Environmental sustainability of the solar photo-Fenton process for wastewater treatment and pharmaceuticals mineralization at semi-industrial scale

Citation for published version:

Digital Object Identifier (DOI):
10.1016/j.scitotenv.2017.08.277

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Science of the total environment

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
Environmental sustainability of the solar photo-Fenton process for wastewater treatment and pharmaceuticals mineralization at semi-industrial scale

Spyros Foteinis\textsuperscript{a}, Jose Maria Monteagudo\textsuperscript{b}, Antonio Durán\textsuperscript{b}, Efthalia Chatzisymeon\textsuperscript{c}\textsuperscript{*}

\textsuperscript{a} Senior Engineer, Greek Public Power Corporation (PPC) Renewables S.A., Kapodistriou 3, Ag. Paraskeui, GR-15343, Attica, Greece

\textsuperscript{b} Department of Chemical Engineering, Grupo IMAES, Escuela Técnica Superior de Ingenieros Industriales, Instituto de Investigaciones Energéticas y Aplicaciones Industriales (INEI) University of Castilla-La Mancha, Avda. Camilo José Cela 3, 13071 Ciudad Real (Spain).

\textsuperscript{c} Institute for Infrastructure and Environment, School of Engineering, University of Edinburgh, Edinburgh EH9 3JL, United Kingdom

\textsuperscript{*} Corresponding author: e.chatzisymeon@ed.ac.uk, tel.: +44(0)1316505711
Abstract

The environmental sustainability of a semi-industrial solar photo-Fenton reactor, treating real effluents emanating from a pharmaceutical laboratory, is assessed herein. The life cycle assessment/analysis (LCA) methodology was employed and real life cycle inventory (LCI) data was collected from a ferrioxalate-assisted homogeneous solar photo-Fenton wastewater treatment plant (WWTP), at Ciudad Real, Spain. Electricity was provided by photovoltaic (PV) panels in tandem with a battery bank, making the plant autonomous from the local grid. The effective treatment of 1 m\(^3\) of secondary-treated pharmaceutical wastewater, containing antipyrine, was used as a functional unit. The main environmental hotspot was identified to be the chemical reagents used to enhance treatment efficiency, mainly hydrogen peroxide (H\(\text{}_2\text{O}_2\)) and to a smaller degree oxalic acid. On the other hand, land use, PV panels, battery units, compound parabolic collectors (CPC), tanks, pipes and pumps, as materials, had a low contribution, ranging from as little as 0.06\% up to about 2\% on the total CO\(_2\)eq emissions.

Overall, the solar photo-Fenton process was found to be a sustainable technology for treating wastewater containing micropollutants at semi-industrial level, since the total environmental footprint was found to be 2.71 kg CO\(_2\) m\(^{-3}\) or 272 mPt m\(^{-3}\), using IPCC 2013 and ReCiPe impact assessment methods, respectively. A sensitivity analysis revealed that if the excess of solar power is fed back into the grid then the total environmental footprint is reduced.

Depending on the amount of solar power fed back into the grid the process could have a near zero total environmental footprint.

Keywords: solar photocatalysis, solar energy, sustainability, renewable energy, LCA, endocrine disruptors
1. Introduction

Nowadays, the presence of persistent contaminants of the order of the μg/L or ng/L, i.e. micropollutants, in natural water bodies constitutes a grave environmental problem of emerging concern (Grandclément et al., 2017). Micropollutants are non-regulated contaminants with unique characteristics and behaviour in the wastewater, which even at miniscule concentrations of ng/L can cause detrimental effects to the environment and human health (Virkutyte et al., 2010). Diseases, such as endocrine-related cancers, reproductive disorders, behavioural and learning problems, asthma, and even obesity and diabetes, are linked to exposure to EDCs (WHO, 2013; Rochester, 2013). Adverse effects are also observed in natural ecosystems, with the most common of all being the feminization of male and altered oogenesis in female fish populations, which is already observed in natural water bodies downstream from WWTPs (WHO, 2013; Kidd et al., 2007). They derive from a vast and expanding array of sources, including pharmaceuticals, surfactants, personal care products, hormones, industrial chemicals, pesticides and many other emerging compounds (Luo et al., 2014; Virkutyte et al., 2010). Micropollutants usually end up to the sewer system and are transporting along with the sewage to wastewater treatment plants (WWTPs). The main problem lies to the fact that conventional physicochemical and biological WWTPs have not been designed to cope with micropollutants (Luo et al., 2014), since their main function is to deal with bulk substances that arrive regularly and in large quantities, primarily organic matter and nutrients such as nitrogen and phosphorus (Virkutyte et al., 2010). As a result, WWTPs constitute a major pathway for micropollutants introduction and diffusion to surface water.

