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META-LEVEL INFERENCE IN ALGEBRA

by
Alan Bundy

Leon Sterling

Abstract

We describe two uses of meta-level inference: to control the search for aproof; 
and to derive new control information, and illustrate them in the domain

of algebraic equation solving. The derivation of control information is the
main focus of the paper. It involves the proving of theorems in the
Meta-Theory of Algebra. These proofs are guided by meta-meta-level inference.
We are developing a meta-meta-language to descrj.be formulae, and proof plans,
and have built a program, IMPRESS, which uses these plans to build a proof.
IMPRESS will form part of a self improving algebra system.
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1. Introducti<Jn
In [Bundy and Welham 81J ~.e described the notion of meta-level inference,

and used it as a technique for controlling search. We also speculated about
how it might be used as a technique for deriving new control information. In
this paper we describe work in progress to explore this second application of
meta-level inference.

The domain used to illustrate these ideas is equation solving. In [Bundy
and Welham 81] the PROLOG prcgram, PRESS,* is described. PRESS successfully
solves a wide range of equations of the diffj.culty of A-l~vel mathematicspapers. 

It uses meta-level inference to carefully guide the application of
sets of rewrite rules. Without such guidance it would bec~me hopelessly bogged
down in a combinatorial exp]osion. PRESS cl')uses can be interpreted as axioms
and theorems of the Meta-Theory of Algebra. Inference, in this mathematical
theory, r.as the side effect of applying rewrite rules to algebraic expressions,
and, hence, solv~ng equations in the object-level domain of Algebra.

We are currently building a PROLOG program, IMfRESS,** which proves
propertiea of PRESS procedures by deriving theorems in the Meta-Theory ufAlgebra. 

The same technique of meta-level infe~'ence is being used to guide t~e
search. For I~1PRESS the object-level enti t).es dre PRESS cJ.auses, and the
meta-level ent."l tj.es are methods for proving prop~rties of them. The PROLOG
clauses which fmplement these IMPRESS methods can be regarded as axioms and
theorems of the Meta-~leta-TheoL'y of Algebra.

IMPRESS will form part of a larger program designed -to make PRESS into a
learning program. Such a program might begin by bej.ng shown examples and
non-examples of rules satisfying the syntactic criteria of a particular method.

*~ulog ~quatiori ~olving ~sytem.

**lnferring ~eta-knowledg~ about PRE~~.
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It would also be shown examples and non-examples of when this method should be
used, from which it would produce a PRESS clause to control the use of themethod. 

We have experimented with a version of Winston's arch learning program
for this task, [Winston 75, Young et al 77J. IMPRESS would then try to
establish properties of this method, thereby demonstrating that the correct
information had been learnt, and perhaps pointing to exceptions not covered by
the examples. Finally the new method would be incorporated into PRESS.

The technique of meta-level inference is perhaps best illustrated on anexample. 
As a running example, throughout this paper, we will use the

equation-solving method of Isolation. A simplified axiomatization of Isolationwill 
illustrate guided search when solving equations; while the correctness ofIsolation, 

as a theorem in the Meta-Theory of Algebra, will illustrate the new
control information that IMPRESS can derive.

2. A Method for Solving Equations
Isolation is a method for solving equations containing

occurrence of an unknown. That is, Isolation can solve
only singlea

logsin x2 COB a = tan a for x

but not
esin x+ ecos x = 5 for x

since the latter contains two occurrences of x. Isolation is a key method
because many solutions work by reducing equations to a form in which there is
only one occurrence of the unknown, and then applying Isolation.

The method consists of 'stripping off' the functions surrounding the single
occurrence of x by applying the inverse function to both sides of the equation.
This process is repeated until x is isolated on one side of the equation, e.g.

logsin x2 COB a = tan a

sin x2 = (COB a)1/tan a

x2 = 180n + (-1)narcsin (cos a)1/tan a

x = j180n + (-1 )narcsi~~~~~~a~1/;~~~~~r
x = -J 180n + (-1) arcsin (cos a) Titan a

This stripping off is done by
equation, in this case the rules:

log v=w -) u=v1/wu

applying a system of rewrite rules to

u = 180n + (-1)narcsin(v)->sin u ~ v

u2=v -) u =.r:; or u = -,r:;-

All rules used by Isolation have the same general form, namely

P & F(U1,...,Ui,...,Un)=V -) Rhswhere: 

Rhs is usually of the form Ui=Fi(U1,...V,...,Un), but can also be a
disjunction of such formu1aej Fi is the ith inverse function of Fj and P is an
optional condition.
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by a series of clauses defining the
3. The Meta-Theory of Algebra

Isolation is implemented in PRESS
ternary predicate, isolate, where

isolate(Posn,Lhs=Rhs,X=Ans)

means that expression X=Ans* is the result of isolating the subterm at position
Posn in expression Lhs. The position of a subterm in an expression is a list of
numbers which specifies the arguments it lies within (see figure 3-1).

