at a similar level than in EGDe, whereas in CLIP 1989/13656 (LLO_{C484}*), hly transcription was weaker.

In vitro characterization of the hly_{G299V} and hly_{C484}* mutations

In order to characterize the functional impact of the G299V substitution (CLIP 2007/01406 and CLIP 2007/01014) and of the truncation at position 484 in LLO (CLIP 1989/13656), we introduced a plasmid containing either a wild type hly gene (hly_{WT}) or a mutated version of this gene (hly_{G299V} or hly_{C484}*, encoding LLO_{G299V} and LLO_{C484}*, respectively) in a EGDΔhly strain. While EGDΔhly:pPL2-hly_{WT} was hemolytic, EGDΔhly:pPL2-hly_{G299V} or EGDΔhly:pPL2-hly_{C484}* remained non-hemolytic, as assessed on Columbia horse blood agar-plates. These results demonstrate that the hly_{G299V} and hly_{C484}* mutations are responsible for the absence of hemolytic activity in the strains CLIP 2007/01406, CLIP 2007/01014 and CLIP 1989/13656.

Western blot analyses of culture supernatants detected lower amounts of LLO produced by EGDΔhly:pPL2-hly_{G299V} and EGDΔhly:pPL2-hly_{C484}* bacteria as compared to the WT EGD and EGDΔhly:pPL2-hly_{WT} strains (Fig. 3A). qRT-PCR analyses showed that hly transcription level in both EGDΔhly:pPL2-hly_{G299V} and EGDΔhly:pPL2-hly_{C484}* strains is comparable to that observed in EGDΔhly:pPL2-hly_{WT}, although slightly weaker for EGDΔhly:pPL2-hly_{C484}*. The presence of these mutations affects hly transcription levels.
Furthermore, the EGDΔhly:pPL2-hlyC\textsubscript{484}* mutant produced a shorter LLO protein as compared to strains harboring the hly\textsubscript{WT}, confirming that the premature stop codon identified in hly in the CLIP 1989/13656 strain leads to the production of a truncated LLO. The hly\textsubscript{N261}* mutation (Fig. 1; Table S1) was not tested \textit{in vitro} as this premature stop codon is upstream of the hly\textsubscript{C484}* mutation, leading to an even shorter LLO.

Virulence of hly\textsubscript{G299V} and hly\textsubscript{C484}* mutants

We finally assessed the virulence of the EGDΔhly:pPL2-hly\textsubscript{G299V} and EGDΔhly:pPL2-hly\textsubscript{C484}* complemented strains relative to that of the EGDΔhly:pPL2-hly\textsubscript{WT} and EGDΔhly:pPL2 strains upon intravenous injection in mice. EGDΔhly:pPL2-hly\textsubscript{G299V} and EGDΔhly:pPL2-hly\textsubscript{C484}* strains were four order of magnitude less abundant than the EGDΔhly:pPL2-hly\textsubscript{WT} strain in the liver and the spleen (Fig. 3C). This demonstrates that the virulence of \textit{Lm} expressing either LLO\textsubscript{G299V} or LLO\textsubscript{C484}* is strongly attenuated \textit{in vivo}.

Discussion

Virulence gene polymorphisms leading to \textit{Lm} attenuation have been previously described and have been associated with strains of lower pathogenic potential. The best characterized are those affecting the invasion-associated \textit{inlA} gene, found in a large proportion (>25-30%) of lineage II food isolates but extremely rare among lineage I strains, more frequently associated with clinical cases (13, 21, 29, 30). Mutations leading to more radical \textit{Lm} virulence attenuation have also been characterized, particularly those affecting the \textit{prfA} gene (31-33), but their frequency and distribution across the \textit{Lm} population remained undetermined. Here we examined the occurrence of “loss-of-virulence” mutations in \textit{Lm} by screening a wide and diverse panel of strains for hemolytic activity. Our data shows that non-hemolytic \textit{Lm} mutants occur at low frequency (0.1%) and are phylogenetically diverse, including strains belonging
to hypovirulent and hypervirulent clonal complexes (14). This indicates that the underlying mutational events are not linked to the genetic background of the strains.