Hence, the introduction of advanced treatment technologies, such as advanced oxidation processes (AOPs), able to cope with micropollutants is essential to safeguard human health and the environment. Light-driven AOPs are promising for removing both organic compounds and micropollutants from wastewater matrices (Davididou et al., 2017; Prieto-Rodríguez et al.,
Among the different light-driven AOPs, solar-powered processes, such as the solar photo-Fenton, is believed to be one of the most environmentally friendly and cost-effective process. This is attributed to the fact that natural solar light is used, instead of artificial irradiation, to generate hydroxyl radicals, which drive the treatment process (Expósito et al., 2016). Homogeneous photo-Fenton process (system Fe(II)/H2O2) photogenerates hydroxyl radicals through the following reaction (1) (Monteagudo et al., 2009):

\[
Fe^{3+} + h\nu + H_2O \rightarrow Fe^{2+} + HO^* + H^+ 
\]  

(1)

However, light-driven AOPs are energy intensive and require chemical inputs, which strongly affects their environmental sustainability (Chatzisymeon et al., 2013; Giménez et al., 2015). Since, solar driven AOPs perform best at areas with abundant sunlight, solar energy harvesting to produce electricity could provide a clean energy source for AOPs operation. Therefore, in areas with high solar irradiance photovoltaic (PV) panels could provide the electricity required for the process, while with battery storage solutions autonomous AOPs treatment plants could be established. Such autonomous pilot-scale solar photocatalytic reactors have been previously used for the treatment of various azo dyes (Garcia-Segura and Brillas, 2016; Garcia-Segura and Brillas, 2014). This choice is very important for remote areas with no grid access, especially for developing countries, where abundant sunlight is available. Moreover, using solely renewable energy sources (RES), such as solar energy, can help moving towards zero or even negative total environmental footprint WWTPs.

Till now, the degradation efficiency of pharmaceuticals in wastewater using the photo-Fenton process is well established at laboratory and pilot scale and to a smaller degree at industrial scale (Expósito et al., 2016). Moreover, research has been mainly focused on the techno-economical feasibility of the solar photo-Fenton process, while only a few works have focused on its environmental performance, but mainly at laboratory (Giménez et al., 2015) or
pilot scale (Ioannou-Ttofa et al., 2017). Nonetheless, solar photo-Fenton’s environmental sustainability at industrial level, where economies of scales exist, remains largely unknown. Moreover, to the best of our knowledge there is no work dealing with the environmental sustainability of an autonomous solar photo-Fenton plant, at semi-industrial scale, treating real pharmaceutical effluent that contains micropollutants.

To this end, this work examines the environmental sustainability of a semi-industrial autonomous solar compound parabolic collector (CPC) plant, based on solar photo-Fenton process assisted with ferrioxalate. The CPC plant operates under Mediterranean climatic conditions, in Ciudad Real, Spain. Real life cycle inventory (LCI) data was collected for the construction, operation and end-of-life of the CPC plant and the life cycle assessment (LCA) methodology was employed.

Results were analysed using both IPCC 2013 and ReCiPe life cycle impact assessment (LCIA) methods. The first is a single issue environmental impact assessment method based on CO$_2$ equivalent (CO$_{2eq}$) emissions and thus it is easier understood by decision and policy makers and the general public (Ioannou-Ttofa et al., 2016; Chatzisymeon et al., 2016). The latter is a state of the art method that is harmonised in terms of modelling principles and choices and offers results at both the midpoint and endpoint level (Goedkoop et al., 2009). It is the most recent and harmonized indicator approach in LCIA, which transforms the long list of LCI results into eighteen midpoint and three endpoint indicators, to express the relative severity on an environmental impact category (PRé Consultants 2017).

2. Material and methods

2.1 Description of the solar CPC autonomous unit
A semi-industrial solar compound parabolic collector (CPC reactor) treatment unit is examined herein. It is installed on the premises of the University Castilla-La Mancha in Ciudad Real, Spain. The CPC plant operates under the Mediterranean climatic conditions, where abundant sunlight is available (mean solar intensity 30 W/m²) and is able to treat 0.7 m³/h of aqueous effluent, operating under a continuous mode. It consists of borosilicate glass tubes (total volume 350 L), a continuously stirred reservoir tank (1500 L), a centrifugal pump and connecting tubes and valves. The CPC unit is equipped with 277 W mono-crystalline PV panels, mounted on a fixed south-facing (tilted to 39°) platform, while solar power storage is accomplished by means of a battery bank, as to provide a constant stream of electricity. Among others, the CPC plant can efficiently treat pharmaceutical wastewater at semi-industrial level, by means of the ferrioxalate-assisted solar photo-Fenton process. A description of the semi-industrial autonomous CPC plant can be found in (Expósito et al., 2016). It has to be noted that the CPC plant comprise part of a larger system that includes a 132 litre artificial ultraviolet (UV-C and UV-A) reactor, which can be used in tandem with the CPC or independently. The above system has been design to operate at standalone mode, i.e. without the need of electricity inputs from the local electrical grid, using ten 277 W PV panels and twelve 1.92 kWh battery units.

2.2 Materials

Industrial wastewater, which originated from a nearby pharmaceutical laboratory, was treated in the CPC reactor. The effluent’s initial conditions were COD = 3,875mg/L, TOC = 1,914 mg/L, pH = 6.57, and turbidity=26.3 NTU. The wastewater also contained micropollutants, i.e. antipyrine=389 mg/L. The detailed physicochemical characteristics can be found in Exposito et al. (2016). It is generally accepted that a process train comprising
aerobic/anaerobic biological secondary treatment and AOPs for tertiary treatment is a viable option to effectively treat industrial wastewaters (Chatzisymeon et al., 2013; Ioannou-Ttofa et al., 2017). As such, light-driven AOPs perform better for tertiary treatment applications and therefore should be used after the secondary treatment is achieved. Hence, the pharmaceutical wastewater that was examined in this work was first diluted with tap water to reduce its initial TOC content to 400 mg/L, in order to simulate a secondary-treated effluent. The chemical reagents required for the treatment process were Merck’s analytical grade ferrous sulfate (FeSO$_4$.7H$_2$O), oxalic acid (COOH)$_2$.2H$_2$O and 30% w/v hydrogen peroxide (H$_2$O$_2$). Also, sulfuric acid (H$_2$SO$_4$) and sodium hydroxide (NaOH) were used to adjust the pH to desirable levels, i.e. keep it constant at 2.7, as required.

