Technoeconomic evaluation of multiple MSMPR crystalliser configurations for continuous cyclosporine crystallisation

Citation for published version:

Link:
Link to publication record in Edinburgh Research Explorer

Document Version:
Peer reviewed version

Published In:
Organic Process Research & Development

General rights
Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact openaccess@ed.ac.uk providing details, and we will remove access to the work immediately and investigate your claim.
TECHNOECONOMIC EVALUATION OF MULTIPLE MSMPR CRYSTALLISER CONFIGURATIONS FOR CONTINUOUS CYCLOSPORINE CRYSTALLISATION

Samir Diab, Dimitrios I. Gerogiorgis*

Institute for Materials and Processes (IMP), School of Engineering, University of Edinburgh, The King’s Buildings, Edinburgh, EH9 3FB, United Kingdom

*Corresponding Author: D.Gerogiorgis@ed.ac.uk (+44 131 6517072)

Keywords: Continuous pharmaceutical manufacturing (CPM); Mixed suspension, mixed product removal (MSMPR) Crystallisation; Process modelling and simulation; Cyclosporine; Technoeconomic evaluation
ABSTRACT

Continuous crystallisation using Mixed Suspension-Mixed Product Removal (MSMPR) crystallisers has been demonstrated as a feasible method for implementing continuous separations in pharmaceutical manufacturing processes. This work conducts a steady-state process modelling and simulation study of the continuous cooling crystallisation of cyclosporine, comparing processes with and without solids recycle for their technoeconomic viability. The model describes population balance equations, crystallisation kinetics and process mass balances to compare attainable crystallisation and plantwide yields of different process configurations. Total cost components using established economic analysis methodologies are compared for varying numbers of crystallisers, operating temperatures, total crystalliser cascade residence times and API feed concentrations. Economic analyses and the calculation of normalised cost components with respect to total crystalliser volumes identify the process without recycle as the most economically viable option, achieving the lowest total costs and low E-factors for pharmaceutical processes. The sensitivity of total costs to the selected total residence times for economic analyses highlights the need for rigorous comparison methodologies. This work identifies the need for technoeconomic optimisation studies of continuous crystallisation processes to establish the optimal design of manufacturing campaigns prior to further development.
1. Introduction
Continuous pharmaceutical manufacturing (CPM) has been established as a promising new paradigm with the potential for significant technoeconomic benefits for the pharmaceutical industry. Whilst the current batch manufacturing methods have advantages such as specific product recall, flexible equipment usage and well-established analytical methods for quality control, they imply large material inventories, significant intermediate storage and poor mixing and heat transfer efficiencies. Various demonstrations of continuous flow syntheses, product formulation stages and fully end-to-end production campaigns show the initiative of academic and industrial researchers to facilitate the transition towards continuous methods. Despite these efforts, a stagnancy against wide-spread adoption of CPM exists due to investments in batchwise infrastructures and limited technological expertise in continuous pharmaceutical processes in comparison to current techniques. Furthermore, the limited number of demonstrated continuous pharmaceutical purifications and separations presents a bottleneck to realising the full potential of end-to-end CPM.

Crystallisation is an essential unit operation in pharmaceutical manufacturing prior to downstream processing. Batch crystallisation techniques are currently dominant in the pharmaceutical industry; however, batch-to-batch variability is an issue for the strict purity regulations placed upon pharmaceutical products. Continuous crystallisation operates under steady-state conditions, allowing higher reproducibility and better control of important crystal properties such as the purity and the size distribution, which directly affect the bioavailability of the product; however, as continuous processes do not discharge at equilibrium, they tend to achieve lower yields than batch crystallisations. Systematic investigation of continuous crystallisation processes for pharmaceutical manufacturing is required to realise the attainable benefits compared to existing batch methods.

Continuous crystalliser designs applicable for the pharmaceutical industry are categorised as plug flow (PF), oscillatory baffled crystallisers (OBCs) or Mixed Suspension-Mixed Product Removal (MSMPR) crystallisers. PF crystallisers are suited to systems with fast crystal growth and short residence times and can attain narrow crystal size distributions, but fouling and clogging in narrow tube diameters is an important technical issue. OBCs are another emerging technology, which enhance heat and mass transfer, but have issues handling streams with high solid loadings. Various experimental and modelling studies have been conducted for the estimation of crystallisation kinetics, proof-of-concept demonstrations and design and optimisation processes.

MSMPR crystallisers are idealised stirred tank designs better suited for systems with slower crystallisation kinetics and can easily be adapted from existing jacketed agitated vessels for continuous applications. For this reason, MSMPR crystallisers to produce active pharmaceutical ingredients (APIs) have been demonstrated in several experimental and theoretical studies. The continuous crystallisation of aliskiren hemifurate using two MSMPR crystallisers achieved both high yield and purity; growth and nucleation kinetic parameters were regressed, and yields and purities were optimised by varying MSMPR residence time and operating temperature. The design was subsequently implemented into a CPM pilot plant. Significant work in the MSMPR crystallisation of paracetamol has been made using a series of crystallisers with the additional consideration of filtration units, slurry transfer and membrane separations to further develop these processes. Furthermore, various studies have used MSMPR crystallisers to control attainable crystal size distributions, polymorphic states and perform enantiomeric separations for different products.

Experimental studies are often coupled with process modelling and simulation methodologies to construct predictive models to screen various process conditions and configurations whilst circumventing time and financial investments. Computational studies for the MSMPR crystallisation of various APIs are demonstrated in the literature. A recent study conducted rigorous mathematical modelling and control around a steady-state set point for the MSMPR crystallisation of paracetamol, demonstrating reduced residence times and comparable yields with the batch process.

Another API whose continuous crystallisation has been demonstrated in MSMPR crystallisers is cyclosporine. Cyclosporine is an immunosuppressant drug listed on the World Health Organisation (WHO) Essential List of Medicines for the prevention of organ transplant rejection with additional applications in the treatment of psoriasis, rheumatoid arthritis and dermatitis.
cooling crystallisation of cyclosporine in MSMPR crystallisers has been investigated via experimental and process modelling studies in the literature; growth and nucleation kinetic parameters have been established,52 and the viability of configurations with various recycle options53–55 have been considered in the literature. Process configurations with mother liquor recycle have been investigated,55 but decreases in purity (<96%) as a result of recycling made the process inferior to configurations with and without solids recycle.53,54 The choice of recycle option significantly affects the type and capacity of equipment required, and the selection of feasible and viable operating regimes is paramount to successful process development.56,57 Experimental work has yet to conduct fully rigorous, systematic comparisons of feed conditions, operating temperatures, recycle ratios and feed point locations on the performance of continuous cyclosporine crystallisations. A systematic technoeconomic analysis comparing different flowsheets is also yet to be conducted; costing of different configurations aids the elucidation of the best candidate process prior to scale-up.58

This paper describes the steady-state process modelling for a systematic technoeconomic comparison of two flowsheet configurations for continuous cyclosporine crystallisation in MSMPR crystallisers: the process without recycle and the process with solids recycle, based on experimentally demonstrated configurations.53,54 First, we describe the different flowsheets and operating variables considered in each configuration. We then describe the process modelling methodologies, combining fundamental population balance equations, crystallisation kinetics and process mass balances for MSMPR crystallisation. Calculated attainable crystallisation and plantwide yields and material efficiencies are compared for different configurations to establish the most promising candidate configurations for cost comparison. Subsequently, we conduct an economic analysis to compare candidate processes to evaluate the most viable configuration for application. Finally, discussion of the results and conclusions on the technoeconomic viability of different continuous processes for cyclosporine crystallisation are presented with an outlook to future work in this vibrant research field.