.log

y ".»,2 sin
"-
COB

~ 1
f

,
a

1

'.» 

2
...

...

'2x

Figure 3-1: The Position of x in logs in x2 cos a

Interpreted declaratively, PRESS clauses can be regarded as axioms or
theorems in the Meta-Theory of Algebra. For example, the clause which invokes
the Isolation method can be interpreted as the theorem:

single-occ(X,Lhs=Rhs) & position(X,Lhs,Posn) &
isolate(Posn,Lhs=Rhs,X=Ans) -) solve(Lhs=Rhs,X,X=Ans) (ii)

where:single-occ(X,Exp) 

means, X occurs precisely once in Exp;

position(X,Exp,Posn) 

means, X occurs at Posn in Exp;

-solve(Eqn,X,Soln) means, Soln solves Eqn for X.
As a theorem of the ~ieta-Theory of Algebra, (ii) asserts that when an equation
contains only a single occurrence of X then Isolation is guaranteed to solve
it. We will call this theorem, The Correctness of Isolation and will use it as
an example of a program property thaot IMPRESS can prove.

Some typical axioms of the Meta-Theory of Algebra are the dofinitions of
solve and isolate:

*Throughout the paper we use the PROLOG convention that words b~glnDing with
capital letters denote variables. In the Meta-Theory of Algebra, alge~raic
(object-level) variables are represented as (meta-level) constants. Thus v is
a meta-level constant representing an object-level variabl\3, whereas V is a
meta-level variable ranging over object-level variables. Note that this avoids
the use/mention ambiguity, because ~le cannot apply meta-level substitution to
object-level vari~bles.
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solve(Eqn,X,X=Ans) 

(-> equiv(Eqn,X=Ans) & free-of(X,Ans)

isolate([],Soln,Soln)isolate([CarICdr] 

Old,Soln)
<->3New [isOlax(Car,Old;New) & isolate(Cdr,New,Soln)]

where:

equiv(Form1,Form2) means,formulae;

Form1

and Form2 are equivalent algebraic

free-of(X,Exp) 

means, Exp contains no occurrences of X;

-isolax(N,Lhs,Rhs) means, Lhs-)Rhs is an Isolation rule which isolates
the Nth argument position of Lhs.

The definition of solve is derived form a PRESS clause, but would be available
to I~1PRESS. The definition of isolate is a cleaned up and simplified version of
the PRESS clauses which define the Isolation method. The simplifications are
that we have decided to ignore Isolation rules with disjunctive right hand
sides and those with conditions, and to assume that the single occurrence of
the unknown is always on the left hand side of the equa.tion.

IMPRESS can prove (ii) from the above axioms and theorems among others.
Currently this is the only theorem the program can prove, but another PRESS
method, Collection, is being examined.

) 

&

4. Using Meta~Level Inference to Control Search
We now show how the clauses of the last section are used, by PRESS, to solveequations. 

Suppose we 'Tanted to solve (i) above for x. This would be presented
to PRESS as the goal:

solve( log(sin(xA2),cos(a))=tan(a), x, Soln ) -)

This would be resolved against (ii) to produce the subgoals:

single-occ( x, log(sin(xA2)tcos(a))=tan(a) ~
position( x, log(sin(xA2),cos(a)), Posn : &
isolate( Posn, log(sin(xA2),cos(a))=tan(a), Soln ) -)After 

the first two subgoals had been resolved away using the definitions of
single-occ and position, and binding Posn to [1,1,1], the last subgoal would becalled. 

This would resolve with the recursive definition of isolate to produce
the subgoals:

isolax( 1 c log(sin(xA2),cos(a))=tan(a), New) &
isolate( I ,1], New, Soln ) -)

The first of these subgoals would resolve with only one of the pre-stored
Isolation rules, nameJ.y

isolax( 1, log(U,V)=W, U=VA(1/W) )

binding New to sin(xA2)=cos(a)A(I/tan(a». This latest meta-level resolution
implicitly applie3 a rewrite rIlle to an algebraic expression, thus making a
move in the object-level s~arch space. The proving of the remaining isolatesubgoal 

will cause two more such move3 to be made, before the meta-level
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the equation as a side

terminates,

having caused the solving ofinferenceeffect.

5. Using Meta-Level Inferance to Derive Control Information
Following our experience with PRESS, we have adopted the technique of

meta-level inference to guide the search of IMPRESS to a proof of (ii), but in
this case we have a process of meta-illata-level inference guiding a meta-level
search space. The Meta-Meta-Theory of Algebra deals with the representation of
the ~1eta-Theory of Algebra as predicate calculus formulae.