3. Environmental sustainability analysis

In order to assess the environmental performance of the semi-industrial autonomous CPC plant, the life cycle assessment (LCA) methodology, as set in ISO 14040 (ISO, 2006a) and 14044 (ISO, 2006b) was employed. The LCA’s geographical coverage refer Spain, the Mediterranean basin and areas with similar climate conditions (in all experiments the mean solar intensity was ~30 W/m$^2$). Where required background data (e.g. raw materials, fuel, electricity etc.) for Spain were used, while if they were not available European or, in their absence, global data were used as proxies. Finally, average technology was assumed.

3.2 Functional unit

The environmental performance of the ferrioxalate assisted homogeneous solar photo-Fenton process, to treat both the organic content and target pharmaceuticals, was examined. For this reason, the removal of the total organic carbon (TOC) as well as antipyrine, a typical pharmaceutical that acts as a micropollutant in wastewater matrices, was monitored. Therefore,
the functional unit that better corresponds to the goal and scope of this work is the effective
treatment of 1 m$^3$ of secondary-treated, in this case diluted, real industrial wastewater,
containing pharmaceuticals. Effective treatment corresponds to CPC plant optimal operation
conditions, i.e. total removal of antipyrine and at least 79% of effluent TOC or mineralization
of 81.3 mg/L of antipyrine and removal of 316 mg/L of TOC. This can be achieved after 120
min of treatment in the presence of 2,500 mg/L H$_2$O$_2$ and 20 mg/L Fe.

3.3 System boundaries

Figure 1 shows the LCA system boundaries, i.e. the smallest elements (unit processes)
considered in LCI analysis for which input and output data were quantified (ISO, 2006b). As
shown in Figure 1, all main materials for CPC plant construction, land use, energy usage and
other important inputs (e.g. chemical reagents) and outputs (e.g. waterborne emissions), as well
as the disposal/recycling after the end of the plant’s life cycle, are included in this work.
Disposal/recycling was taken into account by assuming the recycling of plant’s main
parts/materials (e.g. glass, aluminium, plastics etc.) and the disposal of the non-recycled parts
(e.g. pH meter, flowmeter etc.), as inert waste, at a sanitary landfill. Moreover, the
transportation of the main construction materials and of the chemical reagents was taken into
account, while the transport and the pre-treatment (i.e. dilution) of the real industrial
wastewater is beyond of the scope of this work and therefore is external to system boundaries.
Finally, since various routes for the final disposal/reuse of the treated effluent exist, e.g.
disposal at natural waterbodies, reuse for irrigation purposes, etc., each with its own
environmental impact/benefit, the discharge route of the treated effluent is beyond the scope of
this work and therefore is not included in the system boundaries, i.e. a cradle-to-gate
(treatment) approach is used.
3.4 Assumptions and limitations

The following assumptions and limitations were taken into account. It is assumed that the life span of the pilot plant is 20 years, with a 10 h daily operation all year round. The useful operating life of the solar PV units is estimated at 20-25 years, while the lifespan of the battery bank is assumed to be 15 years (i.e. it will be replaced once during the pilot plant’s life span). Since, pumps were not identified in proprietary LCI databases or in the literature its main material, i.e. its motor, was taken into account, having a useful operating life of 15 years, when operating 5,000 hours annually (AAB, 2002); hence the pump will be replaced once during the CPC plant’s life span. Replacement of the pipping was not considered, since according to (Ioannou-Ttofa et al., 2017) they exhibit a very high lifespan, i.e. 50 years. Moreover, it was assumed that the useful life span of the CPC photoreactors is 10 years and therefore they will be replaced once. Moreover, a mean transportation distance of 200 km, i.e. from Spain’s capital Madrid to Ciudad Real, was ascribed to all materials/equipment/chemical reagents, by means of a lorry truck. Recycling was taken into account by assuming a 70% of the recyclable materials to be recycled (e.g. metals, glass etc.) and the remaining content to end up in a sanitary landfill. As mentioned above the CPC plant comprises part of a larger system and as such the solar PVs and battery bank have been design to meet the needs of the whole system. Since, the CPC plant requires only a fraction of the installed solar power and battery bank capacity, it was assumed that two 277 W PV panels and two 1.92 kWh battery units can meet the CPC plant electricity needs (Table 1). Finally, extraordinary conditions, such as natural disasters and weather extremes, are external to system boundaries.
3.5 Life cycle inventory of CPC plant