2. Process Flowsheets

Here, we present flowsheet configurations and their operating variables for continuous cyclosporine crystallisation. All configurations are based upon experimental demonstrations for continuous cyclosporine crystallisation from acetone.53,54 All plant designs are specified to produce 100 kg of cyclosporine per annum under steady-state conditions, consistent with our recent publications.59–63 The desired plant capacity can easily be altered in the proposed framework.

Figure 1 shows the flowsheet for the MSMPR crystallisation of cyclosporine without recycle based on recent experiments.53 This configuration features a cascade of MSMPR crystallisers for continuous cyclosporine crystallisation with slurry transfer between crystallisers using peristaltic pumps.

Figure 2 shows the flowsheet for the MSMPR crystallisation of cyclosporine with solids recycle.54 A gravity-driven separation following the final crystalliser in the cascade allows a concentrated solid slurry to be recycled back to the crystalliser cascade. We do not consider the effect of particle size distributions in this work as downstream processes such as wet-milling are not considered. The extent of solids recycle to each crystalliser is altered by varying the amount of material fed back to the process from the bottom of the gravity-driven separator. The concentration of the recycled solid slurry is controlled by the clear liquor removal ratio ($\alpha = F_{2N+2} / F_N = 0.287$, as in the experimental demonstration54); the removed mother liquor from the top of the column (F_{2N+2}) and that in the product magma (F_{2N+3}) is discarded as waste.
The experimental demonstrations of these process configurations separate cyclosporine via cooling crystallisation, without the need for any antisolvent or source of counter-ions for salt formation, from a crude sample in acetone containing up to 19 different impurities.53,54 For this reason, the authors explicitly consider purity as an additional measure of crystallisation performance. Due to the variation of sample compositions that will be present in real processes, we do not consider the effect of different process configurations on cyclosporine crystal purity in this work. It is assumed that the feed stream of cyclosporine in acetone contains negligible amounts of impurities that would affect the crystal purity attained in these processes. In real applications, consideration of crystal purity is imperative for application to meet the strict purity requirements of pharmaceutical processes.16

![Figure 2: MSMPR crystallisation of cyclosporine with solids liquor recycle.54](image)

For both processes with and without solids recycle, we consider implementing one, two or three crystallisers in series. Total residence times of 1-15 hours operation of the whole cascade are considered. For multiple MSMPRs, the operating temperature of the first crystalliser (T_1) is varied (10, 15 and 20 °C) and a final crystalliser temperature (T_N) of 0 °C is chosen, with linear temperature decrease from T_1 to T_N from the beginning to the end of the cascade. These operating variables are similar to those used in the experimental demonstrations.53,54

For the process without recycle, the effect of the API feed concentration is also considered to demonstrate the sensitivity of designs to varying feed conditions; feasible feed concentrations of 20, 25 and 30% w/w are considered here. The effect of solute feed concentration on MSMPR crystallisation performance has not been previously considered for continuous cyclosporine crystallisation.

For the processes with solids recycle, experimental demonstrations have considered a total solids recycle extent of 90%, \textit{i.e.} 90% of slurry exiting the bottom of the gravity-driven separator is fed back to the crystallisation process.54 In this work, we compare total solids recycles of 50, 70 and 90%. We also conduct a systematic comparison of varying the feed point location of the solid recycle stream \textit{via} four different scenarios: the entire recycle stream fed to the first, second or third crystallisers only or the recycle stream equally split between all crystallisers in the cascade.

3. Steady-State Process Model and Simulation Methods

The following assumptions are involved in the formulation of the steady-state MSMPR model:64

1. The fresh feed stream to the process is a homogeneous mother liquor containing no API crystals.
2. Crystallisation birth occurs by nucleation and crystal growth is linear. Growth is size-independent \textit{(i.e. McCabe’s ΔL law applies)} and there is no crystal breakage or attrition.
3. Product magma discharges at equilibrium from all crystallisers, \textit{i.e.} the mother liquor exiting the crystalliser is saturated.
4. The contents of the crystalliser are perfectly mixed, \textit{i.e.} the supersaturation field in the crystalliser is uniform, and the product magma has the same composition as the crystalliser contents.

All flowsheets and plant designs produce 100 kg of cyclosporine per annum. The steady-state process models for all flowsheet configurations describe one-dimensional crystallisation kinetics,
population balance equations and process mass balances. Simultaneous solution of these equations
describes continuous crystallisation in a series of MSMPR crystallisers.

The proposed framework models steady-state MSMPR crystallisation of cyclosporine; MSMPR

crystallisers are operated continuously and thus steady-state is the dominant mode of operation during

API production. The consideration of dynamic operation (e.g. for start-up procedures) requires

extended modelling and solution of PDEs, which is outwith the scope of this work, but has been

investigated in the literature.49,65

3.1 Crystallisation Kinetics

The crystallisation kinetics equations describe the linear growth and nucleation rates of API crystals

as a function of the supersaturation and operating temperature of the MSMPR crystallisers. The linear
crystal growth rate in MSMPR \(i \), \(G_i \), is described by the following power law expression:18

\[
G_i = k_{g0} \exp \left(-\frac{E_{ag}}{R(T_i + 273.15)} \right) \left(\frac{C_i}{C_{i}^{\text{sat}}} - 1 \right)^g
\]

(1)

\(k_{g0} \) is the pre-exponential growth factor, \(E_{ag} \) is the growth energy barrier, \(R \) is the universal gas
constant, \(T_i \) is the operating temperature of MSMPR \(i \), \(C_i \) is the API concentration in the mother liquor
within and discharged from MSMPR \(i \) and \(g \) is the crystal growth exponent. The API saturation
concentration, \(C_{i}^{\text{sat}} \), is a function of \(T_i \), calculated \textit{via} a surrogate polynomial regressed from published

temperature-dependent saturation data for cyclosporine.55

\[
C_{i}^{\text{sat}} = \left(1.165 \times 10^{-4} \right) T_i^2 + \left(2.000 \times 10^{-4} \right) T_i + 0.047
\]

(2)

The nucleation rate in MSMPR \(i \), \(B_i \), is described by the power law expression:18

\[
B_i = k_{b0} \exp \left(-\frac{E_{ab}}{R(T_i + 273.15)} \right) \left(\frac{C_i}{C_{i}^{\text{sat}}} - 1 \right)^b M_i^m
\]

(3)

\(k_{b0} \) is the pre-exponential factor for nucleation, \(E_{ab} \) is the nucleation energy barrier, \(b \) is the crystal
nucleation exponent, \(M_i \) is the slurry density in MSMPR \(i \) and \(m \) is the exponent of the slurry density.

