On Contradictory Regulations

Resolving the requirements of British Standard 8213 and Edinburgh City Local Plan Environment Policy 6
British Standard 8213: Windows, Doors and Rooflights

British Standard 8213-1: 2004 provides design recommendations for windows, door-height windows and rooflights, based upon a detailed assessment of the risk of accident encountered in their use and during cleaning. The standard considers the danger of collision, entrapment and falls from height posed by a range of commonly available window types: vertically and horizontally sliding; top, side, and bottom hung; vertically and horizontally pivoted; tilt-and-turn, louvres and fixed lights. It considers how the configuration of lights effects their reachability, mitigating or attenuating these dangers; allowing occupants to reverse or open a window inward, or requiring them to reach out, to reach through an adjacent opening, or to clean from the ground or an access deck. The document refers to anthropometric data (Older Adultstats: The Handbook of Measurements and Capabilities of the Older Adult: Data for Design Safety, Department of Trade and Industry) that determines the mean and fifth-centile reach capability of women in the 64-75 year age range, and makes a judgement as to the level of risk windows should expose users to; clause 8 of the standard recommends that windows should be cleanable from inside by 95% of the elderly female population, without the need for stretching, and limits the size of windows to require a maximum overhead reach of 1825mm, and 556mm while reaching out.

In Scotland the recommendations of BS8213 are legally enforced by Scottish Building Standard 4.8.3, which states that any domestic window full or part of which is more than 4 m above adjacent ground, should be constructed so that any external and internal glazed surfaces can be cleaned safely from [either]: inside the building in accordance with Clause 8 of BS 8213: Part 1: 2004; or a load-bearing surface large enough to prevent a person falling further². Standard 4.8.3 incorporates these detailed recommendations into a broad legislative apparatus, that employs governmental acts, supporting statistical research, published technical standards, compliant buildings, and modes of enforcement, in order to ensure our safety, our freedom from unacceptable risks of personal harm. This apparatus has had a significant impact on architecture in Scotland. Specifically, BS8213 is responsible for the proliferation of balconies, Juliet-balconies, and under-sized door-like windows in contemporary Scottish residential developments (since the standard outlawed domestic windows higher than 1825mm – specifying a maximum head height 7 cm higher than the average Scottish adult male height – it makes the most economic way of maximising glazed area a short, guarded door-like window). More generally, we could say that this legislative framework has asked us to think about architectural design as a means of coming to understand, and to negate, a range of risks inherently posed by building³.

3. For an extended consideration of regulation as a means of coming to know, and limit, the inherent risks posed by building, please refer to “Compliant Architecture: Building Regulation and the Materiality of Risk”, Liam Ross, Candida: Journal for Architectural Knowledge, No. 4 (June 2011).

Table 1: Schedule of Windows

<table>
<thead>
<tr>
<th>Arrangement</th>
<th>Height Above Ground</th>
<th>Width Between Openings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vertically Sliding</td>
<td>1100mm</td>
<td>4000mm</td>
</tr>
<tr>
<td>Horizontally Sliding</td>
<td>1825mm</td>
<td>4000mm</td>
</tr>
<tr>
<td>Top Hung / Open In</td>
<td>800mm</td>
<td>4000mm</td>
</tr>
<tr>
<td>Side Hung / Open In</td>
<td>800mm</td>
<td>4000mm</td>
</tr>
<tr>
<td>Side Hung / Open Out</td>
<td>800mm</td>
<td>4000mm</td>
</tr>
<tr>
<td>Vertical Sliding</td>
<td>1825mm</td>
<td>4000mm</td>
</tr>
<tr>
<td>Vertical Sliding</td>
<td>1825mm</td>
<td>4000mm</td>
</tr>
<tr>
<td>Vertical Sliding</td>
<td>1825mm</td>
<td>4000mm</td>
</tr>
</tbody>
</table>

Diagram BS8213

Matrix of diagrams illustrating the maximum window sizes possible with the recommendations of BS8213. The vertical axis illustrates the range of different cleanable configurations considered. The horizontal axis illustrates the range of different cleanable configurations considered.