Lm hemolytic phenotype depends on two essential virulence determinants, the central virulence regulator PrfA and LLO, encoded by *prfA* and *hly*, respectively. Indeed, all non-hemolytic strains identified in this study carried mutations in either of these genes. The large majority of non-hemolytic strains (56/57,820; 95%) carried *prfA* mutations (frameshifts, missense or nonsense nucleotide changes, or reversion of the stop codon into a glutamine codon). Although no PrfA activity could be detected and *hly* was not transcribed in these strains, *prfA* was transcribed at similar levels to EGDε. This suggests that the loss of PrfA activity in these strains likely results from PrfA misfolding, instability and/or inactivating amino-acid substitution. Some inactivating amino acid substitutions in PrfA occurred in the β-roll, HTH motif or C-terminal domain, in line with the critical role of these regions in PrfA activity (25-27, 31). As PrfA is the major transcriptional regulator of *Lm* virulence genes and is essential for its pathogenicity (23, 34), the virulence of PrfA− strains are expected to be highly attenuated as previously described (31-33). The first *Lm* strain naturally producing a C-terminally-extended PrfA polypeptide (55 residues longer) was identified in this study and showed no PrfA activity and no *hly* transcription.

Comparatively to PrfA, non-hemolytic *hly* mutants with affected LLO activity were less frequent (5/57,820; 0.01%) in our study. Our analysis identified for the first time a spontaneous amino-acid substitution in LLO (*hly*G299V) and premature stop codons in *hly* (hlyN261* and hlyC484*) leading to the loss of LLO activity. Lower quantities of LLO were detected in the culture supernatants of the EGDΔ*hly*:pPL2-*hly*G299V and EGDΔ*hly*:pPL2-*hly*C484* constructs than for the EGD and EGDΔ*hly*:pPL2-*hly*WT strains. The quantity of *hly* transcripts was similar in the EGDΔ*hly*:pPL2-*hly*G299V and in the EGDΔ*hly*:pPL2-*hly*WT control, indicating that LLOG299V is likely less stable than WT LLO. In
contrast, EGDΔhly:pPL2-hlyC484* showed a lower hly transcription level, suggesting an impaired stability of hlyC484* transcript, relative to that of WT hly. In vivo experiments confirmed that the non-hemolytic strains harboring the hlyG299V or hlyC484* mutations have strongly attenuated virulence in mice. In line with these results, only three non-hemolytic strains were isolated from human samples. Although we did not have access to the detailed clinical data of these patients (dating back from the 1980s and 90s), one possibility would be that they were heavily immunocompromised, mirroring previous reports on isolation of the non-pathogenic Lm relative Listeria innocua from immunosuppressed individuals (35).

One of the LLO- strains (CLIP 1998/76801) underwent huge genomic rearrangements that likely caused the loss of hly and gshF, encoding a glutathione synthase reported as being required for PrfA activity (28). CLIP 1998/76801 is the only strain in our entire genome database (~ 4,100 entries) that lacks gshF. Interestingly, each copy of the transposable element that likely caused the genomic rearrangements observed in this strain carried putative cadmium resistance determinants that could be advantageous in environments in which virulence determinants are not needed. Similar transposable elements were detected in monophyletic groups of CC1 and CC59 strains, suggesting that it has been horizontally transmitted in the Lm population.

The predominance of PrfA- mutants among the non-hemolytic strains could reflect the fact that prfA is a pleiotropic regulatory gene that controls the expression of a number of virulence determinants, the expression of which is known to entail a significant fitness cost in non-host conditions (24). Our results show that, at 22°C, the majority of PrfA- strains have similar fitness than EGDe, suggesting that the absence of PrfA activity does not impact Lm fitness in non-pathogenic conditions. Nevertheless, a reduced fitness was observed at 37°C (mammalian host temperature), comparatively to EGDeΔprfA. This result suggests that non-hemolytic strains are more adapted to a non-pathogenic lifestyle, independently of PrfA. Consistent with
this, most of the non-hemolytic Lm isolates were from non-clinical origins. The ratio of non-synonymous and synonymous substitutions (dN/dS) estimated for prfA (dN/dS=0.08892) and hly (dN/dS=0.03674) using a dataset of 100 genomes representative of Lm phylogenetic diversity (14) confirmed that, similarly to Lm core genes (dN/dS=0.05353 in average, (21)), these genes are under purifying selection. Thus, any deleterious mutations affecting these genes tend to be eliminated from Lm population. The exceptionally low frequency of deleterious mutations in prfA and hly indicates that there is a strong necessity for Lm to retain its virulence capacity (36). Our results also suggest that, although exceptionally, once strains loss their virulence capacity (e.g. due to a prfA mutation), other virulence genes may become unneeded and prone to accumulate mutations, as observed in our PrfA+/LLO− and PrfA−/GshF− strains. Previous studies have already identified strains with multiple mutations occurring in several major virulence genes (20). Strains with virulence attenuating mutations are therefore prone to enter into an evolutionary path towards obligate saprophytism. The Lm phylogenomic clade comprises another pathogenic species, Listeria ivanovii, with a full complement of PrfA-regulated genes, as well as non-pathogenic species, some of which contain remnants thereof (e.g. Listeria seeligeri or L. innocua) (37, 38). While infrequent, spontaneous virulence-disabling mutations, as those described here, could have been key initial events in the emergence and evolution of the Lm-related non-pathogenic Listeria species.