All crystallisation kinetic parameters taken from previous work are listed in Table 1.54

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k_{g0})</td>
<td>(1.13 \times 10^7)</td>
<td>m min(^{-1})</td>
</tr>
<tr>
<td>(E_{ag}/R)</td>
<td>(9.06 \times 10^3)</td>
<td>K</td>
</tr>
<tr>
<td>(k_{b0})</td>
<td>(4.80 \times 10^{20})</td>
<td># m(^{-3}) min(^{-1})</td>
</tr>
<tr>
<td>(E_{ab}/R)</td>
<td>(7.03 \times 10^4)</td>
<td>K</td>
</tr>
<tr>
<td>(g)</td>
<td>1.33</td>
<td>—</td>
</tr>
<tr>
<td>(b)</td>
<td>1.50</td>
<td>—</td>
</tr>
<tr>
<td>(m)</td>
<td>2/3</td>
<td>—</td>
</tr>
</tbody>
</table>

MSMPR crystallisers are applicable for substances with slow crystallisation kinetics. The
proposed framework can be implemented for any API whose crystallisation kinetics are slow, for
which physical properties and crystallisation kinetic parameters are available and whose solubility
varies significantly with temperature (i.e. API separation is amenable to cooling crystallisation) can be
modelled.
3.2 Population Balance Equations

The general one-dimensional population balance model is described by a system of ordinary differential equations (ODEs).

\[G_i V_i \frac{dn_i}{dL} = F_{N+i} n_{N+i} - F_i n_i \quad (4) \]

\[G_i V_i \frac{dn_i}{dL} = F_{i-1} n_{i-1} + F_{N+i} n_{N+i} - F_i n_i \quad i = 2 \ldots N. \quad (5) \]

\(F_{i-1} \) and \(F_i \) are the volumetric flowrates of streams entering and leaving MSMPR \(i \), respectively, \(F_{N+i} \) is the recycle volumetric flowrate entering MSMPR \(i \), \(N \) is the total number of crystallisers, \(n_i \) is the crystal population density function in MSMPR \(i \) and \(L \) is the characteristic length of the crystal. For the process without recycle, \(F_{N+i} \) terms equal to zero. The system of ODEs formed by the population balance equations are satisfied by the boundary condition, \(n_i^0 = n_i(L = 0) \), corresponding to the population density of nuclei.

\[n_i^0 = \frac{B_i}{G_i} \quad (6) \]

The slurry density in MSMPR \(i \), \(M_i \), is calculated from the population density function as follows:

\[M_i = k_v \rho_{API} \int n_i L^3 dL \quad (7) \]

\(k_v \) is the crystal volume shape factor (= \(\pi/6 \) for spherical crystals, assumed constant for linear crystal growth) and \(\rho_{API} \) is the API crystal density. A typical value of \(\rho_{API} = 1.3 \text{ g cm}^{-3} \) for solid APIs\(^{66}\) is assumed here due to the lack of physical property data for cyclosporine.

3.3 Process Mass Balances

The steady-state mass balances for each process assume no material accumulation and account for volumetric changes due to API crystallisation. The general mass balance equations for processes are:

\[F_0 C_0 + F_{N+1} \left(1 - \frac{M_{N+1}}{\rho_{API}} \right) C_N + F_{N+1} M_{N+1} - F_1 \left(1 - \frac{M_1}{\rho_{API}} \right) C_1 - F_1 M_1 = 0 \quad (8) \]

\[F_{i-1} \left(1 - \frac{M_{i-1}}{\rho_{API}} \right) C_{i-1} + F_{i-1} M_{i-1} + F_{N+i} \left(1 - \frac{M_{N+i}}{\rho_{API}} \right) C_N + F_{N+i} M_{N+i} - F_i \left(1 - \frac{M_i}{\rho_{API}} \right) C_i - F_i M_i = 0 \quad i = 2 \ldots N. \quad (9) \]

\(F_0 \) and \(C_0 \) are the volumetric flowrate and mother liquor API concentration of the fresh feed stream, respectively. For the process without recycle, \(F_{N+i} \) terms equal to zero.

For the solids recycle case, an additional mass balance around the gravity-driven separator is required:

\[M_{N+1} = \frac{M_N}{(1-x)} \quad (10) \]

where \(x \) is the clear liquor removal ratio.

For all processes, an API balance across mother liquor and crystallised solid phases also gives the following expression for the slurry density from the process mass balances:

\[M_i = C_{i-1} - C_i \quad (11) \]
3.4 Process Yields

The crystallisation yield is calculated from the mother liquor API concentration exiting the final crystalliser relative to the feed concentration.

\[Y_{\text{crystallisation,NR/SR}} = 100 \left(1 - \frac{C_N}{C_0} \right) \]

(12)

The plantwide yield is calculated from the amount of crystallised API in the product magma stream relative to the total mass of API in the process mother liquor feed stream. For the process without recycle the crystallisation and plantwide yields are equal, i.e. the product stream is that leaving the final crystalliser \((F_N \text{ in Figure 1}) \). For the process with solids recycle, the product stream is the concentrated magma leaving the bottom of the gravity-driven separator withdrawn as product (not recycled, \(F_{2N+3} \text{ in Figure 2} \)). For the process with solids recycle, the plantwide yield is calculated from the mass of crystallised API withdrawn from the bottom of the gravity-driven separator as product (in \(F_{2N+3} \) in Figure 2) relative to the amount in the feed mother liquor to the process \((F_0) \).

\[Y_{\text{plantwide,NR}} = Y_{\text{crystallisation,NR}} \]

(13)

\[Y_{\text{plantwide,SR}} = 100 \left(\frac{F_{2N+3}M_{N+1}}{F_0C_0} \right) \]

(14)

3.5 Environmental Impact Assessment

A measure of the environmental impact of different processes is essential in addition to the calculation of attainable crystallisation and plantwide yields. Measuring the material efficiency of a process provides an indication of the amount of waste that will be produced, which in turn is a measure of the environmental impact of the process. Green chemistry metrics allow the quantitative comparison of the material efficiencies of different processes. The choice of an appropriate green chemistry metric depends upon the studied process. The environmental (E)-factor is a commonly used, flexible green chemistry metric that quantifies the mass of waste produced per unit mass of desired product.

\[E = \frac{m_{\text{waste}}}{m_{\text{API}}} \]

(15)

We quantify the material efficiencies of different flowsheet configurations via the E-factor in this work. For all configurations, waste components are considered as the unrecovered mother liquor streams. The process with solids recycle has unrecovered mother liquor leaving with the product magma from the final crystalliser \((F_N \text{ in Figure 1}) \); the process with solids recycle has mother liquor removed from the top and bottom of the column \((F_{2N+2} \text{ and } F_{2N+3} \text{ in Figure 2, respectively}) \).