As mentioned above, the cradle-to-gate (effluent treatment) life cycle inventory (LCI) of the CPC pilot plant was built using real data from its construction, operation and end of life phase. The LCI was then simulated using the software program SimaPro to estimate the environmental sustainability of the CPC plant. Most unit processes were taken directly from SimaPro’s proprietary LCI database (e.g. ecoinvent), while in cases where unit processes were not identified in proprietary databases their LCI was taken from the literature. Specifically, since LCI data for the lead-acid rechargeable battery (Sonnenschein A600 Solar Battery, A602-960S (8 OPzV 960)) was not identified in SimaPro’s LCI databases, its LCI was built following (Jülch et al., 2015). For PV panels (Atersa A-277P) data from SimaPro LCI databases was used, assuming that single-Si panels were installed. The LCIs of flowmeter and pH meter were built using data for their main materials, according to our previous publication (Ioannou-Ttofa et al., 2017). The LCI of the CPC photoreactors was created using ecoinvent’s LCI data for borosilicate glass tubes. The LCI of polypropylene (PP) piping system was built following the methodology described in Ono et al. (2015) (Ono et al., 2015), while for the case of PP tank LCIs from SimaPro databases referring to its main material, i.e. PP, was used. LCI data for the pump under study was not identified. Therefore, LCI data for its main part, i.e. motor, was taken from the literature (AAB, 2002) and re-scaled to fit the rated output of the pump under study. The LCI of the chemical reagents was either taken from proprietary databases or from the literature. Specifically, ferrous sulfate was taken from SimaPro’s proprietary LCI databases, in the form of iron sulphate (FeSO₄). After treatment the ferrous and ferric ion waterborne emissions were taken from SimaPro’s proprietary LCI databases, in the form of iron. Hydrogen peroxide, sulfuric acid and sodium hydroxide were also taken by proprietary LCI databases, but no waterborne emissions were taken into account, since H₂O₂ is fully consumed during the photo-Fenton reaction. Oxalic acid was not identified in existing LCI
databases and therefore it was built using LCI data from the literature (Raibeck, 2008).

Similarly, waterborne emissions were not taken into account, since oxalic acid is also fully consumed during the photo-Fenton reaction. Table 1 summarizes the LCI of the solar driven autonomous CPC plant, including its waterborne emissions.

Table 1

3.6 Life cycle impact assessment

The life cycle impact assessment (LCIA) is one of the most important stages in the LCA, since in this stage the collected inventory data are associated with specific environmental impacts/damages and also these impacts/damages are analysed and assessed. According to ISO 14040:2006 and ISO 14044:2006, LCIA consists of the following (a) mandatory elements: (i) selection of impact categories, category indicators and characterization models; (ii) classification, i.e. assigning inventory data to selected impact categories; and (iii) characterization, i.e. modelling the inventory data within impact categories; and (b) optional elements: (iv) normalisation, i.e calculate the magnitude of category indicator results relatively to reference information; (v) grouping, i.e. impact categories sorting/ranking; (vi) weighting, i.e. converting/aggregating indicator results across impact categories; and (vii) data quality analysis, i.e. better understanding the reliability of the collection of indicator results (e.g. sensitivity analysis) (ISO, 2006a; ISO, 2006b). Here, both mandatory and optional LCIA elements were considered.

Moreover, results can be expressed at: (a) midpoint level (problem-oriented approach), where environmental impacts are examined earlier in the cause-effect chain and are translated into environmental themes, such as climate change and human toxicity and (b) endpoint level (damage-oriented approach), where impacts are examined at the end of the cause-effect chain,
after midpoint is reached, thus translating environmental impacts into issues of concern, such as damage to human health and to ecosystem quality (Goedkoop et al., 2009). Due to data gaps and assumptions stacking up along the cause-effect chain, the endpoint approach is associated with higher levels of statistical uncertainty, but is easier to comprehend by policy- and decision-makers (Chatzisymeon et al., 2016). Therefore, in order to obtain a comprehensive overview and in-depth understanding results were analysed both at mid- and end-point level using ReCiPe impact assessment method, the successor of Eco-indicator 99 and CML-IA method (PRé Consultants 2017). ReCiPe comprises 18 midpoint impact categories, i.e. climate change (CC), ozone depletion (OD), terrestrial acidification (TA), freshwater eutrophication (FE), marine eutrophication (ME), human toxicity (HT), photochemical oxidant formation (POF), particulate matter formation (PMF), terrestrial ecotoxicity (TET), freshwater ecotoxicity (FET), marine ecotoxicity (MET), ionising radiation (IR), agricultural land occupation (ALO), urban land occupation (ULO), natural land transformation (NLT), water depletion (WD), mineral resource depletion (MRD), fossil fuel depletion (FD). At the endpoint level, most of these midpoint impact categories are further converted and aggregated into three endpoint categories, i.e. damage to human health (HH), damage to ecosystem diversity (ED) and damage to resource availability (RA) (Goedkoop et al., 2009).

The Hierarchist (H) perspective, which is a consensus model based on the most common policy principles, with regard to time frame and other issues, was used (Foteinis & Chatzisymeon, 2016; Goedkoop et al., 2009). Moreover, the attributional LCA (ALCA) approach was selected over the consequential LCA (CLCA), since it provides a description of resource flows and emissions attributed to the functional unit (Foteinis & Chatzisymeon, 2016), which corresponds to the goal and scope of this work. Finally, a single issue impact assessment method, namely IPCC 2013 for a timeframe of 100 years, was used. It compares processes based on CO₂ equivalent (CO₂eq) emissions, i.e. greenhouse gas (GHG) emission, used to
measure Global Warming Potential (GWP), which is a standard indicator of environmental relevance (Chatzisymeon et al., 2013). This is also included in ReCiPe’s midpoint impact category “Climate Change”, but using a single issue method allows a more simple and direct results dissemination to the general public.