326 Materials and methods

327 Bacterial strains and growth media

328 The 60 non-hemolytic Lm isolates included in this study were identified among a collection of 57,820 Lm strains collected between 1987 and 2008 by the French National Reference Centre for Listeria (NRCL) and World Health Organization Collaborating Centre for Listeria
(WHOCCCL) in the context of the epidemiological surveillance of listeriosis. This global
collection included isolates of food (n = 36,630), clinical (n = 5,980), environmental
(n = 3,647), veterinary (n = 1,713) and unknown (n = 9,850) origins. Isolates were revived by
plating them onto Columbia Agar and single colonies were grown on Columbia Agar slants.
Lm strains were routinely grown in BHI at 37°C and Escherichia coli strains were grown at
37°C in LB broth or agar plates.

Phenotypic characterization of Listeria isolates

Miniaturized enzymatic and sugar fermentation tests (API-Listeria identification
microgallery, BioMérieux, France), in combination with the hemolytic activity assessment of
strains, were used for phenotypic identification of Listeria species (39). Hemolytic activity
was tested on Columbia horse blood agar-plates (BioMérieux, France). Lm CLIP 74910 and
Listeria innocua CLIP 74915 were used as positive and negative controls of hemolysis,
respectively.

Genome sequencing and analyses

Genomic DNA was extracted using the DNeasy Blood and Tissue extraction kit (Qiagen,
Denmark) and used for whole genome sequencing on Illumina NextSeq 500 (2 x 150 bp)
platform (Illumina, California, USA). Reads were trimmed with AlienTrimmer (Criscuolo &
Brisse 2013) to eliminate adapter sequences and discard reads with Phred scores of ≤ 20. De
novo assembly of Illumina reads was performed using SPAdes Genome Assembler 3.1 (40).
The complete genome of the CLIP 1998/76801 strain was obtained by PacBio RS II
sequencing (Pacific Biosciences, California, USA) using DNA purified with the Wizard
genomic DNA purification kit (Promega, Wisconsin, USA). Genome annotation was
performed using Prokka 1.11 (41).
PCR-serogroups (12, 42), MLST profiles (13) and cgMLST profiles (21) were deduced from genome assemblies using the BIGSdb-Lm platform (http://bigsdb.pasteur.fr/listeria; (21)). Genome assemblies were made publicly available in the BIGSdb-Lm platform (Table S1).

Assessment of prfA and hly evolutionary trends

prfA and *hly* sequences were extracted from 100 genomes that were selected to represent the species diversity based on MLST and PFGE typing (14) and aligned using Muscle 3.8 (43). This dataset included genomes from 13 food isolates, 45 human clinical isolates, 19 animal isolates, 1 environmental isolate and 22 isolates of unknown origin. They comprised 41 genomes of lineage I, 53 of lineage II, 5 of lineage III, and 1 of lineage IV and represented 5 singletons and 34 clonal complexes based on MLST. No non-hemolytic strain was included in this analysis. Alignments were used to estimate the non-synonymous and synonymous ratios (dN/dS) of *prfA* and *hly* using the *codeml* program, included in the PAML 4.4 package (44).

Assessment of PrfA activity

PrfA activity was assessed by measuring the activity of PrfA-regulated *plcB* and *hpt* gene products as previously described (45, 46). For PlcB, lecithinase tests were performed in egg-yolk BHI, for Hpt, glucose-1-phosphate acidification tests were carried out in phenol red broth, in both cases with and without 0.5% w/v activated charcoal (Merck, New Jersey, USA). Medium supplementation with charcoal leads to the partial activation of PrfA, presumably due to sequestration of repressor substances from the culture medium. Three *Lm* genotypes from strain P14 were used as controls: (i) prfA_{WT} characterized by an activable PrfA phenotype (lack of PlcB and Hpt activity in normal medium and strong activity in charcoal-supplemented medium), (ii) ΔprfA which remains negative for PlcB and Hpt activity.
in the presence of charcoal; and (iii) constitutively activated \textit{prfA}* with strong PlcB and Hpt activity independently of charcoal supplementation (24, 45, 47).