3.6 Calculation of Crystalliser Volumes

The calculation of required crystalliser volumes is required for solutions of the population balance equations in the steady-state process model and for accurate cost calculations. Required crystalliser volumes are calculated from the total residence time of the MSMPR cascade and the process volumetric flowrates of the process. For \(N \) crystallisers in series, the residence time of each crystalliser is considered as the total cascade residence time divided by \(N \); thus, the required crystalliser volume is calculated as

\[V_N = F_1 \tau_i = \frac{F_1 \tau_{\text{total}}}{N} \]

(16)

The model considers the residence times of the main process stream in the MSMPR crystallisers only. The residence times of streams in the solids recycle loop are not considered here due to the small API capacity and crystalliser volumes. The effect of recycle stream residence times will become more significant for increased plant capacities and should be considered for scale-up studies. For subsequent economic analyses, volumetric flowrates and crystalliser volumes are scaled to account for crystallisation and plantwide inefficiencies.
3.7 Algorithm and Code Structure

Figure 3 shows the algorithm flow chart for the solution of different process configurations for continuous cyclosporine crystallisation in MSMPR crystallisers. An initial guess must be made for the vector of outlet concentrations of each MSMPR crystalliser (C_i), which must lie between the crystalliser inlet concentration (C_{i-1}) and the saturation concentration (C_{i}^{sat}) at T_i; this guess is close to the saturation concentration for each crystalliser, which allowed convergence when validating the model versus experimental results.53,54,69 The slurry densities in each crystalliser (M_i) are computed which are used to solve mass balances for the process’ volumetric flowrates. Required crystalliser volumes are calculated from the total cascade residence time and the calculated volumetric flowrates. Crystallisation kinetics, stream flowrates and crystalliser volumes are then incorporated into the population balance equations. The population balance equations are then solved and the slurry densities are calculated. The difference between the slurry densities calculated from the mass balance equations and the population balance solutions form a system of nonlinear equations that is solved by iteration upon the vector of C_i values.

The process model is implemented and solved in MATLAB. The population balance equations form a system of stiff ODEs which are solved using the built-in solver ode15s. The system of nonlinear equations formed by the differences between slurry densities calculated from mass balances and population balance equations is solved using the built-in solver fsolve (with tolerances of 10^{-6}). A variety of initial guesses for C_i gave the same converged results for all values used. The process model has been validated by replicating process yields for various experimental studies.53,54,69
Figure 3: Algorithm flowchart for the solution of the steady-state process model for continuous cyclosporine crystallisation in MSMPR crystallisers.

4. Economic Analyses
Systematic cost analyses are essential to inform the selection of economically viable process options. Our recent work59–63 has utilised an established methodology for costing batch and CPM processes.58 The studied processes are assumed to be implemented at an existing pharmaceutical manufacturing site with essential auxiliary structures already in place. 8,000 hours of operation per year is considered. Here, we describe the costing methodology used in this work.

4.1 Capital Expenditure (CapEx)
Prices for equipment of similar capacities to those considered here have been sourced where possible; when such data is unavailable, the following cost-capacity correlation is used:70

\[
P_B = f P_A \left(\frac{S_B}{S_A} \right)^n \tag{17}
\]

\(P_B\) is the equipment purchase cost at capacity \(S_B\). The exponent \(n\) depends on the equipment item. Varying design considerations between different equipment capacities are accounted for \textit{via} the factor \(f\). Values of \(n\) and \(f\) are found in the literature. Where the reference purchase cost \((P_A)\) is taken from the past, chemical engineering plant cost indices (CEPCIs) are used to account for inflation. All equipment capacities are scaled to account for plantwide inefficiencies to meet the specified plant
capacity. MSMPR crystallisers are modelled as forced circulation crystallisers, peristaltic pumps are used for feed transfer, recycle and product streams,53,54 and the gravity-driven separator is modelled as a solid settler. Table 2 gives details for the purchase costs and scaling parameters in equation 17 for each equipment item used in processes with and without solids recycle.

<table>
<thead>
<tr>
<th>Item</th>
<th>Ref. Year</th>
<th>Ref. Cost, P_A (GBP)</th>
<th>Capacity Basis</th>
<th>Ref. Capacity, S_A (m³)</th>
<th>n (%)</th>
<th>f (%)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crystalliser</td>
<td>2007</td>
<td>328,875</td>
<td>m³</td>
<td>3.00</td>
<td>0.53</td>
<td>10.33</td>
<td>(70)</td>
</tr>
<tr>
<td>Pump</td>
<td>2015</td>
<td>958</td>
<td>—</td>
<td>—</td>
<td>1.00</td>
<td>—</td>
<td>(71)</td>
</tr>
<tr>
<td>Gravity-Driven Separator</td>
<td>2007</td>
<td>207,900</td>
<td>L s⁻¹</td>
<td>58</td>
<td>0.64</td>
<td>10.33</td>
<td>(70)</td>
</tr>
</tbody>
</table>

The sum of all inflation-adjusted equipment purchase costs gives the Free-on-Board (FOB) cost. The Chilton method is used to calculate the Battery Limits Installed Cost (BLIC).72 The installed equipment cost (IEC) is calculated as 1.43 times the FOB. Process piping and instrumentation (PPI) costs are calculated as 42% of IEC, respectively. The sum of IEC and PPI gives the total physical plant cost (TPPC). A construction factor of 0.3 is added to TPPC to calculate the BLIC.58

\[
IEC = 1.43 FOB \tag{18}
\]

\[
PPI = 0.42 IEC \tag{19}
\]

\[
TPPC = IEC + PPI \tag{20}
\]

\[
BLIC = 1.3 TPPC \tag{21}
\]

Working capital costs are taken as 3.5% of annual material costs (MAT_{annual}).58 Contingency costs (CC) are calculated as 20% of the BLIC. The sum of working capital and contingency costs (WCC) and BLIC gives the total capital expenditure (CapEx) of the process.58

\[
WC = 0.035 MAT_{annual} \tag{22}
\]

\[
CC = 0.2 BLIC \tag{23}
\]

\[
WCC = WC + CC \tag{24}
\]

\[
CapEx = BLIC + WCC \tag{25}
\]

4.2 Operating Expenditure (OpEx)

Annual operating expenditure ($OpEx_{annual}$) is calculated as the sum of annual material (MAT_{annual}), utilities and waste disposal (UW_{annual}) costs. Material purchase prices are sourced from various vendors. All material requirements are scaled to account for plantwide inefficiencies to meet the specified plant capacity (100 kg per annum). Annual utilities costs ($UTIL_{annual}$) are calculated as 0.96 GBP per kg of material input (total feed mother liquor);58 a coefficient of 460.8 is used to convert the mass flowrate to kg y⁻¹ for economic analysis calculations. Annual waste costs ($Waste_{annual}$) are 0.35 GBP per L of waste produced;58 a coefficient of 168 is used to convert the volumetric flowrate to L y⁻¹.

\[
UTIL_{annual} = 460.8 F_0 \left(\frac{\rho_{acetone} + C_0}{\rho_{acetone}} \right) \tag{26}
\]

\[
Waste_{annual} = 168 F_N \left(\frac{1}{\frac{M_N}{\rho_{acetone}}} \right) C_N + \rho_{acetone} \tag{27}
\]

\[
UW_{annual} = UTIL_{annual} + Waste_{annual} \tag{28}
\]

\[
OpEx_{annual} = MAT_{annual} + UW_{annual} \tag{29}
\]