4. Results and discussion

4.1 Carbon footprint using IPCC 2013 impact assessment method

The carbon footprint of the ferrioxalate assisted homogeneous solar photo-Fenton process, carried out in the CPC plant, was first estimated using the IPCC 2013 impact assessment method, with a 100 years timeframe. Figure 2 shows IPCC 2013 results and the contribution of each process (e.g. battery bank, PV panel, CPCs, chemical reagents etc.) to the total GHG emissions. Specifically, it was found that the total GHG emissions per functional unit, i.e. for treating 1 m$^3$ of industrial wastewater containing pharmaceuticals, was 2.71 kg CO$_{2eq}$ m$^{-3}$.

As shown in Figure 2, the main contributor to the total CO$_{2eq}$ emissions per functional unit, i.e. the treatment of 1 m$^3$ of pharmaceutical industry wastewater, is the use of chemical reagents (92.4% or 2.5 kg CO$_{2eq}$ m$^{-3}$). This large contribution and is mainly attributed to H$_2$O$_2$ (62.3% or 2.5 kg CO$_{2eq}$ m$^{-3}$) consumption, followed by oxalic acid (14.6% or 0.395 kg CO$_{2eq}$ m$^{-3}$) use. Sulfuric acid (H$_2$SO$_4$) has a much smaller contribution on the total GHG emissions (2.25 %), whilst sodium hydroxide (NaOH) contribution is negligible. It should be noted that the H$_2$O$_2$ and the oxalic acid are assumed to be totally consumed in the solar Fenton reaction, thus no
waterborne emissions are produced. Moreover H$_2$SO$_4$ and NaOH are used for pH adjustment during the solar Fenton process, with the latter being used only at miniscule quantities and only when the pH drops below 3, thus having negligible CO$_{2eq}$ emissions. Moreover, small quantities of FeSO$_4$.7H$_2$O are used, which is a non-toxic or mutagenic metal, and therefore its contribution to the total CO$_{2eq}$ emissions is miniscule. Finally, the chemical reagents transportation has an overall high contribution, about 13.15%, to the total carbon footprint. This is mainly attributed to the overall high quantities of H$_2$O$_2$ and oxalic acid per functional unit and that their transportation distance was assumed to be 200 km.

The PV panels and battery bank, which provide a constant stream of electricity, contributes 1.03% and 1.07% on the total carbon footprint, respectively. This small contribution is mainly attributed to the low energy inputs per functional unit, compared to the large quantities of chemicals used. As far as the remaining processes are concerned the foundation, the frame and the CPC unit contribute, as materials, by 1.55%, 0.988% and 2.05% to the total CO$_{2eq}$ emissions, respectively. Moreover, the storage tank (0.29%), the pipping (0.41%), the sensors (<0.06%) and the pump (0.09%) exhibit very low scores, as materials. The low contribution of the above is attributed to (i) their long life span, i.e. no need or limited replacement during the treatment plant’s life cycle, (ii) their overall low quantity per functional unit, (iii) the fact that their main materials are not associated with detrimental effects to the environment and human health and (iv) that recycling was taken into account. Therefore, the main environmental hotspot of the CPC plant, operating at semi-industrial level and using real pharmaceutical effluent, is grossly traced back to the chemical reagents required to enhance the treatment efficiency and specifically to H$_2$O$_2$ and to a smaller degree to oxalic acid.

4.2 ReCiPe impact assessment method
ReCiPe is a robust multi-issue impact assessment method and therefore it can provide a
more holistic overview of the environmental sustainability of the solar photo-Fenton process. First, ReCiPe characterisation model (midpoint-oriented indicators) is used to calculate the
contribution of each parameter to each of the 18 midpoint impact categories. As shown in
Figure 3, the main contributor to most impact categories is, by far, the chemical reagents used,
which is consistent with the IPPC 2013 LCIA method. The PV modules have a generally low
contribution to most impact categories, apart from the ecotoxicity related impact categories,
i.e. TET, FET and MET, where it yields a high score. The battery bank has a similar
cortribution to the PV modules in most impact categories, but it does not yield a very high
score on the ecotoxicity related impact categories. The CPC units contribute to all impact
categories, but with a small score in all of them. This is also the case for the foundations, the
frame and the pump, which exhibit an overall low contribution to most impact categories. Land
use is the major contributor to the impact category Urban Land Occupation (ULO), which is
the only impact category affected by land use. This is attributed to the fact that CPC plant
occupies urban area for at least 20 years according to its life span (Figure 3).