RNA extractions

Non-hemolytic strains and EGD\textDelta{}hly:pPL2-\textit{hly}WT, EGD\textDelta{}hly:pPL2, EGD\textDelta{}hly:pPL2-\textit{hly}G299V and EGD\textDelta{}hly:pPL2-\textit{hly}C484* constructs were cultured overnight on BHI agar at 37°C. One colony was used to inoculate 5 ml of BHI broth. After overnight growth at 37°C, 500 µl of culture was added to 10ml of BHI broth and the whole exponential phase culture (at 37°C) was centrifuged at 5,000 g for 5 min. The pellet was suspended with 400 µl of resuspension buffer (10% glucose, 12.5 mM TRIS, 10 mM EDTA in nuclease-free water) and transferred to a lysing tube (containing 0.1 mm of ceramic beads, 500 µl of acid phenol and 60 µl of EDTA 0.5 M). The Precellys24 homogenizer (Bertin Instruments, France) was used at 6,500 rpm, for 2 x 23 s (10 s break), and the resulting mixture was centrifuged at 14,000 g at 4°C for 10 min. The upper aqueous phase was transferred into a tube containing 1 ml of Trizol and 100 µl of chloroform, mixed by inversions and centrifuged. The upper aqueous phase was transferred into a tube containing 200 µl of chloroform, mixed by inversions and centrifuged. The upper aqueous phase was transferred into a storage tube (containing 650 µl of isopropanol and 65 µl sodium acetate 3 M), mixed by inversions, precipitated 20 min at -20°C and centrifuged during 20 min. The supernatant was rinsed twice with ethanol 75%. The air-dried pellet was dissolved in 300 µl of nuclease-free water. RNA concentrations were measured with the DeNovix DS-11 Spectrophotometer (DeNovix, Delaware, USA) and diluted to obtain 500 ng of RNA in 12.5 µl of nuclease-free water.

Quantification of \textit{hly} and \textit{prfA} transcripts by qRT-PCR
For the qRT-PCRs, cDNAs were generated prior to qPCRs. DNase treatment was performed with the RNase-free DNase I (New England BioLabs, Massachusetts, USA) according to the instructions of the manufacturer (by adding 0.5 µl of RNaseOUT, 0.5 µl of DNaseI and 1.5 µl of buffer 10x to the 12.5 µl of diluted RNAs; then 1.5 µl of EDTA 0.05 M). cDNAs were generated by reverse transcription using the M-MLV Reverse Transcriptase (Invitrogen, California, USA) and random hexamers for priming according to the instructions of the manufacturer (by adding 2 µl of dNTPs 10 mM, 2 µl of random primers 2.5 µM and 3.5 µl of nuclease-free water to the 16.5 µl of previously DNase treated sample; then 8 µl of First-Strand buffer 5x, 4 µl of DTT 0.1 M and 2 µl of nuclease-free water; then 0.5 µl of M-MLV RT).

All quantitative PCRs were prepared using SYBR® Green Real Time PCR Master Mixes and StepOnePlus™ Real-Time PCR System (Applied Biosystemss, California, USA). Each primer pair was used in separated reactions using PCR mixtures containing 1 µl of each primer 9 µM (Table S2), 5 µl of Sybr mix, 1 µl of cDNA diluted at 1:5 and 3 µl of nuclease-free water. Real-time PCR reactions were carried out in MicroAmp™ Fast Optical 96-Well Reaction Plates (Applied Biosystems, California, USA) using the following protocol: initial denaturation at 95°C for 10 min, then 40 cycles of denaturation at 95°C for 15 s and primer annealing/elongation at 60°C for 1 min. Each strain was tested at least three times using independent pre-cultures. gyrB was used as stable reference gene for normalization. Results are shown as fold change of target gene expression relative to EGDe or EGD (Relative Quantities, RQs), which were deduced from the cycle threshold values (CTs) using the \(2^{-\Delta\Delta CT} \) methodology.