We consider all mother liquor unrecovered for all process configurations. Labour costs are not considered here due to the small scale of production and automated nature of continuous operation.
4.3 Total Costs

The total cost of the plant designs is calculated as the sum of CapEx and inflation-adjusted OpEx over the plant lifetime.

\[
\text{Total Costs} = \text{CapEx} + \sum_{k=1}^{\tau} \frac{\text{OpEx}_{\text{annual}}}{(1+r)^k}
\]

(30)

where CapEx is the sum of BLIC and WCC (eq. 25) and OpEx_{annual} is the sum of MAT_{annual} and UW_{annual} adjusted for inflation over the total plant lifetime. Total material and utilities and waste disposal costs (the sum of which give the total OpEx, OpEx_{total}) are calculated and adjusted for inflation over the total plant lifetime.

\[
\text{MAT}_{\text{total}} = \sum_{k=1}^{\tau} \frac{\text{MAT}_{\text{annual}}}{(1+r)^k}
\]

(31)

\[
\text{UW}_{\text{total}} = \sum_{k=1}^{\tau} \frac{\text{UW}_{\text{annual}}}{(1+r)^k}
\]

(32)

\[
\text{OpEx}_{\text{total}} = \text{MAT}_{\text{total}} + \text{UW}_{\text{total}}
\]

(33)

A plant-operating lifetime (\(\tau\)) of 20 years and an interest rate (\(r\), accounting for inflation) of 5% are considered. All CapEx is assumed to occur in year 0 and operation is assumed to begin in year 1.

The most economically viable process is that which ultimately achieves the lowest total costs and environmental impact (i.e. E-factors) over the specified plant lifetime. Total costs (CapEx and OpEx components) are systematically compared for each entire process configuration.

5. Results and Discussion

5.1 Attainable Yields and Material Efficiencies

5.1.1 No Recycle

The effect of API feed concentration was considered for the continuous cyclosporine crystallisation without recycle. Figure 4 shows the attainable yields for a varying number of crystallisers and total MSMPR cascade residence time of 12 h. The results show that the considered API feed concentration has a significant impact on the attained yield; this is an important variable to consider due to potential fluctuations in feed composition to a continuous crystallisation process. Consideration of unit operations required to meet the feed concentration for a designed crystallisation process is paramount to successful operation, and should be considered as part of further investigations encompassing upstream unit operations prior to crystallisation.
Figure 4: Attainable crystallisation (plantwide) yields, $Y_{\text{crystallisation,SR}} = \left(1 - \frac{C_N}{C_0}\right) \cdot 100\%$, for continuous cyclosporine crystallisation without recycle (total cascade residence time = 12 h).

The results also show that increasing the number of crystallisers and decreasing the operating temperature leads to an increase in yield. Reducing the operating temperature in a crystalliser increases supersaturation, which enhances the yield. Increasing the number of crystallisers over which cooling to the target temperature is attained also enhances the yield as well as reducing the specific cooling duty per crystalliser.64

The effect of varying the total cascade residence time for the process without recycle was then investigated. Figure 5 shows the attainable yields as a function of the number of crystallisers, the operating temperature and the total cascade residence time for a feasible API feed concentration of 25% w/w. The results show flattening profiles for all process configurations beyond a total cascade residence time of 9 h, from which there are only incremental increases in attainable yield. It is also observed that using three crystallisers and operating the first crystalliser at 10 °C gives the highest attainable yields for any total residence time considered. These results show that using multiple crystallisers allows higher attainable yields than a single crystalliser for the same total residence time for certain operating temperatures.

Figure 5: Attainable crystallisation (plantwide) yields, $Y_{\text{crystallisation,NR}} = \left(1 - \frac{C_N}{C_0}\right) \cdot 100\%$, for continuous cyclosporine crystallisation without recycle as a function of total residence time ($C_0 = 25\%$ w/w).

Figure 6 shows the E-factors for the process without recycle corresponding to the attainable yields presented in Figure 5. The process configuration with no recycle achieves very low E-factors due to the high attainable yields and simplicity of the process in comparison with other purification and separation technologies, e.g. liquid-liquid extraction or antisolvent crystallisation that require an
additional solvent to induce phase separation. The E-factor can be as high as 200 for batch-dominated processes such as those implemented in the pharmaceutical industry, whereas continuously-operated manufacturing methods such as petroleum-based processes can have E-factors as low as 0.1. Pharmaceutical processes also have typically high E-factors due to the inherent complexity of such processes involving multistep syntheses, intermediate workups and purifications and downstream operations required to meet the strict product standards placed on pharmaceutical products.

5.1.2 Solids Recycle

Figure 7 shows the calculated attainable crystallisation yields for the process with solids recycle (i.e. the amount of API crystallised from mother liquor in the stream exiting the final crystalliser, F_N) for an API feed concentration of 25% w/w. Crystallisation yields improve with increasing recycle ratio due to the greater crystal surface area in the crystalliser. The effect of the recycle feed point location has also been investigated. It is shown that feeding the solids recycle stream to the final crystalliser provides the greatest yields for all operating temperatures and residence times considered. The effect of these different extents of recycle and feed point location directly affects the required crystalliser volumes, which will impact the CapEx of the process; economic analyses can further elucidate the most viable process configuration. It is also shown in Figure 7 that certain recycle ratios (e.g. 90%) attain higher crystallisation yields when using a single crystalliser instead of multiple units. This result highlights the need for systematic screening of different process options to establish viable configurations.

Figure 6: E-factors for continuous cyclosporine crystallisation without recycle.

Figure 8 shows the plantwide yields (i.e. the amount of solid API removed as product from the bottom of the gravity-driven separator in stream F_{2N+3}) following gravity-driven separation for the process with solids recycle. In contrast to the results for crystallisation yields (Figure 7), increasing the recycle ratio leads to a decrease in plantwide yield. This is due to the increased amount of mother liquor containing uncrystallised API which is discharged from the top and bottom of the gravity-driven separator with increasing recycle ratios. This also incurs a decreased plant productivity due to the increasing amount of solids fed back to the crystalliser cascade as opposed to being withdrawn as product. This effect is a consequence of the flowsheet configuration we have modelled here, based upon the demonstrated experimental setup. This is an important implication when considering the design and implementation of continuous crystallisation processes. The loss of API in mother liquor streams can be controlled by altering the clear mother liquor removal ratio (x), but this will also affect the attainable crystallisation yield. Further investigation via a wider multivariate analysis of the process with solids recycle is required to identify the best configuration for this process.
Figure 7: Attainable crystallisation yields, $Y_{\text{crystallisation},SR} = \left(1 - \frac{C_N}{C_0} \right) \cdot 100\%$, for continuous cyclosporine crystallisation with solids recycle as a function of total residence time ($C_0 = 25$ w/w %).
Figure 8: Attainable plantwide yields, $Y_{\text{plantwide,SR}} = \left(\frac{F_{N+1}M_{N+1}}{F_0C_0} \right) \cdot 100\%$, for the continuous crystallisation of cyclosporine with solids recycle as a function of total cascade residence time ($C_0 = 25\ w/w\ \%$).
Figure 9: Plantwide E-factors for the continuous cyclosporine crystallisation with solids recycle as a function of total cascade residence time ($C_0 = 25\ \text{w/w\%}$).
Figure 9 shows the E-factors corresponding to the plantwide yields for the process with solids recycle. The waste streams of the process with solids recycle are the mother liquor streams removed from the top and bottom of the gravity-driven separator. For increased recycle ratios, the E-factors of different process options increase due to the decreasing plantwide yields with increasing recycle ratio. This is due to the increased amount of mother liquor which is discharged from the process as waste with increasing recycle ratio, as well as the increased material requirements needed to account for plantwide inefficiencies to meet the specified plant capacity. Despite the elevated E-factors for higher recycle ratios, the values for all processes considered are acceptable for pharmaceutical processes.