After characterization, midpoint results were normalized, using Europe’s reference
inventories, and results are shown in Figure 4. The normalized midpoint impact categories that
yielded, by far, the highest scores are marine ecotoxicity (MET) closely followed by freshwater
ecotoxicity (FET). The main contributor to these categories is the chemical reagents used
(mainly H₂O₂), followed by the PV panels and to a smaller degree the battery bank. The
reagents are also mainly responsible for the large normalized scores in the impact categories,
from higher to lower score, natural land transformation (NLT), freshwater eutrophication (FE), human toxicity (HT), fossil fuel depletion (FD), terrestrial acidification (TA), mineral resource depletion (MRD), particulate matter formation (PMF), climate change (CC) and photochemical oxidant formation (POF). The remaining impact categories exhibit a low to negligible normalized score (Figure 4). The high normalized scores that derive from the use of chemicals can be mainly attributed to the large quantities of \( \text{H}_2\text{O}_2 \) and to a smaller degree to oxalic acid. \( \text{H}_2\text{O}_2 \) is a strong oxidising agent that is widely used as a bleaching agent. At industrial level it is produced by reducing alkyl anthraquinones with hydrogen, in the presence of a catalyst to the hydroquinone, while crude \( \text{H}_2\text{O}_2 \) is extracted from the oxidised working solution by treating with water. Large quantities of energy (mainly fossil fuels) and resources (e.g. water, bauxite, sulphur, etc) are consumed for the production of pure \( \text{H}_2\text{O}_2 \), while also airborne (e.g. dust, \( \text{CO}_2 \), \( \text{SO}_x \), etc), waterborne (e.g. COD, suspended solids, \( \text{Cl}^- \), etc) emissions and solid waste (e.g. mineral, slags/ash, inert chemical, etc) are produced (Boustead & Fawer, 1996). This is also the case for oxalic acid production, where large quantities of energy (mainly fossil fuels) and resources (mainly water) are required and also air, water and soil emissions (mainly airborne) are generated. Apart from the direct pressure from raw material consumption and air, water and soil emissions from their production process, a large part of their environmental impact is traced back to energy use, i.e. fossil fuel. For example, airborne emissions (e.g. nitrogen oxides) attributed to power generation from fossil fuel combustion have a negative impact on human health, while phosphate waterborne emissions from fossil fuel extraction negatively affect freshwater ecosystems (Ioannou-Ttofa et al., 2017). Moreover, large areas of natural land are transformed for the extraction, transportation, storage and burning of fossil fuels to produce electricity, thus affecting the impact category NLT, while the fossil fuel burning contribute to their depletion (impact category FD). Also, fossil fuels are consumed for the transportation of the chemical reagents from the place of production to the CPC plant. Therefore, the large
quantities of $\text{H}_2\text{O}_2$ and to a smaller extent oxalic acid that are consumed during the solar photo-
Fenton process yield the high normalized scores on the aforementioned impact categories.

Moreover, the high normalized scores of the PV modules and to a smaller degree of the
battery bank on MET and FET (Figure 4) are attributed to their manufacturing processes, which
are responsible for metal emissions (e.g. copper) to the environment. Freshwater and marine
ecosystems are very sensitive to metal waterborne emissions, since metals can cause major
changes on these ecosystems (Ioannou-Ttofa et al., 2017).

Figure 4

Figure 5 shows the ReCiPe weighted results at endpoint level, using the damage categories
human health (HH), ecosystem diversity (ED) and resource availability (RA). Results were
expressed using the Hierarchist version, with European normalization and average weighting,
which is ReCiPes’ default endpoint method. Weighting is an optional step in the LCIA, after
normalisation, where the normalised results are multiplied by weighting factors corresponding
to each impact category. Weighted results are expressed in Eco-Indicator points (Pt), where
1000 Pt is the yearly environmental load of an average European citizen. As shown in Figure
5 the total environmental footprint of the ferrioxalate assisted homogeneous solar photo-Fenton
process is 286.55 mPt per treatment of 1 m³ of pharmaceutical industry wastewater.
Specifically, the damage category HH exhibits the highest score (122.36 mPt), followed by RA
(110.09 mPt), while ED has the lowest score (54.10 mPt). Similarly to midpoint level, the main
contributor to all damage categories is traced to the reagents (91.66%) required to enhance
treatment efficiency, with $\text{H}_2\text{O}_2$ being the main contributor (59.2%), owing to the high
quantities required per functional unit, followed by oxalic acid (14.1%). As mentioned above
the resources and energy required for reagents manufacturing, as well as direct emissions from their manufacturing process strongly affect the environmental sustainability of the CPC plant, since large quantities of H$_2$O$_2$ and oxalic acid are required per functional unit. H$_2$SO$_4$ contributed 6.05% on the total environmental footprint, while FeSO$_4$.7H$_2$O and NaOH had a very low and a miniscule contribution, respectively. Chemical reagents transportation contributed about 12% on the total environmental footprint. Moreover, in all damage categories the CPCs, as materials, exhibited a small contribution (1.99%), followed by the foundations (1.24%) and the frame (1%). The land use (0.5%) contributes to the damage category ED, due to the industrial land occupied by the plant during its life span. The score of the foundations and frame to all damage categories is associated with emissions from the extraction and processing, as well as the energy required for the production of cement, steel and aluminium. The pump, tank, sensors and pipping have an overall low contribution to all damage categories, due to their high life span, non toxic, non mutagenic and non carcinogenic nature of their main materials, and the small input per functional unit.