Fitness studies
The microbial growth of non-hemolytic strains, EGDe, EGD and EGDeΔprfA was monitored over time in BHI at 22°C and 37°C using absorbance measurements (OD_{600nm}) through the Bioscreen C® system (Oy Growth Curves Ab Ltd, Helsinki, Finland). Bacteria were first cultured overnight on BHI agar at 22°C or 37°C and one colony was used to inoculate 5 ml of BHI broth. After overnight growth, the stationary phase cultures were diluted to reach an OD_{600nm} of 0.1 and transferred into Bioscreen C® 96-well plates. OD_{600nm} of non-inoculated wells (blanks) were subtracted from inoculated ones to delete the background noise. Each strain was tested three times. Mean OD_{600nm} per strain were used to calculate area under the curves over time. For this, data were fitted to parametric models (Gompertz, modified Gompertz, Logistic and Richards laws) using the “gcFit” function of the “grofit” R package v.1.1.1-1 (48). The model that best fitted the data was selected by means of an AIC criterion (49) and used to derive areas under the growth curves.

DNA manipulations and cloning

We used a two-step cloning strategy to introduce the wild type hly (hlyWT), hlyG299V or hlyC484* in the Lm strain EGDAhly. First, we cloned separately the hlyWT, hlyG299V and hlyC484* gene sequences into the *Listeria* integrative vector pPL2 (50). Primers used are listed in the Table S2. To deliver plasmids into Lm, *Escherichia coli* S17.1 (colistin and nalidixic acid sensitive) were transformed with the plasmids followed by conjugation with Lm EGDAhly (colistin and nalidixic acid resistant). Lm EGDAhly were selected on 7µg/ml chloramphenicol (bacteria containing the pPL2 derivatives), 10µg/ml colicin and 50µg/ml nalidixic acid (selection of resistant Lm vs sensitive *E. coli*). Since all our constructs were made on a similar EGD background, no impact of the PrfA* phenotype of EGD is expected on our results and conclusions.
Western blotting

Protein extracts were obtained from EGD, EGDΔhly, EGDΔhly:pPL2, EGDΔhly:pPL2-hly\textsubscript{WT}, EGDΔhly:pPL2-hly\textsubscript{G299V} and EGDΔhly:pPL2-hly\textsubscript{C484*} as follows. Bacteria were grown overnight in BHI broth at 37°C. After centrifugation of bacterial cultures (30 min; 2,151 g), all proteins of the supernatant were precipitated by using trichloroacetic acid (20%) and washed using acetone. Proteins were then separated by SDS/PAGE (8% acrylamide gel and 3.9% stacking gel) and transferred to a polyvinylidene difluoride transfer membrane (Bio-Rad, California, USA). The membrane was incubated overnight at 4°C with a blocking buffer containing dried milk (5%), phosphate buffered saline (PBS, 1%) and Tween (0.1%) and washed with PBS (1%) and Tween (0.1%). It was then incubated first with a polyclonal anti-LLO (51, 52) or anti-InlC antibody (53) (1/20,000; 1h; room temperature) and second with the anti-rabbit antibody (1/3,000; 1h; room temperature). The membrane was washed with PBS (1%) and Tween (0.1%) between each incubation step with antibodies. Antibody-antigen interactions were revealed using a SuperSignal West Pico Chemiluminescent substrate (Thermo Fischer Scientific, Massachusetts, USA).

Animal studies

The virulence of *Lm* strains EGDΔhly:pPL2-hly\textsubscript{WT}, EGDΔhly:pPL2-hly\textsubscript{G299V}, EGDΔhly:pPL2-hly\textsubscript{C484*} and EGDΔhly:pPL2 was assessed in vivo. Balb/c mice were infected via intravenous route with 1.10^4 colony-forming units (CFUs) per animal. At 72 h post infection, mice were sacrificed for spleen and liver dissection. CFUs were enumerated by plating dilutions of the whole homogenized organs onto BHI plates. Statistical analyses were done using the Mann–Whitney *U* test as compared with EGDΔhly:pPL2-hly\textsubscript{WT}.

Funding information
Work in M. Lecuit’s laboratory was supported by Institut Pasteur, Inserm, LabEx IBEID, the European Research Council, and Santé Publique France. Work in J. Vázquez-Boland’s laboratory was supported by the Wellcome Trust (programme grant WT074020MA) and partially by core Roslin Institute funding from BBSRC (BB/J004227/1). The funders had no role in study design, data collection and interpretation, or the decision to submit the work for publication.