5.2 Crystalliser Volume Design
From the calculated attainable crystallisation and plantwide yields presented, it is shown that beyond certain residence times, there is no appreciable increase in yield. Designing cascades with longer residence times (i.e. crystallisers with working volumes significantly larger than necessary) will result in economically unviable process designs. The effect of different process configurations impacts the total crystalliser volumes required which directly affects the capital costs of the design. We calculate crystalliser volumes as a function of operating temperature, the number of crystallisers and the extent and feed point location of solids recycle. Maximum residence times beyond which there is no appreciable increase in yield (considered to be <1% relative increase in yield) were selected for economic analyses of different process options, which are shown in Table 3.

Table 3: Total cascade residence times (h) used for economic analyses, corresponding to maximum yields.

<table>
<thead>
<tr>
<th>No Recycle</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td># MSMPRs</td>
<td>Recycle Feed Point</td>
<td>0</td>
<td>10</td>
<td>15</td>
</tr>
<tr>
<td>1</td>
<td>n/a</td>
<td>9</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>2</td>
<td>n/a</td>
<td>—</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>n/a</td>
<td>—</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Solids Recycle = 50%

<table>
<thead>
<tr>
<th># MSMPRs</th>
<th>Recycle Feed Point</th>
<th>0</th>
<th>10</th>
<th>15</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MSMPR 1</td>
<td>6</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>MSMPR 1</td>
<td>—</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>MSMPR 2</td>
<td>—</td>
<td>3</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Equal Distribution</td>
<td>—</td>
<td>3</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>MSMPR 1</td>
<td>—</td>
<td>3</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>MSMPR 2</td>
<td>—</td>
<td>3</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>MSMPR 3</td>
<td>—</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Equal Distribution</td>
<td>—</td>
<td>3</td>
<td>3</td>
<td>6</td>
</tr>
</tbody>
</table>

Solids Recycle = 70%

<table>
<thead>
<tr>
<th># MSMPRs</th>
<th>Recycle Feed Point</th>
<th>0</th>
<th>10</th>
<th>15</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MSMPR 1</td>
<td>6</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>MSMPR 1</td>
<td>—</td>
<td>3</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>MSMPR 2</td>
<td>—</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Equal Distribution</td>
<td>—</td>
<td>3</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>MSMPR 1</td>
<td>—</td>
<td>3</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>MSMPR 2</td>
<td>—</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MSMPR 3</td>
<td>—</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>Equal Distribution</td>
<td>—</td>
<td>3</td>
<td>6</td>
<td>3</td>
</tr>
</tbody>
</table>

Solids Recycle = 90%

<table>
<thead>
<tr>
<th># MSMPRs</th>
<th>Recycle Feed Point</th>
<th>0</th>
<th>10</th>
<th>15</th>
<th>20</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>MSMPR 1</td>
<td>3</td>
<td>—</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>MSMPR 1</td>
<td>—</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MSMPR 2</td>
<td>—</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Equal Distribution</td>
<td>—</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>MSMPR 1</td>
<td>—</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MSMPR 2</td>
<td>—</td>
<td>1</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>MSMPR 3</td>
<td>—</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Equal Distribution</td>
<td>—</td>
<td>1</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
5.2.1 No Recycle

Required crystalliser volumes for the process without recycle are shown in Figure 10. Increasing the number of crystallisers allows significantly lower total crystalliser volumes due to the higher yields attainable at shorter residence times. When multiple crystallisers are used, the operating temperature has only a small effect on the total crystalliser volume due to its small effect on the process yields. When three crystallisers are used, operating the first crystalliser at 20 °C leads to a significant increase in total crystalliser volume (compared to operating at 10 and 15 °C) due to the longer residence time, and thus total crystalliser volume, required to reach the maximum attainable yield.

![Figure 10: Calculated crystalliser volumes for residence times provided in Table 3 for the process with no recycle.](image)

5.2.2 Solids Recycle

Required crystalliser volumes for the process with solids recycle are shown in Figure 11, corresponding to the maximum residence times listed in Table 3. Similar effects of increasing the number of crystallisers and varying operating temperatures are observed as for the process without recycle.

Increasing the extent of recycle leads to larger crystalliser volumes as the internal flowrates of the system become larger. The effect of feed point location on crystalliser volumes is also important; when the recycle stream is fed to the first crystalliser, all crystallisers have similar volumes as a large volumetric flowrate passes through all. A similar effect is observed when the recycle stream is equally distributed between all crystallisers. However, when the recycle stream is fed to the second or third crystallisers, only these crystallisers must be larger than the previous to accommodate the higher throughput.

5.3 Economic Analyses

In this section, we present the results of the economic analyses of different process options for the established maximum residence times listed in Table 3. Crystalliser purchase costs are a significant portion of BLIC, and thus the CapEx, and so correlating crystalliser volumes with process costs provides insight to differences in total costs between different process configurations. We then present total cost components for all configurations computed using the established economic analysis methodology described previously.58

5.3.1 No Recycle

Figure 12 shows the total costs and the contributing components of different configurations for the process without recycle. In all scenarios, the BLIC contributes the most significant portion of CapEx;
WCC provides a lesser contribution to CapEx due the automated nature of continuous manufacturing processes. The process using a single crystalliser operating at 0 °C has the lowest total costs due to the significantly reduced CapEx (BLIC and WCC) costs. This result shows that increasing the number of crystallisers, and thus the number of associated pumps, has a significant impact on the total costs of the plant at this operating scale per the cost correlations used.

Figure 11: Calculated crystalliser volumes for residence times provided in Table 3 for the process with solids recycle.

![Diagram of crystalliser volumes](image)
The most significant contribution towards OpEx is utilities and waste handling (UW). Material costs for this process are relatively small due to the nature of the crystallisation process, \textit{i.e.} we only consider cooling crystallisation of an API from a mother liquor. Material costs for more elaborate processes (\textit{e.g.} encompassing syntheses, workups and purifications prior to crystallisation) are much more significant in comparison to the continuous cooling crystallisation process considered here. It is also observed that OpEx components (materials, utilities and waste) are relatively consistent across all scenarios for the process with no recycle; this is due to the material requirements and waste quantities being relatively similar across all processes, despite the varying number of crystallisers and operating temperatures. Explicit consideration of the effect of varying operating temperatures and pumping duties on the utilities costs is not considered in the methodology used here. This will likely lead to greater OpEx costs when operating a single crystalliser at 0 °C as the cooling duty is burdened on one vessel only. Methodologies which explicitly calculate varying costs of utilities with differing pumping requirements and cooling duties should be implemented where possible.