In order to guide the proof the meta-meta-theory makes crucial distinctions
between the parts of (ii). The main parts are the hypothesis,isolate(Posn, 

Lhs=Rhs ,X=Ans) , and the conclusion, solve(Lhd=Rhs,X,X=Ans). The
remaining parts, single-occ(X,Lhs=Rhs) & position(X,Lhs,Posn) , form theconditions. 

\ve expect these distinctions to be supplied by the Winston-type
concept learning program as a consequence of the task of learning the
conditions under which the hypothesis part could be used to dflrive the
conclusion part.

To form a &trategy to prove the theorem, IMPRESS looks at the hypothesis,isolate(Posn,Lhs=Rhs,X=Ans). 
This is a relation, recursively defined on the

first argument, Posn: So IMPRESS decid(~s to try a proof by induction on thisargument. 
This reasoning parallels that of the Boyer/Moore thE)orem prover

[Boyer & Moore 79J, when proving properties of LISP fun~tions.*

IMPRESS forms two subgoals: the basis and the step of the induction, by
substituting [J and [n\posnJ, respectively, for Posn in negated and skolelaiz9d
versions or (ii)

BdSis:

single-occ(x,lhs=rhs)
position(x,lhs,[])
isolate([],lhs=rhs,x=ans)
solve(lhs=rhs,x,x=ans) -)

Step:

single-occ(x,lhs=rhs)
position{x Ihs,[n:posn])
isolate([ntposnJ,lhs=rhs,x=ans~
solve(lhs=rhs,x,x=ans) -)

Th~ basis subgoal is easily proved, since the condition position(x,lhs,[])
implics that lhs is x, and together with single-occ(x,lhs=rhs), that rhs is
free of x. Hence lhs=rhs is already B solution for x.

To prove the step, (ii) with posn for Posn, is assarted as tpe inductionhypothesis. 
That is, the new, temporaTY axioms are:

*In fact, in order to make comparisons, "'.H have built a~.d experimentea with a
toy version of the Boyer/~locre th~orem prover, written in PaOLOG. Both this,
and our not so toy version of Winston's prograDI.. have proved easy and quick to
implement in PROLOG: the implementations being both small &lld fast.
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Induction Hypothesis:single-occ(X,Lhs=RhS) 
& position(X,Lhs,posn) &

isolate(posn,Lhs=Rhs,X=Ans) -) solve(Lhs=Rhs,X,X=Ans)

Step Conditions:
single-occ'( x, Ihs=rhs)position(x,lhs,[n!posn])

Step Hypothesis:isolate([nlposn]

,lhs=rhs,x=ans)

Step Conclusion:
solve(lhs=rhs,x,x=ans) -)

In order that the induction hypothesis can be used, IMPRESS first unpacks
the step conclusion into:

solve(Eqn,x,x=ans) & equiv(lhs=rhs,Eqn) -)

This requires the lemma:

solve(New,X,Soln) & equiv(Old,Ne,.,) -> sorve(Old,X,Soln)

Which IMPRESS proves using the definition of solve (twice) and the transitivity
of equiv. The new 'solve' subgoal is then resolved with the induction
hypothesis to get:

single-occ(x,Eqn) & position(x,Eqn,posn) &
isolate(posn,Eqn,x=ans) & equiv(lhs=rhs,Eqn) -> (iii)

Note that the step hypothesis, together with the recursive definition ofisolate, 
can generate two consequences:

Performant: isolax(n,lhs=rhs,new)

Recursant: 

isolate(posn,new,x=ans)

The recursant can be used to resolve away the isolate subgoal of (iii), ~inding
Eqn to new. IMPRESS expects to prove each of the remaining three subgoals from
the performant, with the aid of the corresponding step condition in the case of
the condition type subgoals. It conjectures the lemmas it would need to dothis. 

These are:

isolax(N,Lhs=Rhs,New) & singl~-occ(X,Lhs=Rhs)
-> single-occ(X,New)

isolax(N,Lhs=Rhs,New) 

& position(X,Lhs=Rhs,[NIPosn])
-) position(X,New,Posn)

isolax(N,Lhs=Rhs,New) 

-) eqI1iv(Lhs=Rhs,New)

In each case these conjectures ar9 theorems of the Meta-Theory of Algebra.
order to allow the proof to continue we have supplied them as lemmasIMPRESS. 

~DUS IM?RESS completes the proof.

In
to

The above example illastrates the (meta-meta-level, language we have
developed for describing parte of formulae, and how they can be used to guide R
proof s~arch. ~lhis parallels the (meta-level) language that we developed to
describe algebraic expressions, and used to guide e.quation soJ.ving. Such a