Figure 5

The results of this work are in agreement with the study of Rodríguez et al. (2016) where the environmental sustainability of the homogenous Fenton processes for the treatment of pharmaceutical wastewater was examined. It was observed that apart from the metal ion-containing sludge generated during the treatment, which is not generated here, the next environmental hotspot was the use of chemicals, with the contribution of the H$_2$O$_2$ being clearly higher than the other chemicals (Rodríguez et al., 2016). Nonetheless, at bench and pilot scale results vary. Giménez et al. (2015) studied, among others, the environmental sustainability of
the photo-Fenton process at laboratory scale, using as a functional unit the removal of 30–50% TOC from 1 L of 50 mg·L−1 metropolol aqueous solution. Since, this study was based on laboratory scale results an average value of 6 g/L Fe²⁺ and an average value of 90 g/L of H₂O₂ was taken into account. It was found that the strongest environmental impacts were always associated with energy consumption, while the impact of producing and delivering the chemicals was more than 2 orders of magnitude lower than that of energy consumption (Giménez et al., 2015).

Moreover, Ttofa et al. (2017) examined the environmental sustainability of solar photo-Fenton oxidation at pilot scale, using as functional unit the treatment of 1m³ of secondary-treated urban wastewater (initial concentrations: COD 25-27 mg L⁻¹, trimethoprim (TMP) 100 µg L⁻¹ and ofloxacin (OFX) 100 µg L⁻¹), and the complete removal of OFX and TMP and 50% of the COD. In this work also the main environmental hotspot was found to be electricity consumption, while chemical use had an overall low contribution on the total environmental footprint (Ioannou-Ttofa et al., 2017).

The underlying reason for electricity usage being the main hotspot in the lab or pilot scale is mainly attributed to the fact that in these experimental set-ups the effluent that is treated is usually clean water spiked with targeted pharmaceuticals or high quality treated effluent, containing very low concentration of organics. Hence, in these cases very low reagent amounts are required, compared to real effluent which are rich in organic matter.

The large contributions of the reagents, i.e. H₂O₂ and oxalic acid, to the total environmental footprint observed herein is twofold. First, and more importantly, the treatment of real effluent was examined here and therefore its initial organic and micropollutant load was high, thus requiring high amounts of chemical reagents for its effective treatment. In general, the higher the initial organic load the higher the amounts of oxidation reagents, i.e. H₂O₂ and oxalic acid,
are required. Therefore, when a secondary treated effluent with low organic load, such in the case of existing work at bench and pilot scale, is assessed, then only a fraction of chemicals is required. Moreover, in this work electricity was provided directly by a renewable energy source, i.e. solar energy, which is more environmentally friendly from energy mixes based on fossil fuels, such as in the case of Ioannou-Ttofa et al. (2017), which minimized electricity contribution to the total environmental footprint.

4.3 Sensitivity analyses

A sensitivity analysis was carried out to examine the effect of the chemical reagents concentration on the total environmental footprint and how results will be affected if the excess of solar power was fed into the grid. First, the H$_2$O$_2$ concentration was kept constant at optimal conditions (2,500 mgL$^{-1}$) and the ferrous concentration was changed. Four indicative alternative peroxide/ferrous ratios were examined, in addition to the initial scenario (H$_2$O$_2$/Fe=125). The examined ratios along with their treatment efficiencies are as follows: (i) H$_2$O$_2$/Fe=150, TOC removal 74%; (ii) H$_2$O$_2$/Fe=90, TOC removal 65%; (iii) H$_2$O$_2$/Fe= 60, TOC removal 51%, and (iv) H$_2$O$_2$/Fe=30, TOC removal 42%. The 125 H$_2$O$_2$ to iron (mg/mg) ratio, which was the initial scenario that yielded a 79% TOC removal, was found to have the optimal treatment efficiency. When higher or lower H$_2$O$_2$/Fe ratios are examined, then the total environmental footprint is not affected, compared to the treatment efficiency which suffers significant losses.

Another sensitivity analysis was carried out to examine how the total environmental footprint would be affected if the excess of solar power was fed back into the grid. In this case, where two 277 W PV modules are used, it is estimated that about 2.5 kWh/day could be fed back into the local grid while the battery bank will also not be required, thus bringing down the total
environmental footprint of the solar photo-Fenton process to 275.30 mPt, or reducing it by 3.93% reduction compared to the initial scenario, where the CPC plant operates in an autonomous mode. Nonetheless, it should be mentioned that in this case the CPC plant is not as versatile and adaptable and it would not be able to be installed in remote areas. Moreover, if additional PV modules were added in the system, as to solely produce and supply electricity to the grid, then depending on the amount of solar power fed back into the grid the process could have a near zero total environmental footprint. This would not mean that the system would not produce an impact to the environment, but rather that be a trade-off between wastewater treatment and renewable energy generation would be achieved. Therefore, incorporating renewable energy sources (RES), such as solar, in photo-Fenton and in wastewater treatment in general, is a strategy that can minimize environmental impacts and lead towards sustainable and low carbon wastewater treatment.