\textbf{5.3.2 Solids Recycle}

Figure 13 shows the cost components of different configurations for the process with solids recycle. The most cost optimal configuration is using two crystallisers with all recycle fed to the first crystalliser, operating at 10 °C. As before, increasing the number of crystallisers significantly increases the CapEx of the process.
Increasing the extent of solids recycle and feeding the recycle to the first crystalliser leads to increased total costs due to the increased crystalliser volumes required to handle higher material throughputs. The greatest costs incurred are when the recycle stream is evenly split between all crystallisers due to the large vessel volumes required to accommodate the increased internal flowrates and the lower yields attained in comparison to when the recycle stream is fed to the final crystalliser. As before, BLIC contributes a significant portion to CapEx and UW contributes a significant portion to OpEx. The increased utilities costs with increasing recycle ratios, i.e. additional pumping requirements, are not explicitly considered here, but will lead to increased OpEx for scenarios with higher recycle ratios. Consideration of these factors is essential for accurate cost comparisons.

5.3.3 Cost Components per Total Crystalliser Unit Volume
In the previous subsection, Figures 12 and 13 compare absolute total cost components for all process configurations considered for the total cascade residence times listed in Table 3. As explained previously, the selection of these total cascade residence times is such that the designed crystallisers are not over-sized, i.e. no unnecessary additional capital costs for crystallisers are incurred for only incremental increases in yield. However, this can lead to unfair cost comparisons due to the differences in total cascade residence times, and thus different crystalliser volumes, which significantly affects CapEx. We have calculated the total cost components normalised with respect to the total crystalliser volume in MSMPR cascades for both processes with and without solids recycle to allow an alternative economic comparison of different configurations.
Figure 14 shows normalised cost components for the process with no recycle and the process with 50% solids recycle fed to the first crystalliser only. When one crystalliser is implemented, the normalised total costs are greater when solids recycle is implemented, due to the increased crystalliser volume required to handle recycle flowrates, which incurs greater CapEx. However, when two or three crystallisers are implemented, the process with solids recycle has lower normalised cost components. It is also shown that for both processes with and without recycle, there is a large difference between operating the first crystalliser at 15 and 20 °C when three crystallisers are implemented; this is due to the sharp increase in total crystalliser volumes for both cases.

These results indicate that the cost components of the process are very sensitive to the selection of total cascade residence time for crystallisation process design, *i.e.* if different residence times were selected for the process with solids recycle implemented then it could be more economically viable than the process with no recycle. This demonstrates the importance of rigorous process analysis and fair comparisons of design and operating variables for economic analyses of candidate configurations.

![Cost components per total crystalliser unit volume for continuous cyclosporine crystallisation without recycle (left) and with 50% solids recycle fed to the first crystalliser only (right).](image)

Figure 14: Cost components per total crystalliser unit volume for continuous cyclosporine crystallisation without recycle (left) and with 50% solids recycle fed to the first crystalliser only (right).

6. Discussion

Continuous cyclosporine crystallisation using a cascade of MSMPR crystallisers has been systematically compared via steady-state process modelling, comparing computed attainable yields, material efficiencies and total cost components. The aim of this work was to allow rigorous evaluation of economically viable options for continuous cyclosporine crystallisation.

Continuous cyclosporine crystallisation for different process configurations (with and without solids recycle) have been compared as a function of the number of implemented crystallisers, total cascade residence times, operating temperatures, varying extents of solid recycle and different recycle feed point locations. Crystallisation and plantwide yields, E-factors, required crystalliser volumes and total cost components are compared for different process configurations to evaluate the most economically viable process option. Additionally, we have also calculated total cost components normalised with respect to the total crystalliser volume to highlight the sensitivity of the designs to the selected total cascade residence time for economic analyses.

Crystallisation yields are shown to increase with increasing total residence time and the number of crystallisers, lower operating temperatures and higher recycle ratios. However, increased recycle ratios for the process with solids recycle incur lower plantwide yields and higher E-factors due to greater losses of API and solvent in discharged mother liquor streams. This effect is a consequence of the equipment arrangement in the flowsheet which is based upon an experimental demonstration.45
Future work should compare alternative arrangements for solids recycle to mitigate losses with increased solids recycle.

The most economically viable configuration for the process without recycle implements a single crystalliser operating at 0 °C, incurring total costs of 25,488 GBP. For the process with solids recycle, the most economically viable process option implements two crystallisers with 50% solids recycle fed to the second crystalliser only, operating the first crystalliser at 10 °C, incurring total costs of 45,660 GBP. However, as shown from the normalised cost components with respect to total crystalliser volume, these cost estimates are very sensitive to the total cascade residence time of different configurations. Future work should consider a more systematic methodology for economic analyses. The CapEx incurred when implementing multiple crystallisers and the gravity-driven separation column, for the process with solids recycle leads to high total costs. Utilities and waste handling costs contributing to OpEx for other configurations lead to economically inferior processes compared to the process without recycle. However, the economic analysis methodology implemented here does not explicitly consider the effect of different operating temperatures and extents of recycle (which directly impact cooling and pumping duties of crystallisers and peristaltic pumps, respectively) on OpEx contributions to total costs. This may lead to reduced cost benefits when implementing a single crystalliser with a high cooling duty in comparison to other configurations which distribute the total cooling duty amongst multiple vessels. Future work should consider these factors for a more accurate evaluation of economically viable processes.

The steady-state process modelling results presented here are based upon several key assumptions of the MSMPR model. Neglecting the presence of impurities in the process feed stream is an important assumption; crystal purity is an essential parameter due to the strict regulations imposed on pharmaceutical products. Moreover, the results are also strongly-dependent on the limited set of operating variables i.e. the number of crystallisers in series, total cascade residence time, operating temperature, extent and location of solids recycle). Whilst the set and range of operating variables considered here are limited, we have chosen these ranges in accordance with those investigated in the experimental demonstrations of continuous cyclosporine crystallisation. The process model has been described in enough detail such that the effect of operating variables outwith the sets considered here can be considered by an expert reader.

This work considers the steady-state process modelling and simulation for continuous cyclosporine crystallisation and does not consider upstream synthetic steps. The continuous flow synthesis or cyclosporine is not modelled in this work due to the lack of experimental demonstrations and kinetic data required for accurate reactor design. However, the results presented here provide a direct indication of which crystallisation processes will lead to the best-performing process configurations.

Operating MSMPR crystallisers as a closed-loop can allow smaller crystalliser volumes and reduced material requirements for continuous crystallisation configurations, but issues with fouling and encrustation can make such setups unfavourable. A systematic comparison of different processes with and without closed-loop arrangements is required to establish the best process configuration. Whilst the current work does not consider downtime for dealing with fouling issues, operating a closed-loop process will make fouling effects more significant; economic analyses would thus need to consider equipment downtime and additional standby equipment to ensure fully continuous operation of the process. The current work considers processes without closed-loop operation only, in accordance with the experimental demonstrations of the processes with and without solids recycle.