Figure 1: Diagrams of BS8213

Series of diagrams showing the maximum window sizes possible with the recommendations of BS8213. The vertical axis illustrates the range of different cleanable configurations considered. The horizontal axis illustrates the range of different cleanable configurations considered.
The values and requirements of building standards, however, often contradict other parameters that architectural design is subject to, some of which also enjoy legal status. For instance, planning guidelines concerned with the conservation of our built heritage – the transmission of inherited property and traditions – are often at odds with the requirements of contemporary technical standards. To take a specific example, Edinburgh’s Local Plan states that development within designated conservation areas is only permitted where it “preserves or enhances the special character or appearance of the conservation area and is consistent with the relevant conservation area character appraisal”, and it’s New Town Conservation Area Character Appraisal recognises the regularity, and generous scale and proportion of windows in central Edinburgh as being of special value, supporting design guidance requiring new buildings to be designed with windows of a similar size.

While the box-sash windows of Edinburgh’s New Town are themselves an eighteenth-century innovation in design for safe cleaning – two vertically-sliding, inward-opening, counter-weighted sashes – they represent a different way of thinking about the body, and a different attitude to risk, to that of our current standards. The large size of these windows exceed the dimensional limits set by BS8213 - exhibiting the exaggerated bodily proportions of classicism, rather than indexing the actual dimensions of a very small old women - and they were designed to be cleaned by domestic staff, rather than elderly owner-occupiers. For architects designing new domestic properties in conservation areas, then, the contradiction between these two mandatory requirements poses a problem, asking that two differing dimensional requirements, cleaning methods, and attitudes to risk, be resolved. This tends to be accomplished legally, rather than physically. In Scotland, architects are permitted to specify non-compliant windows as long as a factoring agreement attached the deed of sale of the property ensures the windows will be cleaned professionally in perpetuity. Such cleaning contracts typically specify detailed method statements, calling for specialist technologies to clean high-level external glazed surfaces from the ground, as well as making provision for regular home visits to clean internal faces.

Counter to its ambition to provide for universal safe cleaning, then, in practice the onerous requirements of BS8213 legislate against occupants cleaning their own windows. Rather than negating the risks associated with window cleaning, the standard leads to their being redistributed and professionalized. We might say that rather than freeing us from inherent problems associated with building, such legislative requirements appear to generate their own internal problems, which captivate buildings, and their designers and occupants in increasingly complex legal, social and architectural obligations.

1 Edinburgh City Local Plan, Chapter 4: Caring for the Environment, Policy Env 6: Conservation Areas – Development. http://www.edinburgh.gov.uk/eclp
This specific contradiction, then, offers insight into processes of regulation per se. Prior to BS8213 and Edinburgh’s Conservation Area guidelines contradicting each other, both acts of regulation are already contradictory themselves. Positive legislation is only necessary to the degree that it contradicts some other possibility: BS8213 contradicts the possibility that architects or building users to make their own assessment of the acceptable exposure to risk generated by a given window design; Edinburgh’s Conservation Area guidelines contradict the possibility that contemporary property developments and traditions re-value or de-value inherited ones. That is, regulations are necessarily contradictory - it is by making contradictions that they frame our thinking about building – and specific contradictions between regulations are simply moments when this universal contradiction becomes explicit and reflexive.

Whether we agree that new property or values be thought subordinate to inherited ones, or that clients, architects and occupants be prohibited from making their own risk-assessments, we might nonetheless find an architectural opportunity in the problem posed by these two requirements. Firstly, because this contradiction is a moment in which regulation, and compliant architecture, registers the possibility of thinking differently per se. Secondly, because in resolving their contrary requirements, something common is discovered between them; that the bodily limit and risks indexed by the Standard are precisely what makes sensible the scale and generosity demanded by the Planners.

What should we make of the problem posed by such contradictory regulations? The existence of such unresolved concerns within our regulatory framework might be taken as evidence that further and more integrated tiers of national and international master-regulation are required, so as to make the definitive judgements required to resolve their contrary concerns. Certainly, our current building standards and regulations are themselves the result of such a historical process, through which local practices and byelaws are gradually superseded by nationalised norms and standards. On the other hand, such contradictions evidence precisely what is obscured by such universalising processes, the possibility of thinking differently in different circumstances.
Compliant Architecture is a design, research and teaching project based at the University of Edinburgh. It conducts text-based research into the emergence of building regulations, design-research that illustrates the limits they impose, and taught design modules that explore the architectural potential of those limits.

Assistants: Bronagh Sweeney, Sophia Humphries, Vsevolod Kondratiev Popov

© The University of Edinburgh 2011
No part of this publication may be reproduced without prior permission from the author.
liam.ross@ed.ac.uk
www.architecture.ed.ac.uk