5. Conclusions

In this work the environmental sustainability of a semi-industrial autonomous solar compound parabolic collector (CPC) plant, based on solar photo-Fenton process assisted with ferrioxalate was assessed. The CPC plant treats effluents emanating from a pharmaceutical laboratory and it operates under Mediterranean climatic conditions, in Ciudad Real, Spain. The environmental sustainability was estimated by means of the life cycle assessment (LCA) methodology. It was found that the chemical reagents used (i.e. mainly hydrogen peroxide (H₂O₂) and to a lesser degree oxalic acid) were the main contributors to almost all impact categories, with marine and freshwater ecotoxicity categories being mostly affected. Therefore, future research should focus on investigating the effect of the effluent’s initial organic loading on the environmental impacts of the process. To be more specific, the higher the initial organic content, the more the
amount of chemical reagents will be required to effectively treat the effluent. As a consequence, the environmental sustainability of the process will be decreased. All in all, results of this work may be a useful tool for researchers, the industry, decision and policy makers, since the effective treatment of pharmaceuticals from real wastewater matrices is a major problem and insight on the environmental sustainability of solar AOPs could help mitigate this problem.

Acknowledgements

Financial support from MINECO (CTM2013-44317-R) is gratefully acknowledged
References

AAB. 2002. Environmental Product Declaration For Electric Motor Type 90S 4 Pole (3GAA092001-ASC). ABB Motors A/S.


Ono, T., Mulholland, E., Koffler, C., Murphy, S. 2015. Life Cycle Assessment of Polypropylene Pressure Piping Systems. aquatherm GmbH.


List of Tables

Table 1: The LCI of the solar driven, semi-industrial, autonomous CPC plant.
<table>
<thead>
<tr>
<th>CPC WWTP configuration</th>
<th>Life span</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land use</td>
<td></td>
</tr>
<tr>
<td>Foundations</td>
<td></td>
</tr>
<tr>
<td>Concrete</td>
<td>20 years</td>
</tr>
<tr>
<td>Reinforced steel</td>
<td>20 years</td>
</tr>
<tr>
<td>Frame</td>
<td></td>
</tr>
<tr>
<td>Aluminium</td>
<td>20 years</td>
</tr>
<tr>
<td>Hourly energy needs</td>
<td></td>
</tr>
<tr>
<td>Electricity</td>
<td>20 years</td>
</tr>
<tr>
<td>Photovoltaic panel</td>
<td></td>
</tr>
<tr>
<td>Atersa A-277P (277W)</td>
<td>20 years</td>
</tr>
<tr>
<td>Battery</td>
<td></td>
</tr>
<tr>
<td>Sonnenschein OPzV</td>
<td>10-15 years</td>
</tr>
<tr>
<td>960 Ah (1.92 kWh)</td>
<td></td>
</tr>
<tr>
<td>pump</td>
<td></td>
</tr>
<tr>
<td>Pan World NH-30PI-Z-D</td>
<td>15 years</td>
</tr>
<tr>
<td>(50W)</td>
<td></td>
</tr>
<tr>
<td>Flowmeter</td>
<td></td>
</tr>
<tr>
<td>Yokogawa ADMAG AXF0259</td>
<td>20 years</td>
</tr>
<tr>
<td>PH-meter</td>
<td></td>
</tr>
<tr>
<td>CRISON Multimeter 44</td>
<td>20 years</td>
</tr>
<tr>
<td>Storage tank</td>
<td></td>
</tr>
<tr>
<td>Polypropylene (PP)</td>
<td>20 years</td>
</tr>
<tr>
<td>Pipping system</td>
<td></td>
</tr>
<tr>
<td>Polypropylene (PP)</td>
<td>20 years</td>
</tr>
<tr>
<td>Compound Parabolic Collectors (CPC)</td>
<td>10 years</td>
</tr>
<tr>
<td>Borosilicate glass tubes;</td>
<td></td>
</tr>
<tr>
<td>Aluminum reflector</td>
<td>10 years</td>
</tr>
<tr>
<td>Reagent</td>
<td></td>
</tr>
<tr>
<td>Hydrogen peroxide</td>
<td>2,500</td>
</tr>
<tr>
<td>Ferrous sulfate</td>
<td>20</td>
</tr>
<tr>
<td>Oxalic acid</td>
<td>120</td>
</tr>
<tr>
<td>Sulfuric acid</td>
<td>1,100</td>
</tr>
<tr>
<td>Sodium hydroxide</td>
<td>10^{-3}</td>
</tr>
<tr>
<td>(scarcely used, only if pH drops below 3)</td>
<td></td>
</tr>
<tr>
<td>Waterborne emissions</td>
<td></td>
</tr>
<tr>
<td>Ferrous ion</td>
<td>2</td>
</tr>
<tr>
<td>Ferric ion</td>
<td>18</td>
</tr>
</tbody>
</table>

Table 1.
List of Figures

Figure 1: System boundaries of the CPC plant.

Figure 2: The main processes of the CPC WWTP and their contribution to the total GHG emissions (CO₂eq).

Figure 3: ReCiPe's midpoint impact categories for the treatment of 1 m³ of pharmaceutical industry wastewater by means of the ferrioxalate assisted homogeneous solar photo-Fenton process.

Figure 4: ReCiPe's normalized midpoint impact categories for the treatment of 1 m³ of pharmaceutical industry wastewater.

Figure 5: ReCiPe's weighted endpoint damage categories per 1 m³ of pharmaceutical effluent treated by the ferrioxalate assisted homogeneous solar photo-Fenton process.
Figure 1.

Figure 2.
Figure 3.

Figure 4.
Figure 5.