The modelling of continuous crystallisation processes using MSMPR crystallisers is a multivariate problem, which requires rigorous mathematical methods to establish the best process configuration. Despite the systematic methods we have used here to investigate the design space for different flowsheet configurations for continuous cyclosporine crystallisation, it is imperative to perform mathematical optimisations of such processes to minimise the total costs. Previous work has performed optimisation of yield and purity of cyclosporine in a series of MSMPR crystallisers without recycle by varying the temperature and residence time of each crystalliser; however, no such optimisation study has been performed for the process implementing solids recycle, and no study has yet optimised MSMPR crystallisation processes with total costs as the objective function. Such work
is imperative to establish economically viable options for continuous crystallisation prior to further development.

7. Conclusions
The present study implements a technoeconomic analysis of two different process configurations for the continuous crystallisation of cyclosporine: with and without solids recycle, based on experimental demonstrations. A steady-state process model for a cascade of continuous MSMPR crystallisers incorporating population balance equations, crystallisation kinetics and process mass balances for different flowsheet permutations allows calculation of yields for different process configurations and operating variables, including varying the number of crystallisers, operating temperatures, total cascade residence times, API feed concentration and extent and feed point location of recycle streams. The environmental impacts/material efficiencies of different process configurations are evaluated using the widely-implemented E-factor. Cost analyses using an established methodology for CPM processes allow comparison of the economic viability of the process configurations considered.

The capital expenditures incurred using multiple crystallisers and a gravity-driven separation column as well as high waste handling costs make processes with solids recycle economically inferior to those without recycle. In addition to achieving the lowest total costs, the process using a single crystalliser with no recycle also achieves very low E-factors (<10) in comparison to typical pharmaceutical manufacturing processes and other process configurations considered here. Total cost components normalised with respect to total crystalliser volume implemented show the sensitivity of selected residence times on economic analyses and cost comparisons of different process configurations. Due to the complex interplay of operating variables considered here, technoeconomic optimisation with respect to total costs is required to establish the optimal process configuration and operating variables for development of the continuous crystallisation of cyclosporine. This work demonstrates the value of conducting process modelling studies prior to costly development and scale-up of CPM processes.

8. Author Information
Corresponding Author
*Email: D.Gerogiorgis@ed.ac.uk, phone: +44 131 6517072

ORCID
Dimitrios I. Gerogiorgis: 0000-0002-2210-6784

Notes
The authors declare no competing financial interest.

9. Acknowledgements
The authors gratefully acknowledge the financial support of the Engineering and Physical Sciences Research Council (EPSRC) via a Doctoral Training Partnership (DTP) PhD fellowship awarded to Mr. Samir Diab (Grant # EP/N509644/1).

10. Nomenclature and Acronyms

<table>
<thead>
<tr>
<th>Latin Letters and Acronyms</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>B_i</td>
<td>Crystal nucleation rate ($# \text{ m}^{-3} \text{ min}^{-1}$)</td>
</tr>
<tr>
<td>b</td>
<td>Crystal nucleation exponent (—)</td>
</tr>
<tr>
<td>BLIC</td>
<td>Battery limits installed costs (GBP)</td>
</tr>
<tr>
<td>C_0</td>
<td>Mother liquor API concentration of the fresh feed stream (g mL$^{-1}$)</td>
</tr>
<tr>
<td>C_i</td>
<td>API concentration in product magma of MSMPR i (g mL$^{-1}$)</td>
</tr>
<tr>
<td>$C_{i \text{ sat}}$</td>
<td>API saturation concentration at T_i (g mL$^{-1}$)</td>
</tr>
<tr>
<td>CapEx</td>
<td>Capital expenditure (GBP)</td>
</tr>
<tr>
<td>CC</td>
<td>Contingency costs (GBP)</td>
</tr>
<tr>
<td>CEPICI</td>
<td>Chemical engineering plant cost index</td>
</tr>
<tr>
<td>CPM</td>
<td>Continuous pharmaceutical manufacturing</td>
</tr>
<tr>
<td>E</td>
<td>Environmental factor (—)</td>
</tr>
<tr>
<td>E_{ag}</td>
<td>Crystal growth activation energy (J mol$^{-1}$)</td>
</tr>
</tbody>
</table>
F_0 Volumetric flowrate of the fresh feed stream (mL min$^{-1}$)

F_i Volumetric flowrate of stream i (mL min$^{-1}$)

f Correction factor in equation 17

FOB Free-on-Board Costs (GBP)

G_i Crystal linear growth rate (m min$^{-1}$)

g Crystal growth exponent (—)

IEC Installed equipment costs (GBP)

k_{0b} Pre-exponential factor for crystal nucleation (# m$^{-3}$ min$^{-1}$)

k_{g0} Pre-exponential factor for crystal growth (m min$^{-1}$)

k_c Crystal volume shape factor (= $\pi/6$ for spherical crystals)

L Crystal characteristic length (m)

M_i MSMPR slurry density (g mL$^{-1}$)

MAT$_{annual}$ Annual material costs (GBP y$^{-1}$)

MAT$_{total}$ Total material costs over the plant lifetime (GBP)

MSMPR Mixed Suspension-Mixed Product Removal

m_{API} Mass of recovered crystallised API (g min$^{-1}$)

m_{waste} Mass of waste API (g min$^{-1}$)

N Number of MSMPRs in series (—)

n Exponent in equation 17

n_i Crystal population density (# m$^{-3}$ m$^{-1}$)

n_i^0 Nuclei population density (# m$^{-3}$ m$^{-1}$)

ODE Ordinary differential equation

OpEx$_{annual}$ Annual operating expenditure (GBP y$^{-1}$)

OpEx$_{total}$ Total operating expenditure over the plant lifetime (GBP)

P_j Equipment purchase cost at capacity j (GBP)

PPI Process piping and instrumentation costs (GBP)

R Universal gas constant (= 8.314 J mol$^{-1}$ K$^{-1}$)

r Interest rate (%)

S_j Capacity of equipment (varying units)

T_i Operating temperature of MSMPR i (°C)

TPPC Total physical plant cost (GBP)

UW$_{annual}$ Sum of annual utilities and waste disposal costs (GBP y$^{-1}$)

UW$_{total}$ Total utilities and waste disposal costs over the plant lifetime (GBP)

UTIL$_{annual}$ Annual utilities costs (GBP y$^{-1}$)

V_i Volume of MSMPR i (mL)

WC Working capital costs (GBP)

WCC Working capital and contingency costs (GBP)

x Clear liquor removal ratio in gravity-driven separation column for continuous crystallisation process with solids recycle (—)

$Y_{crystallisation}$ Crystallisation yield (%)

$Y_{plantwide,NR/SR}$ Plantwide API yield for process without/with solids recycle (%)

Greek Letters

ρ_{API} API solid crystal density (g cm$^{-3}$)

$\rho_{acetone}$ Acetone density at T_i (g mL$^{-1}$)

τ Plant operation lifetime (y)

τ_i Residence time in MSMPR i (h or min)

τ_{total} Residence time of total crystalliser cascade (h or min)

References

2. Betz, G., Junker-Bürgin, P. & Leuenberger, H. Batch And Continuous Processing In The