Acknowledgments

We acknowledge Anne Morvan, Thomas Cantinelli, Nathalie Tessaud-Rita and Laetitia Bellon for their help in strain collection and isolation at the National Reference Centre for Listeria. We thank Pascale Cossart for providing antibodies against LLO, and the Institut Pasteur P2M platform for genome sequencing.
References

17. Moreno LZ, Paixao R, de Gobbi DD, Raimundo DC, Porfida Ferreira TS, Micke Moreno A, Hofer E, dos Reis CM, Matte GR, Matte MH. 2014. Phenotypic and

30. Nightingale KK, Windham K, Martin KE, Yeung M, Wiedmann M. 2005. Select Listeria monocytogenes subtypes commonly found in foods carry distinct nonsense mutations in inlA, leading to expression of truncated and secreted internalin A, and are
associated with a reduced invasion phenotype for human intestinal epithelial cells.

Figure legends

Figure 1: Phylogenetic tree summarizing all the genetic features causing the loss of hemolytic activity among the 60 non-hemolytic *Lm* strains.

Single-linkage based clustering was obtained based on the cgMLST allelic profiles, as described previously (21). Scale bar indicates % of cgMLST similarity. Strain names have been simplified to avoid redundancy and should be preceded by “CLIP”. PrfA activities and mutations (first and second columns, respectively), *gshF* presence/absence profile (third column) and LLO mutations and presence/absence profile (fourth column) are mapped on the phylogeny. Position and nature of amino acid substitutions are indicated in grey zones. Positions of premature stop codons are indicated next to black asterisks in light pink zones. Absence of *gshF* and *hly* in the CLIP 1998/76801 strain is indicated in black. MLST clonal complexes are shown on the right. The black star highlights the CLIP 1998/76801 strain that contains multiple copies of a transposable element that induced huge genomic rearrangements. ND: unknown and non-human origin.

Figure 2: Comparison of the CLIP 1998/76801 and F2365 genomes

A. Gene content of the LIPI-1 region in F2365 (accession number: NC_002973) (top) in comparison to the corresponding region in the non-hemolytic CLIP 1998/76801 strain (bottom). LIPI-1 genes are highlighted in red. *mpl* is composed of 1532 bp in F2365 against 1133 bp in CLIP 1998/76801. B. Gene content of the *gshF* region in F2365 (top) in comparison to the corresponding region in CLIP 1998/76801 (bottom). In A. and B., genes that are present in CLIP 1998/76801 but absent in F2365 are indicated in orange. Genes encoding the transposition protein (*tnsB*), the DNA-invertase (*hin*) and the cadmium resistance genes (*cadA* and *cadC*) are indicated. C. Global comparison of the F2365 (top) and
the CLIP 1998/76801 (bottom) genomes. Positions of the eight copies of the transposable element are indicated in dark blue. Identity percentages (indicated by grey zones of variable intensities) between sequences were determined by nucleotide BLAST (54). Genome comparisons were performed using Easyfig 2.1 (55).

Figure 3: Characterization of the G299V substitution in LLO and the truncated LLO at position 484.

A. Western blotting of the culture supernatants of EGD and EGDΔhly complemented or not with the pPL2 plasmid alone or containing hlyWT, hlyG299V or hlyC484*. LLO detection was performed by using LLO-specific antibodies (above) and InlC-specific antibodies were used as loading controls (below). B. qRT-PCR quantification of hly transcripts produced in BHI at 37°C by the EGDΔhly strain complemented with the pPL2 plasmid alone or containing the hlyWT, hlyG299V or hlyC484* genes. Each strain was tested at least three times using independent pre-cultures. gyrB was used as stable reference gene for normalization. Results are shown as fold change of hly expression relative to EGD (Relative Quantities, RQs). Each central bar represents the mean of at least three replications. Error bars indicate standard deviations from the means. C. In vivo characterization of the hlyG299V and hlyC484* mutations as compared to the hlyWT. Each Balb/C mice were infected intravenously with 1.10^4 CFUs. Animals were sacrificed 72 h after infection. Numbers of CFUs per organ are shown for all the tested strains. No bacteria could be recovered from the liver of mice infected by EGDΔhly:pPL2-hlyG299V and EGDΔhly:pPL2 strains; and from the spleen of mice infected by EGDΔhly:pPL2. Statistical analyses were done by a Mann-Whitney U test as compared with EGDΔhly:pPL2-hlyWT.
Figure 1
Figure 3

A.

B.

C.

EGD

EGDΔhly

EGDΔhly:pPL2-hly WT

EGDΔhly:pPL2-hly G299V

EGDΔhly:pPL2-hly C484*

CFU/organ

Liver

Spleen

** ** ** ** **

EGDΔhly:pPL2-hly WT

EGDΔhly:pPL2-hly G299V

EGDΔhly:pPL2-hly C484*

EGDΔhly:pPL2